SlideShare a Scribd company logo
1 of 50
CHAPTER 4
INVERTERS:
Converting DC to AC
CONTENTS
۩ Introduction
۩ Basic Principles of Inverter
۩ Single-phase Half-Bridge Square-Wave Inverter
۩ Single-phase Full-Bridge Square-Wave Inverter
۩ Quasi Inverter
۩ Three-phase inverter
۩ Fourier Series and Harmonics Analysis
۩ Pulse-Width Modulation (PWM)
Definition:
Converts DC to AC power by switching the DC input
voltage in a pre-determined sequence so as to
generate AC voltage.
Applications:
Induction motor drives, traction, standby power
supplies, and uninterruptible ac power supplies (UPS).
INTRODUCTION
INTRODUCTION
Vdc Vac
+
-
+
-
General block diagram
Three types of inverter:
INTRODUCTION
Vdc Vac
+
-
+
-
AC
Load
Iac
Inverter
switching
control
“DC LINK”
Vdc
+
-
AC
Load
ILOAD
Inverter
switching
control
L
IDC
(a) Voltage source inverter (VSI) (b) Current source inverter (CSI)
Three types of inverter: (cont.)
INTRODUCTION
Vdc
+
-
AC
Load
Iac
Inverter
switching
control
Comparison
circuit
Reference
Waveform
Output current
sensing circuit
(c) Current regulated inverter
BASIC PRINCIPLES
The schematic of single-phase full-bridge square-wave
inverter circuit
D1
D2
D3
D4
T1 T3
T4 T2
+ V0 -
I0
VDC
BASIC PRINCIPLES
S1
S2
S3
+ V0 -
VDC
S4
V0
t1
VDC
t2
t
S1
S2
S3
+ V0 -
VDC
S4
V0
t3
-VDC
t2
t
Single-phase Half-bridge
Square-wave Inverter
V0
1
2
V0
G.
VDC
+
-
The basic single-phase half-bridge inverter circuit
 The total RMS value of the load output voltage,
 The instantaneous output voltage is: (refer to slide 30/pp:88)
 The fundamental rms output voltage (n=1)is
Single-phase Half-bridge
Square-wave Inverter
2
2
2 2
/
0
2
DC
T
DC
O
V
dt
V
T
V 
















 
2,4,....
n
for
0
sin
2
,...
5
,
3
,
1


 

n
DC
O t
n
n
V
v 

DC
DC
O V
V
V 45
.
0
2
1
2
1 








 In the case of RL load, the instantaneous load current io ,
where
 The fundamental output power is
Single-phase Half-bridge
Square-wave Inverter






,..
5
,
3
,
1
2
2
)
sin(
)
(
2
n
n
DC
o t
n
L
n
R
n
V
i 



)
/
(
tan 1
R
L
n
n 
 













2
2
2
1
1
1
1
1
)
(
2
2
cos
L
R
V
R
I
I
V
P
DC
o
o
o
o



 The total harmonic distortion (THD),
Single-phase Half-bridge
Square-wave Inverter






 

 ,....
7
,
5
,
3
2
1
1
n
n
O
V
V
THD
 
2
1
2
1
1
o
o
O
V
V
V
THD 

Example 3.1
The single-phase half-bridge inverter has a resistive load of R =
2.4Ω and the DC input voltage is 48V. Determine:
(a) the rms output voltage at the fundamental frequency
(b) the output power
(c) the average and peak current of each transistor.
(d) the THD
Single-phase Half-bridge
Square-wave Inverter
Solution
VDC = 48V and R = 2.4Ω
(a) The fundamental rms output voltage,
Vo1 = 0.45VDC = 0.45x48 = 21.6V
(b) For single-phase half-bridge inverter, the output voltage
Vo = VDC/2
Thus, the output power,
Single-phase Half-bridge
Square-wave Inverter
W
R
V
P o
o
240
4
.
2
)
2
/
48
(
/
2
2



Solution
(c) The transistor current Ip = 24/2.4 = 10 A
Because each of the transistor conducts for a 50% duty cycle,
the average current of each transistor is IQ = 10/2 = 5 A.
(d)
Single-phase Half-bridge
Square-wave Inverter
2
1
2
1
1
o
o
O
V
V
V
THD 

 
%
34
.
48
45
.
0
2
45
.
0
1 2
2








 DC
DC
DC
V
V
xV
 The switching in the second leg is delayed by 180
degrees from the first leg.
 The maximum output voltage of this inverter is twice
that of half-bridge inverter.
Single-phase Full-bridge
Square-wave Inverter
 The output RMS voltage
 And the instantaneous output voltage in a Fourier series is
 The fundamental RMS output voltage
 In the case of RL load, the instantaneous load current
Single-phase Full-bridge
Square-wave Inverter
DC
DC
O V
dt
V
T
V 






