SlideShare a Scribd company logo
1 of 33
Lecture 9:
Three-Phase Power
Calculations
Lesson Outcomes
i. calculate power consumed by a star-connected load,
ii. calculate power consumed by a delta-connected load,
After completing this unit and doing the exercises givenyou will be
able to:
Recall
The power (p) supplied at any instant in a single-phase circuit is
given by
POWER CONSUMED BY THREE-PHASE LOADS
p = vi
The total power for a single-phase circuit is
P = VIcos
where V and I are rms values of voltage and current respectively,
and  is the phase angle between them.
v(t)
i(t)
The power consumed by a three-phase load is thus given by the
sum of the powers in each phase:
P = VRNIRcosR + VYNIYcosY + VBNIBcosB
If the load is balanced, then
VRN = VYN = VBN = Vph
IR = IY = IB = Iph
and
R = Y = B = 
where VRN, VYN, VBN, IR, IY, and IB are phase quantities.
Three-phase load
R
Y
B
IR
IY
IB
POWER CONSUMED BY THREE-PHASE LOADS
If the load is star-connected, then
IL = Iph
and
L
ph V
V
3
1

Therefore, total power
giving

 cos
3
1
3
cos
3 



 L
L
ph
ph I
V
I
V
P
Therefore, total power,
= 3VphIphcos
P = VRNIRcosR + VYNIYcosY + VBNIBcosB

cos
3 L
L I
V
P 
POWER CONSUMED BY THREE-PHASE LOADS
If the load is delta connected, then
and
ph
L V
V 
from which it follows that total power,
ph
L I
I 3


cos
3 L
L I
V
P 
Thus, for all methods of connection, the power in a three-phase
balanced load is given by

cos
3 L
L I
V
P 
If the load is unbalanced, then total power is obtained by summing
the all the phase powers, that is,
P = VRIRcosR + VYIYcosY + VBIBcosB
POWER CONSUMED BY THREE-PHASE LOADS
The total apparent power supplied to the load is equal to the sum of
apparent powers supplied to all the three phases, that is
B
Y
R S
S
S
S 


where
R
RN
R I
V
S  Y
YN
Y I
V
S 
B
BN
B I
V
S 
VRN = VYN = VBN = Vph
IR = IY = IB = Iph
and
Therefore, total apparent power ph
phI
V
S
S 3
3 ph 

POWER CONSUMED BY THREE-PHASE LOADS
If the load is star-connected and balanced, then
ph
B
Y
R S
S
S
S 


Since L
ph
3
1
V
V 
Then, total apparent power supplied to the load is
L
L
L
L
ph
ph I
V
I
V
I
V
S
S 3
3
1
3
3
3 ph 





Iph = IL
and
POWER CONSUMED BY THREE-PHASE LOADS
In complex notation,
*
3 L
L I
V
S 
It can be shown that this result also holds for a balanced delta-
connected load.
So, providing we know the line current and phase-to-phase (line)
voltage and the impedance angle, we can calculate the power of the
load without having to know how it is connected.
Similarly, the total reactive power supplied to the load is the sum of
reactive powers consumed by each phase; that is

 sin
3
sin
3
1
3
sin
3
3 ph
ph
ph L
L
L
L
ph I
V
I
V
θ
I
V
Q
Q 






θ
I
V
Q Y Y
Y
Y sin

B
Y
R Q
Q
Q
Q 


where
θ
I
V
Q R R
R
R sin
 θ
I
V
Q B B
B
B sin

POWER CONSUMED BY THREE-PHASE LOADS
are phase quantities. If the load is star-connected, then
IL = Iph
and
L
ph V
V
3
1

Thus,
Likewise, it can be shown that for a delta-connected load, the total
reactive power consumed is given by

sin
3 L
L I
V
Q 
Three identical coils, each having a resistance of 20  and an
inductance of 0.5 H are connected in star to a three phase supply of
400 V; 50 Hz. Calculate the current and the total power absorbed
by the load.
Worked Example
20
3
/
400
400V
400V
400V
N
0.5H
0.5H 0.5H
20 20
Solution
First of all calculating the
impedance of the coils.
Given: 
 20
RP
H
5
.
0

