SlideShare a Scribd company logo
1 of 15
A Unifying Review of Linear Gaussian
Models
SAM ROWEIS
ZOUBIN GHAHRAMANI
YEZIWEI WANG
APPLICATION: 10424768
JANUARY 18 2017
Structure
The Basic Model
Basic
Model
Continuous-
state
A = 0
R diagonal
Factor
Analysis
𝑅
= 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼
PCA
𝑅 = 𝜖 𝐼 SPCA
A ≠ 0
Kalman
Filter
Discrete-
state
A = 0
𝑅
= 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼
VQ
Mixtures
Gaussian
A ≠ 0 HMM
 𝑥 𝑡+1 = 𝐴𝑥 𝑡 + 𝑤𝑡 = 𝐴𝑥 𝑡 + 𝑤.
 𝑦𝑡 = 𝐶𝑥 𝑡 + 𝑣 𝑡 = 𝐶𝑥 𝑡 + 𝑣.
 𝑤.~𝒩 0, 𝑄 : state evolution noise
 𝑣.~𝒩 0, 𝑅 : observation noise
 Hidden state sequence x is an
explanation of the complicated
observation sequence y (k<<p)
The basic Model: Inference
Probability Computation(Why
Gaussian)
 Gaussian + Gaussian = Gaussian
Filtering and smoothing
 Given initial parameters:
 Total likelihood:
 Filtering:
 Smoothing: where 𝜏 > 𝑡
The Basic Model: Learning
 Maximize likelihood
 Use solutions to filtering and smoothing
 Expectation-Maximization algorithm
 Y – observed data
 X – hidden data
 - parameters of the model
Continuous-state Static Modeling
 Assume Q = I, without loss of generality
 Inference:
 Learning: identifying the matrices C and R
 X – continuous ⇒ ∫
Continuous-state Static Modeling: Factor Analysis
Condition
 R – diagonal (uniqueness element)
 Q – identity matrix
 C – factor loading matrix
Process
 Marginal distribution:
 EM provides a unified approach for
learning
Continuous-state Static Modeling: SPCA and PCA
SPCA
 𝑅 = 𝜖 𝐼 (𝜖, 𝑔𝑙𝑜𝑏𝑎𝑙 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙)
 Q = 𝐼
 Columns of C: principle components
 Inference:
 Learning: EM algorithm
 Rotation invariant.
PCA
 𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼
 Q = 𝐼
 Inference: least squares projection
 Learning: EM algorithm
Continuous-state Dynamic Modeling: Kalman Filter
Models
 𝐴 ≠ 0
 𝑥 𝑡+1 = 𝐴𝑥 𝑡 + 𝑤𝑡 = 𝐴𝑥 𝑡 + 𝑤.
 𝑦𝑡 = 𝐶𝑥 𝑡 + 𝑣 𝑡 = 𝐶𝑥 𝑡 + 𝑣.
 𝑤.~𝒩 0, 𝑄
 𝑣.~𝒩 0, 𝑅
Discrete-state Static Modeling
 Initial state:
 Assume 𝑄1 = 𝐼 , without loss of generality
 X – discrete ⇒ ∑
 Winner-take-all - 𝑊𝑇𝐴 𝑥 = 𝑒𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡
Discrete-state Static Modeling: Mixtures of
Gaussians and Vector Quantization
Mixtures of Gaussians
 A = 0
 Likelihood: 𝑃 𝑦. = ∑𝑖=1
𝑘
𝒩 𝐶𝑖, 𝑅 | 𝑦.
𝜋𝑖,
𝜋𝑖 = 𝑃(𝑥. = 𝑒𝑖)
 Inference: (responsibility)
 Learning: EM algorithm
Vector Quantization
 𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼
 𝜋𝑖 = 1
𝑘
 Inference: 1-nearest-neighbor rule
 Learning: EM ⇔ k-means algorithm
Discrete-state Dynamic Modeling: Hidden
Markov Models
 State Transition Matrix T
 𝐴𝑠𝑠𝑢𝑚𝑒 𝑄 = 𝐼 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠
 T can be equivalently modeled by A
and Q
 Emission probability: same covariance
 Initial Distribution ⇐ 𝑚𝑒𝑎𝑛 𝜇1
 𝐴 ≠ 0,
 Inference: forward-backward
algorithm
 Learning: Baum-Welch algorithm
Network Interpretations and Regularization
Output
Layer
Hidden
Layer
Input
Layer
y. 𝑥. 𝑦.
 Factor Analysis:
 Tying recognition weights to
generative weights; minimizing cost
function.
 Mixtures of Gaussians:
 Linear recognition followed by a soft
max nonlinearity; minimizing cost
function.
Recognition Generative
Summary & Reflection
Pros & Cons
Advantages:
Computation simplification
Highlights relationships between
models
Natural extensions
Disadvantages:
Not most efficient
Future Work
• Explore other distributions
• Develop mixture-state model
• Spatially adaptive observation
noise for continuous-state
models
Inference
•Input: observed data,
measurements
•Output: parameters of
unobserved states.
Learning
•Initialize parameters
•E-step: use inference solutions
•M-step: update parameters
•Output updated parameters
References
 Roweis, S. and Ghahramani, Z. (1999). A Unifying Review of Linear Gaussian
Models. Neural Computation, 11(2), pp.305-345.
 En.wikipedia.org. (2017). Independent component analysis. [online] Available
at: https://en.wikipedia.org/wiki/Independent_component_analysis [Accessed
18 Jan. 2017].
 En.wikipedia.org. (2017). Kalman filter. [online] Available at:
https://en.wikipedia.org/wiki/Kalman_filter [Accessed 18 Jan. 2017].
 En.wikipedia.org. (2017). Kalman filter. [online] Available at:
https://en.wikipedia.org/wiki/Kalman_filter#/media/File:Basic_concept_of_Kal
man_filtering.svg [Accessed 18 Jan. 2017].