 
2
2



,...
5
,
3
,
1
sin
4
n
DC
O t
n
n
V
v 

DC
DC
V
V
V 9
.
0
2
4
1 


 
 
n
n
DC
o t
n
L
n
R
n
V
i 





 


sin
4
,...
5
,
3
,
1
2
2
Example 3.2
A single-phase full-bridge inverter with VDC = 230 and
consist of RLC in series. If R = 1.2Ω, ωL = 8 Ω and
1/ωC = 7 Ω, find:
(a) The amplitude of fundamental rms output current,
io1
(b) The fundamental component of output current in
function of time.
(c) The power delivered to the load due to the
fundamental component.
Single-phase Full-bridge
Square-wave Inverter
Example 3.3
A single-phase full-bridge inverter has an RLC load with R
= 10Ω, L = 31.5mH and C = 112μF. The inverter frequency
is 60Hz and the DC input voltage is 220V. Determine:
(a) Express the instantaneous load current in Fourier series.
(b) Calculate the rms load current at the fundamental
frequency.
(c) the THD of load current
(d) Power absorbed by the load and fundamental power.
(e) The average DC supply current and
(f) the rms and peak supply current of each transistor
Single-phase Full-bridge
Square-wave Inverter
Three-Phase Inverter
 Viewed as extensions of the single-phase bridge circuit.
 The switching signals for each switches of an inverter leg are
displaced or delayed by 120o.
 With 120o conduction, the switching pattern is T6T1 – T1T2 –
T2T3 – T3T4 – T4T5 – T5T6 – T6T1 for the positive A-B-C
sequence.
 When an upper switch in an inverter leg connected with the
positive DC rail is turned ON, the output terminal of the leg
(phase voltage) goes to potential +VDC/2.
 When a lower switch in an inverter leg connected with the
negative DC rail is turned ON, the output terminal of that leg
(phase voltage) goes to potential -VDC/2.
Three-Phase Inverter
 The line-to-neutral voltage can be expressed in Fourier series
 The line voltage is vab = √3van with phase advance of 30o
Three-Phase Inverter

































,..
5
,
3
,
1
,..
5
,
3
,
1
,..
5
,
3
,
1
6
7
sin
3
sin
2
2
sin
3
sin
2
6
sin
3
sin
2
n
dc
cn
n
dc
bn
n
dc
an
t
n
n
n
V
v
t
n
n
n
V
v
t
n
n
n
V
v












 



























,..
5
,
3
,
1
,..
5
,
3
,
1
,..
5
,
3
,
1
sin
3
sin
3
2
3
sin
3
sin
3
2
3
sin
3
sin
3
2
n
dc
ca
n
dc
bc
n
dc
ab
t
n
n
n
V
v
t
n
n
n
V
v
t
n
n
n
V
v












 Fourier series is a tool to analyze the wave shapes of the
output voltage and current in terms of Fourier series.
Fourier Series and
Harmonics Analysis
 





2
0
1
d
v
f
ao
   






2
0
cos
1
d
n
v
f
an
   






2
0
sin
1
d
n
v
f
bn
Inverse Fourier
   






1
0 sin
cos
2
1
n
n n
bn
n
a
a
v
f 

Where
t

 
 If no DC component in the output, the output voltage and
current are
 The rms current of the load can be determined by
Fourier Series and
Harmonics Analysis
 





1
sin
)
(
n
n
n
o t
n
V
t
v 

 





1
sin
)
(
n
n
n
o t
n
I
t
i 

2
1
1
2
,
2














n
n
n
rms
n
rms
I
I
I
Where
n
n
n
Z
V
I 
 The total power absorbed in the load resistor can be
determined by
Fourier Series and
Harmonics Analysis








1
2
,
1 n
rms
n
n
n R
I
P
P
 Since the objective of the inverter is to use a
DC voltage source to supply a load that
requiring AC voltage, hence the quality of
the non-sinusoidal AC output voltage or
current can be expressed in terms of THD.
 The harmonics is considered to ensure that
the quality of the waveform must match to
the utility supply which means of power
quality issues.
 This is due to the harmonics may cause
degradation of the equipments and needs to
be de-rated.
Total Harmonics
Distortion
Total Harmonics
Distortion
 The THD of the load voltage is expressed as,
 The current THD can be obtained by replacing the
harmonic voltage with harmonic current,
Total Harmonics
Distortion
rms
rms
rms
rms
n rms
n
v
V
V
V
V
V
THD
,
1
2
,
1
2
,
1
2
2
, )
( 





rms
n rms
n
i
I
I
THD
,
1
2
2
, )
(




Harmonics of Square-
wave Waveform

2

t

 
DC
V
DC
V

0
1
0
2
0 








  
 


 DC
DC V
d
V
a
0
)
cos(
)
cos(
0
2








  
 






d
n
d
n
V
a DC
n
 
 
 
 


