P
L
Therefore





157
5
.
0
50
2
P
X






2
2
P
P
P
P
P X
R
jX
R
Z

83
158
83
157
20 2
2






p
Z

83
20
157
tan
tan 1
1

















 

P
P
R
X

where
Solution
Coil impedance is
Therefore,
Since it is a balanced load
V
231
3
400


P
V

cos
3 L
L I
V
P 
W
128
1264
.
0
46
.
1
400
3 




P
Total power absorbed by the load is
1264
.
0
83
cos
cos 
 

where
Therefore,
A
46
.
1
158
231




P
P
L
P
Z
V
I
I
Current taken by the load,
Solution
Alternative Solution
20
3
/
400
400V
400V
400V
N
0.5H
0.5H 0.5H
20 20
First of all calculating the
impedance of the coils.
Given: 
 20
RP
H
5
.
0

P
L
Therefore





157
5
.
0
50
2
P
X
 



 157
20 j
jX
R
Z P
P
P
Coil impedance is
Alternative Solution
Since it is a balanced load, we can analyse it on a per phase basis
as follows:
V
231
3
400


P
V
R
N
RN
V
R
I
RN
Z
Phase voltage is
Choosing VRN as the reference phasor, we can write
V
0
231 


RN
V
Therefore,
A
74
.
82
46
.
1
157
20
0
231









j
Z
V
I
RN
RN
R
From which we obtain the line current
A
46
.
1

 R
L I
I
R
N
RN
V
R
I
RN
Z
Complex power consumed by ZRN is
SRN
VA
74
.
82
2
.
337
74
.
82
46
.
1
0
231
*










 R
RN
RN I
V
S
VA
82.74
1012
74
.
82
2
.
337
3
3








 RN
S
S
Total complex power consumed by the
three load impedances is
Alternative Solution
    W
5
.
127
74
.
82
cos
1012
Re 


 S
P
Therefore, total power absorbed by the load is
Alternative Solution
A balanced three phase load connected in star, each phase consists
of resistance of 100  paralleled with a capacitance of 31.8 F. The
load is connected to a three phase supply of 415 V; 50 Hz.
Calculate:
415
Worked Example
(a) the line current;
(b) the total power absorbed;
(c) total kVA;
(d) power factor .
V
240
3
415
3
V
V L
P 


Solution
Admittance of the load
C
j
1
XP


where
P
P
P
X
R
Y
1
1


C
j
R
1
P



6
10
8
.
31
50
2
j
100
1 






S
)
01
.
0
j
01
.
0
( 

)
01
.
0
01
.
0
(
240 j
Y
V
I
I P
P
P
L 




45
39
.
3
4
.
2
4
.
2 


 j
*
P
I
V
S P
p  

45
4
.
814
45
39
.
3
240 






    W
576
45
cos
4
.
814
Re 



 S
P
kW
728
.
1
576
3 


P
Line current
Volt-ampere per phase
Active power per phase
Total active power
Solution
  kVAR
728
.
1
576
3
3 





 p
Q
Q
Reactive power per phase
  VAR
576
45
sin
4
.
814 


 
p
Q
Total reactive power
kVA
44
.
2
4
.
814
3
3 


 p
S
S
Total volt-ampere
Power Factor = cos = cos 45 = 0.707 (leading)
Solution
Worked Example
rms
rms
rms
110 0 V
110 120 V
110 120 V
a
b
c
  
   
  
V
V
V
50 80
50 80
50 80
A
B
C
j
j
j
  
  
  
Z
Z
Z
A balanced four-wire circuit has
Calculate the total complex power supplied to the load
rms
110 0
1.16 58 A
50 80
a
aA
A j
 
     

V
I
Z
*
68 109 VA
A aA a j
  
S I V
The total complex power delivered to the three-phase load
is
3 204 326 VA
A j
  