More Related Content

What's hot

Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
Anda Tywabi
 
Types of functions2
Types of functions2Types of functions2
Types of functions2
kmcmullen
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
Riddhi Patel
 

What's hot (20)

Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
ATPG of reversible circuits
ATPG of reversible circuitsATPG of reversible circuits
ATPG of reversible circuits
 
Maths project for class 10 th
Maths project for class 10 thMaths project for class 10 th
Maths project for class 10 th
 
Newton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsmNewton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsm
 
Ladder operator
Ladder operatorLadder operator
Ladder operator
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
Convergence Criteria
Convergence CriteriaConvergence Criteria
Convergence Criteria
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
 
Types of functions2
Types of functions2Types of functions2
Types of functions2
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Eigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theoremEigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theorem
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
AP Advantage: AP Calculus
AP Advantage: AP CalculusAP Advantage: AP Calculus
AP Advantage: AP Calculus
 
Secant method
Secant methodSecant method
Secant method
 
MC0082 –Theory of Computer Science
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matrices
 
Power method
Power methodPower method
Power method
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 

Similar to A unifying review of linear Gaussian Models

MASSS_Presentation_20160209
MASSS_Presentation_20160209MASSS_Presentation_20160209
MASSS_Presentation_20160209
Yimin Wu
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
divyanshuprakashrock
 
Sistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superiorSistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superior
Jhon D'Lozxo
 

Similar to A unifying review of linear Gaussian Models (20)

01.02 linear equations
01.02 linear equations01.02 linear equations
01.02 linear equations
 
Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)
 
Bayesian Inference : Kalman filter 에서 Optimization 까지 - 김홍배 박사님
Bayesian Inference : Kalman filter 에서 Optimization 까지 - 김홍배 박사님Bayesian Inference : Kalman filter 에서 Optimization 까지 - 김홍배 박사님
Bayesian Inference : Kalman filter 에서 Optimization 까지 - 김홍배 박사님
 
MASSS_Presentation_20160209
MASSS_Presentation_20160209MASSS_Presentation_20160209
MASSS_Presentation_20160209
 
Hidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable PathHidden Markov Model - The Most Probable Path
Hidden Markov Model - The Most Probable Path
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptx02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptx
 
SOLUTION OF DIFFERENTIAL EQUATIONS
SOLUTION OF DIFFERENTIAL EQUATIONSSOLUTION OF DIFFERENTIAL EQUATIONS
SOLUTION OF DIFFERENTIAL EQUATIONS
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
 
Numerical Solution of Linear algebraic Equation
Numerical Solution of Linear algebraic EquationNumerical Solution of Linear algebraic Equation
Numerical Solution of Linear algebraic Equation
 
Sistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superiorSistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superior
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Hastings 1970
Hastings 1970Hastings 1970
Hastings 1970
 
Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)
 
Hmm and neural networks
Hmm and neural networksHmm and neural networks
Hmm and neural networks
 
tut07.pptx
tut07.pptxtut07.pptx
tut07.pptx
 
Support vector machines
Support vector machinesSupport vector machines
Support vector machines
 

Recently uploaded

TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 

Recently uploaded (20)

ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Top 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development CompaniesTop 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development Companies
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
How to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in PakistanHow to Check GPS Location with a Live Tracker in Pakistan
How to Check GPS Location with a Live Tracker in Pakistan
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 