 

n
n
n
n
n
n
V
n
n
n
V
d
n
d
n
V
b
DC
DC
DC
n
cos
1
2
)
cos
2
(cos
)
cos
0
(cos
)
cos(
)
cos(
)
sin(
)
sin(
2
0
0
2
















  
 When the harmonics number, n of a waveform is
even number, the resultant of
Therefore,
 When n is odd number,
Hence,
Harmonics of Square-wave
Waveform
1
cos 

n
0

n
b
1
cos 


n

n
V
b DC
n
4

Spectrum of Square-
wave
Normalised
Fundamental
1st
3rd
5th
7th
9th
11th
n
(0.33)
(0.2)
(0.14)
(0.11)
(0.09)
• Harmonic decreases with
a factor of (1/n).
• Even harmonics are
absent
• Nearest harmonics is the
3rd. If fundamental is
50Hz, then nearest
harmonic is 150Hz.
• Due to the small
separation between the
fundamental and 3rd
harmonics, output low-
pass filter design can be
very difficult.
Quasi-square wave
an = 0, due to half-wave symmetry
Quasi-square wave
Therefore,
If n is even, bn = 0;
If n is odd, 

cos
4
n
V
b dc
n 
Example 3.4
The full-bridge inverter with DC input voltage of 100V,
load resistor and inductor of 10Ω and 25mH
respectively and operated at 60 Hz frequency.
Determine:
(a) The amplitude of the Fourier series terms for the
square-wave load voltage.
(b) The amplitude of the Fourier series terms for load
current.
(c) Power absorbed by the load.
(d) The THD of the load voltage and load current for
square-wave inverter.
Amplitude and
Harmonics Control
 
2
t

VDC
-VDC
   
S2
S4
S1
S2
S1
S3
S3
S4
S2
S4
0 VDC 0 0
-VDC
S1 Closed Opened
S2
S3
S4
Vo
The output voltage of the full-
bridge inverter can be controlled
by adjusting the interval of on
each side of the pulse as zero .
The rms value of the voltage waveform is
The Fourier series of the waveform is expressed as
The amplitude of half-wave symmetry is
Amplitude and
Harmonics Control







2
1
)
(
1 2


 

DC
DC
rms V
t
d
V
V


odd
n
n
O t
n
V
t
v
,
)
sin(
)
( 
)
cos(
4
)
(
)
sin(
2








n
n
V
t
d
t
n
V
V DC
DC
n 






 

The amplitude of the fundamental frequency is controllable by
adjusting the angle of α.
The nth harmonic can be eliminated by proper choice of
displacement angle α if
Amplitude and
Harmonics Control


cos
4
1 





 DC
V
V
0
cos 

n
OR
n

90


 Pulse-width modulation provides a way to decrease
the total harmonics distortion (THD).
 Types of PWM scheme
 Natural or sinusoidal sampling
 Regular sampling
 Optimize PWM
 Harmonic elimination/minimization PWM
 SVM
Pulse-Width Modulation
(PWM)
 Several definition in PWM
(i) Amplitude Modulation, Ma
If Ma ≤ 1, the amplitude of the fundamental
frequency of the output voltage, V1 is linearly
proportional to Ma.
(ii) Frequency Modulation, Mf
Pulse-Width Modulation
(PWM)
tri
,
sin
,
carrier
,
,
m
e
m
m
reference
m
a
V
V
V
V
M 

e
tri
carrier
f
f
f
f
f
M
sin
reference


Bipolar Switching of PWM
Pulse-Width Modulation
(PWM)
vtri (carrier)
vsine (reference)
VDC
-VDC
(a)
(b)
S1 and S2 ON when Vsine > Vtri
S3 and S4 ON when Vsine < Vtri
Sinusoidal PWM Generator -Bipolar
Pulse-Width Modulation
(PWM)
G1, G2
G3, G4
Unipolar Switching
of PWM
Pulse-Width Modulation
(PWM)
vtri (carrier)
vsine (reference)
(a)
(b)
(c)
S4
S2
Vo
Vdc
0
Vdc
0
S1 is ON when Vsine > Vtri
S2 is ON when –Vsine < Vtri
S3 is ON when –Vsine > Vtri
S4 is ON when Vsine < Vtri
Sinusoidal
PWM
Generator-
Unipolar
■ Advantages of PWM switching
- provides a way to decrease the THD of load current.
- the amplitude of the o/p voltage can be controlled with the
modulating waveform.
- reduced filter requirements to decrease harmonics.
■ Disadvantages of PWM switching
- complex control circuit for the switches
- increase losses due to more frequent switching.
Pulse-Width Modulation
(PWM)
Harmonics of Bipolar PWM
Assuming the PWM output is symmetry, the
harmonics of each kth PWM pulse can be
expressed
Finally, the resultant of the integration is
PWM Harmonics





 