S S
Also
rms rms
1.16 177 A , 1.16 62 A
bB cC
      
I I
68 109 VA
B C
j
  
S S
Solution
A balanced 3-wire circuit has
rms
rms
rms
110 0 V
110 120 V
110 120 V
a
b
c
  
   
  
V
V
V
50 80
50 80
50 80
A
B
C
j
j
j
  
  
  
Z
Z
Z
Calculate the total apparent power supplied to the circuit
Example
rms
110 0
1.16 58 A
50 80
a
aA
A j
 
     

V
I
Z
*
68 109 VA
A aA a j
  
S I V
The total complex power delivered to the three-phase load is
Solution
3 204 326 VA
A j
  
S S
rms
rms
rms
110 0 V
110 120 V
110 120 V
a
b
c
  
   
  
V
V
V
50 80
50
100 25
A
B
C
j
j
j
  
 
  
Z
Z
Z
An unbalanced 3-wire star-star connected system has
Calculate the total apparent power supplied to the circuit
Example
ZL
n
Va Vc
Vb
N
IA
IB IC
ZA ZB ZC
ZL ZL
VNn
Solution
Determine VNn
V
151
56
8
.
26
2
.
49






 j
VNn
B
Y
A
C
c
B
b
A
a
Nn
Z
Z
Z
Z
V
Z
V
Z
V
V
1
1
1





Therefore
, , and
a Nn b Nn c Nn
aA bB cC
A B C
  
  
V V V V V V
I I I
Z Z Z
Solution
1.71 48 , 2.45 3 , and 1.19 79
aA bB cC
        
I I I
Exercise
Three identical coils, each having a resistance of 20  and an
inductance of 0.5 H connected in delta to a three phase supply of
400 V; 50 Hz. Calculate the current and the total power absorbed
by the load.
Worked Example
Solution
20
400V
400V
400V 0.5H
0.5H
0.5H
20
20
Solution
From previous Worked Example we found coil impedance

83
158
83
157
20 2
2






p
Z
Since it is a balanced load
V
400

 L
P V
V
20
400V
400V
400V 0.5H
0.5H
0.5H
20
20
A
53
.
2
158
400



ph
L
P
Z
V
I
Load phase current
Therefore, line current
A
38
.
4
53
.
2
3
3 


 P
L I
I

cos
3 L
L I
V
P 
W
6
.
221
1264
.
0
53
.
2
400
3 




P
Total power absorbed by the load is
1264
.
0
83
cos
cos 
 

where
Therefore, total power absorbed by the load is
Solution
Exercise
END

More Related Content

What's hot

Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutionskhemraj298
 
Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault AnalysisSANTOSH GADEKAR
 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical componentsanoopeluvathingal
 
EE8701-High Voltage Engineering (1).pptx
EE8701-High Voltage Engineering (1).pptxEE8701-High Voltage Engineering (1).pptx
EE8701-High Voltage Engineering (1).pptxsai karthick
 
11 basic concepts of a machine
11 basic concepts of a machine11 basic concepts of a machine
11 basic concepts of a machinemon prado
 
Insulation coordination.
Insulation coordination.Insulation coordination.
Insulation coordination.Parth Patel
 
Fundamentals of power system
Fundamentals of power systemFundamentals of power system
Fundamentals of power systemBalaram Das
 
Transmission line parameter PPT.pdf
Transmission line parameter PPT.pdfTransmission line parameter PPT.pdf
Transmission line parameter PPT.pdfssuser8c4a91
 
Three phase transformers
Three phase transformersThree phase transformers
Three phase transformersZiyaulhaq
 
power system analysis PPT
power system analysis PPTpower system analysis PPT
power system analysis PPTZiyaulhaq
 
Bil and insulation coordination ppt
Bil and insulation coordination pptBil and insulation coordination ppt
Bil and insulation coordination pptBILAL ALAM
 