A unifying review of linear Gaussian Models

  • 1. A Unifying Review of Linear Gaussian Models SAM ROWEIS ZOUBIN GHAHRAMANI YEZIWEI WANG APPLICATION: 10424768 JANUARY 18 2017
  • 3. The Basic Model Basic Model Continuous- state A = 0 R diagonal Factor Analysis 𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼 PCA 𝑅 = 𝜖 𝐼 SPCA A ≠ 0 Kalman Filter Discrete- state A = 0 𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼 VQ Mixtures Gaussian A ≠ 0 HMM  𝑥 𝑡+1 = 𝐴𝑥 𝑡 + 𝑤𝑡 = 𝐴𝑥 𝑡 + 𝑤.  𝑦𝑡 = 𝐶𝑥 𝑡 + 𝑣 𝑡 = 𝐶𝑥 𝑡 + 𝑣.  𝑤.~𝒩 0, 𝑄 : state evolution noise  𝑣.~𝒩 0, 𝑅 : observation noise  Hidden state sequence x is an explanation of the complicated observation sequence y (k<<p)
  • 4. The basic Model: Inference Probability Computation(Why Gaussian)  Gaussian + Gaussian = Gaussian Filtering and smoothing  Given initial parameters:  Total likelihood:  Filtering:  Smoothing: where 𝜏 > 𝑡
  • 5. The Basic Model: Learning  Maximize likelihood  Use solutions to filtering and smoothing  Expectation-Maximization algorithm  Y – observed data  X – hidden data  - parameters of the model
  • 6. Continuous-state Static Modeling  Assume Q = I, without loss of generality  Inference:  Learning: identifying the matrices C and R  X – continuous ⇒ ∫
  • 7. Continuous-state Static Modeling: Factor Analysis Condition  R – diagonal (uniqueness element)  Q – identity matrix  C – factor loading matrix Process  Marginal distribution:  EM provides a unified approach for learning
  • 8. Continuous-state Static Modeling: SPCA and PCA SPCA  𝑅 = 𝜖 𝐼 (𝜖, 𝑔𝑙𝑜𝑏𝑎𝑙 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙)  Q = 𝐼  Columns of C: principle components  Inference:  Learning: EM algorithm  Rotation invariant. PCA  𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼  Q = 𝐼  Inference: least squares projection  Learning: EM algorithm
  • 9. Continuous-state Dynamic Modeling: Kalman Filter Models  𝐴 ≠ 0  𝑥 𝑡+1 = 𝐴𝑥 𝑡 + 𝑤𝑡 = 𝐴𝑥 𝑡 + 𝑤.  𝑦𝑡 = 𝐶𝑥 𝑡 + 𝑣 𝑡 = 𝐶𝑥 𝑡 + 𝑣.  𝑤.~𝒩 0, 𝑄  𝑣.~𝒩 0, 𝑅
  • 10. Discrete-state Static Modeling  Initial state:  Assume 𝑄1 = 𝐼 , without loss of generality  X – discrete ⇒ ∑  Winner-take-all - 𝑊𝑇𝐴 𝑥 = 𝑒𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡
  • 11. Discrete-state Static Modeling: Mixtures of Gaussians and Vector Quantization Mixtures of Gaussians  A = 0  Likelihood: 𝑃 𝑦. = ∑𝑖=1 𝑘 𝒩 𝐶𝑖, 𝑅 | 𝑦. 𝜋𝑖, 𝜋𝑖 = 𝑃(𝑥. = 𝑒𝑖)  Inference: (responsibility)  Learning: EM algorithm Vector Quantization  𝑅 = 𝑙𝑖𝑚 𝜖→0 𝜖 𝐼  𝜋𝑖 = 1 𝑘  Inference: 1-nearest-neighbor rule  Learning: EM ⇔ k-means algorithm
  • 12. Discrete-state Dynamic Modeling: Hidden Markov Models  State Transition Matrix T  𝐴𝑠𝑠𝑢𝑚𝑒 𝑄 = 𝐼 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠  T can be equivalently modeled by A and Q  Emission probability: same covariance  Initial Distribution ⇐ 𝑚𝑒𝑎𝑛 𝜇1  𝐴 ≠ 0,  Inference: forward-backward algorithm  Learning: Baum-Welch algorithm
  • 13. Network Interpretations and Regularization Output Layer Hidden Layer Input Layer y. 𝑥. 𝑦.  Factor Analysis:  Tying recognition weights to generative weights; minimizing cost function.  Mixtures of Gaussians:  Linear recognition followed by a soft max nonlinearity; minimizing cost function. Recognition Generative
  • 14. Summary & Reflection Pros & Cons Advantages: Computation simplification Highlights relationships between models Natural extensions Disadvantages: Not most efficient Future Work • Explore other distributions • Develop mixture-state model • Spatially adaptive observation noise for continuous-state models Inference •Input: observed data, measurements •Output: parameters of unobserved states. Learning •Initialize parameters •E-step: use inference solutions •M-step: update parameters •Output updated parameters
  • 15. References  Roweis, S. and Ghahramani, Z. (1999). A Unifying Review of Linear Gaussian Models. Neural Computation, 11(2), pp.305-345.  En.wikipedia.org. (2017). Independent component analysis. [online] Available at: https://en.wikipedia.org/wiki/Independent_component_analysis [Accessed 18 Jan. 2017].  En.wikipedia.org. (2017). Kalman filter. [online] Available at: https://en.wikipedia.org/wiki/Kalman_filter [Accessed 18 Jan. 2017].  En.wikipedia.org. (2017). Kalman filter. [online] Available at: https://en.wikipedia.org/wiki/Kalman_filter#/media/File:Basic_concept_of_Kal man_filtering.svg [Accessed 18 Jan. 2017].