 




k
k
k k
k
t
d
t
n
-V
t
d
t
n
V
t
d
t
n
t
v
V
DC
DC
T
nk














1
k
)
(
)
sin(
)
(
)
(
)
sin(
2
)
(
)
sin(
)
(
2
0
 
)
(
cos
2
cos
cos
2
1 k
k
k
k
DC
nk n
n
n
n
V
V 







 
PWM Harmonics
vtri vsine
VDC
-VDC
k

k
k

 
1

k

k

0
Symmetric sampling
Harmonics of Bipolar PWM
The Fourier coefficient for the PWM waveform is the
sum of Vnk for the p pulses over one period.
The normalized frequency spectrum for bipolar
switching for ma = 1 is shown below
PWM Harmonics



p
k
nk
n V
V
1
ma = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
n=1 1.00 0.90 0.80 0.70 0.60 0.50 o.40 0.30 0.20 0.10
n = mf 0.60 0.71 0.82 0.92 1.01 1.08 1.15 1.20 1.24 1.27
n=mf +2 0.32 0.27 0.22 0.17 0.13 0.09 0.06 0.03 0.02 0.00
Normalized Fourier Coefficients Vn/Vdc for Bipolar PWM
Example 3.5
The inverter has a resistive load of 10Ω and
inductive load of 25mH connected in series with
the fundamental frequency current amplitude of
9.27A. The THD of the inverter is not more than
10%. If at the beginning of designing the inverter,
the THD of the current is 16.7% which is does
not meet the specification, find the voltage
amplitude at the fundamental frequency, the
required DC input supply and the new THD of the
current.
Example 3.6
The single-phase full-bridge inverter is used to produce
a 60Hz voltage across a series R-L load using bipolar
PWM. The DC input to the bridge is 100V, the
amplitude modulation ratio is 0.8, and the frequency
modulation ratio is 21. The load has resistance of R =
10Ω and inductance L = 20mH. Determine:
(a) The amplitude of the 60Hz component of the output
voltage and load current.
(b) The power absorbed by the load resistor
(c) The THD of the load current

More Related Content

What's hot

Power supplies & regulators
Power supplies & regulatorsPower supplies & regulators
Power supplies & regulatorsDr.YNM
 
Harmonics and mitigation techniques
Harmonics and mitigation techniquesHarmonics and mitigation techniques
Harmonics and mitigation techniquesrifat maryum
 
Active_Power_Filter
Active_Power_FilterActive_Power_Filter
Active_Power_Filteremredurna
 
three phase inverter
three phase inverterthree phase inverter
three phase inverterMalik Zaid
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlBirju Besra
 
Chapter 5 - DC-AC Conversion.pdf
Chapter 5 - DC-AC Conversion.pdfChapter 5 - DC-AC Conversion.pdf
Chapter 5 - DC-AC Conversion.pdfbenson215
 
Excitation system for alternator
Excitation system for alternatorExcitation system for alternator
Excitation system for alternatorsantu sutradhar
 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)Taimur Ijaz
 
Overload capacity of power transformers
Overload capacity of power transformersOverload capacity of power transformers
Overload capacity of power transformersLeonardo ENERGY
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relaysPremanandDesai
 
Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Dr. Rohit Babu
 
Transformer differential protection
Transformer differential protection Transformer differential protection
Transformer differential protection michaeljmack
 
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterhalf wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterSanil Sharahudeen
 
Current Source Inverter and Voltage Source Inverter
Current Source Inverter and Voltage Source Inverter Current Source Inverter and Voltage Source Inverter
Current Source Inverter and Voltage Source Inverter Sadanand Purohit
 
Active filter iora 2 consul
Active filter iora 2 consulActive filter iora 2 consul
Active filter iora 2 consulrajesh thulasi
 
ETAP - Coordination and protecion
ETAP -  Coordination and protecionETAP -  Coordination and protecion
ETAP - Coordination and protecionHimmelstern
 
Power system Analysis By Sharif Kakar
Power system Analysis   By Sharif KakarPower system Analysis   By Sharif Kakar
Power system Analysis By Sharif KakarSharif Ullah
 
Power System Control And Line Compensation
Power System Control And Line CompensationPower System Control And Line Compensation
Power System Control And Line CompensationAnakin Akshat Assal
 

What's hot (20)

Power supplies & regulators
Power supplies & regulatorsPower supplies & regulators
Power supplies & regulators
 
Harmonics and mitigation techniques
Harmonics and mitigation techniquesHarmonics and mitigation techniques
Harmonics and mitigation techniques
 
Active_Power_Filter
Active_Power_FilterActive_Power_Filter
Active_Power_Filter
 
three phase inverter
three phase inverterthree phase inverter
three phase inverter
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
Chapter 5 - DC-AC Conversion.pdf
Chapter 5 - DC-AC Conversion.pdfChapter 5 - DC-AC Conversion.pdf
Chapter 5 - DC-AC Conversion.pdf
 
Excitation system for alternator
Excitation system for alternatorExcitation system for alternator
Excitation system for alternator
 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)
 