Calculation of short circuit currents
Calculation of short circuit currents Calculation of short circuit currents
Calculation of short circuit currents Maria Romina Angustia
 

What's hot (20)

Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
 
Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault Analysis
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical components
 
Power factor improvement
Power factor improvement Power factor improvement
Power factor improvement
 
Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
 
D.C. Circuits
D.C. CircuitsD.C. Circuits
D.C. Circuits
 
EE8701-High Voltage Engineering (1).pptx
EE8701-High Voltage Engineering (1).pptxEE8701-High Voltage Engineering (1).pptx
EE8701-High Voltage Engineering (1).pptx
 
11 basic concepts of a machine
11 basic concepts of a machine11 basic concepts of a machine
11 basic concepts of a machine
 
Insulation coordination.
Insulation coordination.Insulation coordination.
Insulation coordination.
 
Fundamentals of power system
Fundamentals of power systemFundamentals of power system
Fundamentals of power system
 
Lightning arresters
Lightning arrestersLightning arresters
Lightning arresters
 
Fault analysis
Fault analysisFault analysis
Fault analysis
 
Transmission line parameter PPT.pdf
Transmission line parameter PPT.pdfTransmission line parameter PPT.pdf
Transmission line parameter PPT.pdf
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
 
Three phase transformers
Three phase transformersThree phase transformers
Three phase transformers
 
power system analysis PPT
power system analysis PPTpower system analysis PPT
power system analysis PPT
 
Bil and insulation coordination ppt
Bil and insulation coordination pptBil and insulation coordination ppt
Bil and insulation coordination ppt
 
Calculation of short circuit currents
Calculation of short circuit currents Calculation of short circuit currents
Calculation of short circuit currents
 

Similar to BEF 23803 - Lecture 9 - Three-Phase Power Calculations.ppt

Konsep Dasar.ppt
Konsep Dasar.pptKonsep Dasar.ppt
Konsep Dasar.pptYoakimMora
 
Three Phases Circuit.pdf
Three Phases Circuit.pdfThree Phases Circuit.pdf
Three Phases Circuit.pdfTuanPhan610855
 
10 three phase system.ppt
10 three phase system.ppt10 three phase system.ppt
10 three phase system.pptOXYMORON4
 
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.ppt
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.pptBEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.ppt
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.pptLiewChiaPing
 
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptx
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptxBEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptx
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptxLiewChiaPing
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10BinodKumarSahu5
 
Three phase circuits
Three phase circuitsThree phase circuits
Three phase circuitsEkeeda
 
Measurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMeasurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMohammed Waris Senan
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission lineDhananjay Jha
 
BEF 23803 - Lecture 7 - Complex Power Calculation.ppt
BEF 23803 - Lecture 7 - Complex Power Calculation.pptBEF 23803 - Lecture 7 - Complex Power Calculation.ppt
BEF 23803 - Lecture 7 - Complex Power Calculation.pptLiewChiaPing
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14BinodKumarSahu5
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14BinodKumarSahu5
 
PV cell chara.ppt
PV cell chara.pptPV cell chara.ppt
PV cell chara.pptBlessyJoy18
 
Lecture no 2 power system analysis elc353 et313 converted
Lecture no 2 power system analysis elc353 et313 convertedLecture no 2 power system analysis elc353 et313 converted
Lecture no 2 power system analysis elc353 et313 convertedFazal Ur Rehman
 
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.pptBEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.pptLiewChiaPing
 
three_phase_transformers-1p protection concept.pdf
three_phase_transformers-1p protection concept.pdfthree_phase_transformers-1p protection concept.pdf
three_phase_transformers-1p protection concept.pdfkanimol143me
 
5_2020_12_01!02_20_41_PM.pptx
5_2020_12_01!02_20_41_PM.pptx5_2020_12_01!02_20_41_PM.pptx
5_2020_12_01!02_20_41_PM.pptxssuser765eec
 

Similar to BEF 23803 - Lecture 9 - Three-Phase Power Calculations.ppt (20)