Overload capacity of power transformers
Overload capacity of power transformersOverload capacity of power transformers
Overload capacity of power transformers
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relays
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
 
Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)Generator and Transformer Protection (PART 1)
Generator and Transformer Protection (PART 1)
 
Transformer differential protection
Transformer differential protection Transformer differential protection
Transformer differential protection
 
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverterhalf wave, full wave, pushpull single pahse inverter and 3 phase inverter
half wave, full wave, pushpull single pahse inverter and 3 phase inverter
 
Current Source Inverter and Voltage Source Inverter
Current Source Inverter and Voltage Source Inverter Current Source Inverter and Voltage Source Inverter
Current Source Inverter and Voltage Source Inverter
 
Active filter iora 2 consul
Active filter iora 2 consulActive filter iora 2 consul
Active filter iora 2 consul
 
Facts lectures-2014
Facts lectures-2014Facts lectures-2014
Facts lectures-2014
 
ETAP - Coordination and protecion
ETAP -  Coordination and protecionETAP -  Coordination and protecion
ETAP - Coordination and protecion
 
Power system Analysis By Sharif Kakar
Power system Analysis   By Sharif KakarPower system Analysis   By Sharif Kakar
Power system Analysis By Sharif Kakar
 
Power System Control And Line Compensation
Power System Control And Line CompensationPower System Control And Line Compensation
Power System Control And Line Compensation
 

Similar to chapter4 DC to AC Converter.ppt

Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdfLiewChiaPing
 
A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manojIACM SmartLearn Ltd.
 
High power Inverters Introduction & Applications
High power Inverters Introduction & ApplicationsHigh power Inverters Introduction & Applications
High power Inverters Introduction & ApplicationsNandini826255
 
l4-ac-ac converters.ppt
l4-ac-ac converters.pptl4-ac-ac converters.ppt
l4-ac-ac converters.pptantexnebyu
 
05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdfROCIOMAMANIALATA1
 
Transformer part-1
Transformer part-1Transformer part-1
Transformer part-1NizarTayem2
 
Single and three phase Transformers
Single and three phase TransformersSingle and three phase Transformers
Single and three phase TransformersMohammed Waris Senan
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
 
presentation_chapter_2_ac_networks_1516086872_20707.ppt
presentation_chapter_2_ac_networks_1516086872_20707.pptpresentation_chapter_2_ac_networks_1516086872_20707.ppt
presentation_chapter_2_ac_networks_1516086872_20707.pptraghuRAGHU56
 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdfLIEWHUIFANGUNIMAP
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptxpriyakunduq
 
Power amplifiers analog electronics.pptx
Power amplifiers analog electronics.pptxPower amplifiers analog electronics.pptx
Power amplifiers analog electronics.pptxPrateek718260
 
Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02kuppam engg college
 

Similar to chapter4 DC to AC Converter.ppt (20)

Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdf
 
Ppt 2
Ppt 2Ppt 2
Ppt 2
 
A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manoj
 
High power Inverters Introduction & Applications
High power Inverters Introduction & ApplicationsHigh power Inverters Introduction & Applications
High power Inverters Introduction & Applications
 
Chapter02
Chapter02Chapter02
Chapter02
 
Edc unit 2
Edc unit 2Edc unit 2
Edc unit 2
 
Edcqnaunit 2
Edcqnaunit 2Edcqnaunit 2
Edcqnaunit 2
 
dc ac inverters
  dc ac inverters  dc ac inverters
dc ac inverters
 
l4-ac-ac converters.ppt
l4-ac-ac converters.pptl4-ac-ac converters.ppt
l4-ac-ac converters.ppt
 
05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf
 
Transformer part-1
Transformer part-1Transformer part-1
Transformer part-1
 
Single and three phase Transformers
Single and three phase TransformersSingle and three phase Transformers
Single and three phase Transformers
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
presentation_chapter_2_ac_networks_1516086872_20707.ppt
presentation_chapter_2_ac_networks_1516086872_20707.pptpresentation_chapter_2_ac_networks_1516086872_20707.ppt
presentation_chapter_2_ac_networks_1516086872_20707.ppt
 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf
 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
 
Diodes.ppt
Diodes.pptDiodes.ppt
Diodes.ppt
 
Power amplifiers analog electronics.pptx
Power amplifiers analog electronics.pptxPower amplifiers analog electronics.pptx
Power amplifiers analog electronics.pptx
 
Single phase transformer
Single phase transformerSingle phase transformer
Single phase transformer
 
Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02
 

More from LiewChiaPing

chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptLiewChiaPing
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfLiewChiaPing
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfLiewChiaPing
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfLiewChiaPing
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfLiewChiaPing
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfLiewChiaPing
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfLiewChiaPing
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfLiewChiaPing
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfLiewChiaPing
 
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfBEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfLiewChiaPing
 
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfBEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfLiewChiaPing
 
6_Fault analysis.pdf
6_Fault analysis.pdf6_Fault analysis.pdf
6_Fault analysis.pdfLiewChiaPing
 

More from LiewChiaPing (20)

chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdf
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdf
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
 
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfBEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
 
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfBEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
 
6_Fault analysis.pdf
6_Fault analysis.pdf6_Fault analysis.pdf
6_Fault analysis.pdf
 

Recently uploaded

How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfstareducators107
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactisticshameyhk98
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 

Recently uploaded (20)

How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

chapter4 DC to AC Converter.ppt

  • 2. CONTENTS ۩ Introduction ۩ Basic Principles of Inverter ۩ Single-phase Half-Bridge Square-Wave Inverter ۩ Single-phase Full-Bridge Square-Wave Inverter ۩ Quasi Inverter ۩ Three-phase inverter ۩ Fourier Series and Harmonics Analysis ۩ Pulse-Width Modulation (PWM)
  • 3. Definition: Converts DC to AC power by switching the DC input voltage in a pre-determined sequence so as to generate AC voltage. Applications: Induction motor drives, traction, standby power supplies, and uninterruptible ac power supplies (UPS). INTRODUCTION
  • 5. Three types of inverter: INTRODUCTION Vdc Vac + - + - AC Load Iac Inverter switching control “DC LINK” Vdc + - AC Load ILOAD Inverter switching control L IDC (a) Voltage source inverter (VSI) (b) Current source inverter (CSI)
  • 6. Three types of inverter: (cont.) INTRODUCTION Vdc + - AC Load Iac Inverter switching control Comparison circuit Reference Waveform Output current sensing circuit (c) Current regulated inverter
  • 7. BASIC PRINCIPLES The schematic of single-phase full-bridge square-wave inverter circuit D1 D2 D3 D4 T1 T3 T4 T2 + V0 - I0 VDC
  • 8. BASIC PRINCIPLES S1 S2 S3 + V0 - VDC S4 V0 t1 VDC t2 t S1 S2 S3 + V0 - VDC S4 V0 t3 -VDC t2 t
  • 9. Single-phase Half-bridge Square-wave Inverter V0 1 2 V0 G. VDC + - The basic single-phase half-bridge inverter circuit
  • 10.  The total RMS value of the load output voltage,  The instantaneous output voltage is: (refer to slide 30/pp:88)  The fundamental rms output voltage (n=1)is Single-phase Half-bridge Square-wave Inverter 2 2 2 2 / 0 2 DC T DC O V dt V T V                    2,4,.... n for 0 sin 2 ,... 5 , 3 , 1      n DC O t n n V v   DC DC O V V V 45 . 0 2 1 2 1         
  • 11.  In the case of RL load, the instantaneous load current io , where  The fundamental output power is Single-phase Half-bridge Square-wave Inverter       ,.. 5 , 3 , 1 2 2 ) sin( ) ( 2 n n DC o t n L n R n V i     ) / ( tan 1 R L n n                 2 2 2 1 1 1 1 1 ) ( 2 2 cos L R V R I I V P DC o o o o   
  • 12.  The total harmonic distortion (THD), Single-phase Half-bridge Square-wave Inverter           ,.... 7 , 5 , 3 2 1 1 n n O V V THD   2 1 2 1 1 o o O V V V THD  
  • 13. Example 3.1 The single-phase half-bridge inverter has a resistive load of R = 2.4Ω and the DC input voltage is 48V. Determine: (a) the rms output voltage at the fundamental frequency (b) the output power (c) the average and peak current of each transistor. (d) the THD Single-phase Half-bridge Square-wave Inverter
  • 14. Solution VDC = 48V and R = 2.4Ω (a) The fundamental rms output voltage, Vo1 = 0.45VDC = 0.45x48 = 21.6V (b) For single-phase half-bridge inverter, the output voltage Vo = VDC/2 Thus, the output power, Single-phase Half-bridge Square-wave Inverter W R V P o o 240 4 . 2 ) 2 / 48 ( / 2 2   
  • 15. Solution (c) The transistor current Ip = 24/2.4 = 10 A Because each of the transistor conducts for a 50% duty cycle, the average current of each transistor is IQ = 10/2 = 5 A. (d) Single-phase Half-bridge Square-wave Inverter 2 1 2 1 1 o o O V V V THD     % 34 . 48 45 . 0 2 45 . 0 1 2 2          DC DC DC V V xV
  • 16.  The switching in the second leg is delayed by 180 degrees from the first leg.  The maximum output voltage of this inverter is twice that of half-bridge inverter. Single-phase Full-bridge Square-wave Inverter