Konsep Dasar.ppt
Konsep Dasar.pptKonsep Dasar.ppt
Konsep Dasar.ppt
 
Three Phases Circuit.pdf
Three Phases Circuit.pdfThree Phases Circuit.pdf
Three Phases Circuit.pdf
 
33.doc
33.doc33.doc
33.doc
 
3 phase ac
3 phase ac3 phase ac
3 phase ac
 
Three phase System
Three phase SystemThree phase System
Three phase System
 
10 three phase system.ppt
10 three phase system.ppt10 three phase system.ppt
10 three phase system.ppt
 
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.ppt
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.pptBEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.ppt
BEF 23803 - Lesson 3 - Balanced Delta Load Thre-Phase Systems.ppt
 
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptx
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptxBEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptx
BEF 23803 - Polyphase Circuit Analysis - Lecture 2.pptx
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
 
Three phase circuits
Three phase circuitsThree phase circuits
Three phase circuits
 
Measurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMeasurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter method
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission line
 
BEF 23803 - Lecture 7 - Complex Power Calculation.ppt
BEF 23803 - Lecture 7 - Complex Power Calculation.pptBEF 23803 - Lecture 7 - Complex Power Calculation.ppt
BEF 23803 - Lecture 7 - Complex Power Calculation.ppt
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
 
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
 
PV cell chara.ppt
PV cell chara.pptPV cell chara.ppt
PV cell chara.ppt
 
Lecture no 2 power system analysis elc353 et313 converted
Lecture no 2 power system analysis elc353 et313 convertedLecture no 2 power system analysis elc353 et313 converted
Lecture no 2 power system analysis elc353 et313 converted
 
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.pptBEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
 
three_phase_transformers-1p protection concept.pdf
three_phase_transformers-1p protection concept.pdfthree_phase_transformers-1p protection concept.pdf
three_phase_transformers-1p protection concept.pdf
 
5_2020_12_01!02_20_41_PM.pptx
5_2020_12_01!02_20_41_PM.pptx5_2020_12_01!02_20_41_PM.pptx
5_2020_12_01!02_20_41_PM.pptx
 

More from LiewChiaPing

chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptLiewChiaPing
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptLiewChiaPing
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfLiewChiaPing
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfLiewChiaPing
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdfLiewChiaPing
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfLiewChiaPing
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfLiewChiaPing
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfLiewChiaPing
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfLiewChiaPing
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfLiewChiaPing
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfLiewChiaPing
 

More from LiewChiaPing (20)

chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.ppt
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdf
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdf
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdf
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 