  • 17.  The output RMS voltage  And the instantaneous output voltage in a Fourier series is  The fundamental RMS output voltage  In the case of RL load, the instantaneous load current Single-phase Full-bridge Square-wave Inverter DC DC O V dt V T V          2 2    ,... 5 , 3 , 1 sin 4 n DC O t n n V v   DC DC V V V 9 . 0 2 4 1        n n DC o t n L n R n V i           sin 4 ,... 5 , 3 , 1 2 2
  • 18. Example 3.2 A single-phase full-bridge inverter with VDC = 230 and consist of RLC in series. If R = 1.2Ω, ωL = 8 Ω and 1/ωC = 7 Ω, find: (a) The amplitude of fundamental rms output current, io1 (b) The fundamental component of output current in function of time. (c) The power delivered to the load due to the fundamental component. Single-phase Full-bridge Square-wave Inverter
  • 19. Example 3.3 A single-phase full-bridge inverter has an RLC load with R = 10Ω, L = 31.5mH and C = 112μF. The inverter frequency is 60Hz and the DC input voltage is 220V. Determine: (a) Express the instantaneous load current in Fourier series. (b) Calculate the rms load current at the fundamental frequency. (c) the THD of load current (d) Power absorbed by the load and fundamental power. (e) The average DC supply current and (f) the rms and peak supply current of each transistor Single-phase Full-bridge Square-wave Inverter
  • 21.  Viewed as extensions of the single-phase bridge circuit.  The switching signals for each switches of an inverter leg are displaced or delayed by 120o.  With 120o conduction, the switching pattern is T6T1 – T1T2 – T2T3 – T3T4 – T4T5 – T5T6 – T6T1 for the positive A-B-C sequence.  When an upper switch in an inverter leg connected with the positive DC rail is turned ON, the output terminal of the leg (phase voltage) goes to potential +VDC/2.  When a lower switch in an inverter leg connected with the negative DC rail is turned ON, the output terminal of that leg (phase voltage) goes to potential -VDC/2. Three-Phase Inverter
  • 22.
  • 23.  The line-to-neutral voltage can be expressed in Fourier series  The line voltage is vab = √3van with phase advance of 30o Three-Phase Inverter                                  ,.. 5 , 3 , 1 ,.. 5 , 3 , 1 ,.. 5 , 3 , 1 6 7 sin 3 sin 2 2 sin 3 sin 2 6 sin 3 sin 2 n dc cn n dc bn n dc an t n n n V v t n n n V v t n n n V v                                          ,.. 5 , 3 , 1 ,.. 5 , 3 , 1 ,.. 5 , 3 , 1 sin 3 sin 3 2 3 sin 3 sin 3 2 3 sin 3 sin 3 2 n dc ca n dc bc n dc ab t n n n V v t n n n V v t n n n V v            
  • 24.  Fourier series is a tool to analyze the wave shapes of the output voltage and current in terms of Fourier series. Fourier Series and Harmonics Analysis        2 0 1 d v f ao           2 0 cos 1 d n v f an           2 0 sin 1 d n v f bn Inverse Fourier           1 0 sin cos 2 1 n n n bn n a a v f   Where t   
  • 25.  If no DC component in the output, the output voltage and current are  The rms current of the load can be determined by Fourier Series and Harmonics Analysis        1 sin ) ( n n n o t n V t v          1 sin ) ( n n n o t n I t i   2 1 1 2 , 2               n n n rms n rms I I I Where n n n Z V I 
  • 26.  The total power absorbed in the load resistor can be determined by Fourier Series and Harmonics Analysis         1 2 , 1 n rms n n n R I P P
  • 27.  Since the objective of the inverter is to use a DC voltage source to supply a load that requiring AC voltage, hence the quality of the non-sinusoidal AC output voltage or current can be expressed in terms of THD.  The harmonics is considered to ensure that the quality of the waveform must match to the utility supply which means of power quality issues.  This is due to the harmonics may cause degradation of the equipments and needs to be de-rated. Total Harmonics Distortion
  • 29.  The THD of the load voltage is expressed as,  The current THD can be obtained by replacing the harmonic voltage with harmonic current, Total Harmonics Distortion rms rms rms rms n rms n v V V V V V THD , 1 2 , 1 2 , 1 2 2 , ) (       rms n rms n i I I THD , 1 2 2 , ) (    
  • 30. Harmonics of Square- wave Waveform  2  t    DC V DC V  0 1 0 2 0                  DC DC V d V a 0 ) cos( ) cos( 0 2                    d n d n V a DC n                              n n n n n n V n n n V d n d n V b DC DC DC n cos 1 2 ) cos 2 (cos ) cos 0 (cos ) cos( ) cos( ) sin( ) sin( 2 0 0 2                   