Recently uploaded (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 

BEF 23803 - Lecture 9 - Three-Phase Power Calculations.ppt

  • 2. Lesson Outcomes i. calculate power consumed by a star-connected load, ii. calculate power consumed by a delta-connected load, After completing this unit and doing the exercises givenyou will be able to:
  • 3. Recall The power (p) supplied at any instant in a single-phase circuit is given by POWER CONSUMED BY THREE-PHASE LOADS p = vi The total power for a single-phase circuit is P = VIcos where V and I are rms values of voltage and current respectively, and  is the phase angle between them. v(t) i(t)
  • 4. The power consumed by a three-phase load is thus given by the sum of the powers in each phase: P = VRNIRcosR + VYNIYcosY + VBNIBcosB If the load is balanced, then VRN = VYN = VBN = Vph IR = IY = IB = Iph and R = Y = B =  where VRN, VYN, VBN, IR, IY, and IB are phase quantities. Three-phase load R Y B IR IY IB POWER CONSUMED BY THREE-PHASE LOADS
  • 5. If the load is star-connected, then IL = Iph and L ph V V 3 1  Therefore, total power giving   cos 3 1 3 cos 3      L L ph ph I V I V P Therefore, total power, = 3VphIphcos P = VRNIRcosR + VYNIYcosY + VBNIBcosB  cos 3 L L I V P  POWER CONSUMED BY THREE-PHASE LOADS
  • 6. If the load is delta connected, then and ph L V V  from which it follows that total power, ph L I I 3   cos 3 L L I V P  Thus, for all methods of connection, the power in a three-phase balanced load is given by  cos 3 L L I V P  If the load is unbalanced, then total power is obtained by summing the all the phase powers, that is, P = VRIRcosR + VYIYcosY + VBIBcosB POWER CONSUMED BY THREE-PHASE LOADS
  • 7. The total apparent power supplied to the load is equal to the sum of apparent powers supplied to all the three phases, that is B Y R S S S S    where R RN R I V S  Y YN Y I V S  B BN B I V S  VRN = VYN = VBN = Vph IR = IY = IB = Iph and Therefore, total apparent power ph phI V S S 3 3 ph   POWER CONSUMED BY THREE-PHASE LOADS If the load is star-connected and balanced, then ph B Y R S S S S   
  • 8. Since L ph 3 1 V V  Then, total apparent power supplied to the load is L L L L ph ph I V I V I V S S 3 3 1 3 3 3 ph       Iph = IL and POWER CONSUMED BY THREE-PHASE LOADS In complex notation, * 3 L L I V S  It can be shown that this result also holds for a balanced delta- connected load. So, providing we know the line current and phase-to-phase (line) voltage and the impedance angle, we can calculate the power of the load without having to know how it is connected.
  • 9. Similarly, the total reactive power supplied to the load is the sum of reactive powers consumed by each phase; that is   sin 3 sin 3 1 3 sin 3 3 ph ph ph L L L L ph I V I V θ I V Q Q        θ I V Q Y Y Y Y sin  B Y R Q Q Q Q    where θ I V Q R R R R sin  θ I V Q B B B B sin  POWER CONSUMED BY THREE-PHASE LOADS are phase quantities. If the load is star-connected, then IL = Iph and L ph V V 3 1  Thus, Likewise, it can be shown that for a delta-connected load, the total reactive power consumed is given by  sin 3 L L I V Q 
  • 10. Three identical coils, each having a resistance of 20  and an inductance of 0.5 H are connected in star to a three phase supply of 400 V; 50 Hz. Calculate the current and the total power absorbed by the load. Worked Example 20 3 / 400 400V 400V 400V N 0.5H 0.5H 0.5H 20 20 Solution First of all calculating the impedance of the coils. Given:   20 RP H 5 . 0  P L Therefore      157 5 . 0 50 2 P X
  • 11.       2 2 P P P P P X R jX R Z  83 158 83 157 20 2 2       p Z  83 20 157 tan tan 1 1                     P P R X  where Solution Coil impedance is Therefore, Since it is a balanced load V 231 3 400   P V
  • 12.  cos 3 L L I V P  W 128 1264 . 0 46 . 1 400 3      P Total power absorbed by the load is 1264 . 0 83 cos cos     where Therefore, A 46 . 1 158 231     P P L P Z V I I Current taken by the load, Solution
  • 13. Alternative Solution 20 3 / 400 400V 400V 400V N 0.5H 0.5H 0.5H 20 20 First of all calculating the impedance of the coils. Given:   20 RP H 5 . 0  P L Therefore      157 5 . 0 50 2 P X       157 20 j jX R Z P P P Coil impedance is
  • 14. Alternative Solution Since it is a balanced load, we can analyse it on a per phase basis as follows: V 231 3 400   P V R N RN V R I RN Z Phase voltage is Choosing VRN as the reference phasor, we can write V 0 231    RN V Therefore, A 74 . 82 46 . 1 157 20 0 231          j Z V I RN RN R From which we obtain the line current A 46 . 1   R L I I
  • 15. R N RN V R I RN Z Complex power consumed by ZRN is SRN VA 74 . 82 2 . 337 74 . 82 46 . 1 0 231 *            R RN RN I V S VA 82.74 1012 74 . 82 2 . 337 3 3          RN S S Total complex power consumed by the three load impedances is Alternative Solution
  • 16.     W 5 . 127 74 . 82 cos 1012 Re     S P Therefore, total power absorbed by the load is Alternative Solution
  • 17. A balanced three phase load connected in star, each phase consists of resistance of 100  paralleled with a capacitance of 31.8 F. The load is connected to a three phase supply of 415 V; 50 Hz. Calculate: 415 Worked Example (a) the line current; (b) the total power absorbed; (c) total kVA; (d) power factor .
  • 18. V 240 3 415 3 V V L P    Solution Admittance of the load C j 1 XP   where P P P X R Y 1 1   C j R 1 P    6 10 8 . 31 50 2 j 100 1        S ) 01 . 0 j 01 . 0 (  
  • 19. ) 01 . 0 01 . 0 ( 240 j Y V I I P P P L      45 39 . 3 4 . 2 4 . 2     j * P I V S P p    45 4 . 814 45 39 . 3 240            W 576 45 cos 4 . 814 Re      S P kW 728 . 1 576 3    P Line current Volt-ampere per phase Active power per phase Total active power Solution
  • 20.   kVAR 728 . 1 576 3 3        p Q Q Reactive power per phase   VAR 576 45 sin 4 . 814      p Q Total reactive power kVA 44 . 2 4 . 814 3 3     p S S Total volt-ampere Power Factor = cos = cos 45 = 0.707 (leading) Solution
  • 21. Worked Example rms rms rms 110 0 V 110 120 V 110 120 V a b c           V V V 50 80 50 80 50 80 A B C j j j          Z Z Z A balanced four-wire circuit has Calculate the total complex power supplied to the load
  • 22. rms 110 0 1.16 58 A 50 80 a aA A j          V I Z * 68 109 VA A aA a j    S I V The total complex power delivered to the three-phase load is 3 204 326 VA A j    S S Also rms rms 1.16 177 A , 1.16 62 A bB cC        I I 68 109 VA B C j    S S Solution
  • 23. A balanced 3-wire circuit has rms rms rms 110 0 V 110 120 V 110 120 V a b c           V V V 50 80 50 80 50 80 A B C j j j          Z Z Z Calculate the total apparent power supplied to the circuit Example
  • 24. rms 110 0 1.16 58 A 50 80 a aA A j          V I Z * 68 109 VA A aA a j    S I V The total complex power delivered to the three-phase load is Solution 3 204 326 VA A j    S S
  • 25. rms rms rms 110 0 V 110 120 V 110 120 V a b c           V V V 50 80 50 100 25 A B C j j j         Z Z Z An unbalanced 3-wire star-star connected system has Calculate the total apparent power supplied to the circuit Example
  • 26. ZL n Va Vc Vb N IA IB IC ZA ZB ZC ZL ZL VNn Solution Determine VNn V 151 56 8 . 26 2 . 49        j VNn B Y A C c B b A a Nn Z Z Z Z V Z V Z V V 1 1 1      Therefore , , and a Nn b Nn c Nn aA bB cC A B C       V V V V V V I I I Z Z Z
  • 27. Solution 1.71 48 , 2.45 3 , and 1.19 79 aA bB cC          I I I
  • 29. Three identical coils, each having a resistance of 20  and an inductance of 0.5 H connected in delta to a three phase supply of 400 V; 50 Hz. Calculate the current and the total power absorbed by the load. Worked Example Solution 20 400V 400V 400V 0.5H 0.5H 0.5H 20 20
  • 30. Solution From previous Worked Example we found coil impedance  83 158 83 157 20 2 2       p Z Since it is a balanced load V 400   L P V V 20 400V 400V 400V 0.5H 0.5H 0.5H 20 20 A 53 . 2 158 400    ph L P Z V I Load phase current Therefore, line current A 38 . 4 53 . 2 3 3     P L I I
  • 31.  cos 3 L L I V P  W 6 . 221 1264 . 0 53 . 2 400 3      P Total power absorbed by the load is 1264 . 0 83 cos cos     where Therefore, total power absorbed by the load is Solution
  • 33. END