  • 31.  When the harmonics number, n of a waveform is even number, the resultant of Therefore,  When n is odd number, Hence, Harmonics of Square-wave Waveform 1 cos   n 0  n b 1 cos    n  n V b DC n 4 
  • 32. Spectrum of Square- wave Normalised Fundamental 1st 3rd 5th 7th 9th 11th n (0.33) (0.2) (0.14) (0.11) (0.09) • Harmonic decreases with a factor of (1/n). • Even harmonics are absent • Nearest harmonics is the 3rd. If fundamental is 50Hz, then nearest harmonic is 150Hz. • Due to the small separation between the fundamental and 3rd harmonics, output low- pass filter design can be very difficult.
  • 33. Quasi-square wave an = 0, due to half-wave symmetry
  • 34. Quasi-square wave Therefore, If n is even, bn = 0; If n is odd,   cos 4 n V b dc n 
  • 35. Example 3.4 The full-bridge inverter with DC input voltage of 100V, load resistor and inductor of 10Ω and 25mH respectively and operated at 60 Hz frequency. Determine: (a) The amplitude of the Fourier series terms for the square-wave load voltage. (b) The amplitude of the Fourier series terms for load current. (c) Power absorbed by the load. (d) The THD of the load voltage and load current for square-wave inverter.
  • 36. Amplitude and Harmonics Control   2 t  VDC -VDC     S2 S4 S1 S2 S1 S3 S3 S4 S2 S4 0 VDC 0 0 -VDC S1 Closed Opened S2 S3 S4 Vo The output voltage of the full- bridge inverter can be controlled by adjusting the interval of on each side of the pulse as zero .
  • 37. The rms value of the voltage waveform is The Fourier series of the waveform is expressed as The amplitude of half-wave symmetry is Amplitude and Harmonics Control        2 1 ) ( 1 2      DC DC rms V t d V V   odd n n O t n V t v , ) sin( ) (  ) cos( 4 ) ( ) sin( 2         n n V t d t n V V DC DC n          
  • 38. The amplitude of the fundamental frequency is controllable by adjusting the angle of α. The nth harmonic can be eliminated by proper choice of displacement angle α if Amplitude and Harmonics Control   cos 4 1        DC V V 0 cos   n OR n  90  
  • 39.  Pulse-width modulation provides a way to decrease the total harmonics distortion (THD).  Types of PWM scheme  Natural or sinusoidal sampling  Regular sampling  Optimize PWM  Harmonic elimination/minimization PWM  SVM Pulse-Width Modulation (PWM)
  • 40.  Several definition in PWM (i) Amplitude Modulation, Ma If Ma ≤ 1, the amplitude of the fundamental frequency of the output voltage, V1 is linearly proportional to Ma. (ii) Frequency Modulation, Mf Pulse-Width Modulation (PWM) tri , sin , carrier , , m e m m reference m a V V V V M   e tri carrier f f f f f M sin reference  
  • 41. Bipolar Switching of PWM Pulse-Width Modulation (PWM) vtri (carrier) vsine (reference) VDC -VDC (a) (b) S1 and S2 ON when Vsine > Vtri S3 and S4 ON when Vsine < Vtri
  • 42. Sinusoidal PWM Generator -Bipolar Pulse-Width Modulation (PWM) G1, G2 G3, G4
  • 43. Unipolar Switching of PWM Pulse-Width Modulation (PWM) vtri (carrier) vsine (reference) (a) (b) (c) S4 S2 Vo Vdc 0 Vdc 0 S1 is ON when Vsine > Vtri S2 is ON when –Vsine < Vtri S3 is ON when –Vsine > Vtri S4 is ON when Vsine < Vtri
  • 45. ■ Advantages of PWM switching - provides a way to decrease the THD of load current. - the amplitude of the o/p voltage can be controlled with the modulating waveform. - reduced filter requirements to decrease harmonics. ■ Disadvantages of PWM switching - complex control circuit for the switches - increase losses due to more frequent switching. Pulse-Width Modulation (PWM)
  • 46. Harmonics of Bipolar PWM Assuming the PWM output is symmetry, the harmonics of each kth PWM pulse can be expressed Finally, the resultant of the integration is PWM Harmonics                k k k k k t d t n -V t d t n V t d t n t v V DC DC T nk               1 k ) ( ) sin( ) ( ) ( ) sin( 2 ) ( ) sin( ) ( 2 0   ) ( cos 2 cos cos 2 1 k k k k DC nk n n n n V V          
  • 47. PWM Harmonics vtri vsine VDC -VDC k  k k    1  k  k  0 Symmetric sampling
  • 48. Harmonics of Bipolar PWM The Fourier coefficient for the PWM waveform is the sum of Vnk for the p pulses over one period. The normalized frequency spectrum for bipolar switching for ma = 1 is shown below PWM Harmonics    p k nk n V V 1 ma = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 n=1 1.00 0.90 0.80 0.70 0.60 0.50 o.40 0.30 0.20 0.10 n = mf 0.60 0.71 0.82 0.92 1.01 1.08 1.15 1.20 1.24 1.27 n=mf +2 0.32 0.27 0.22 0.17 0.13 0.09 0.06 0.03 0.02 0.00 Normalized Fourier Coefficients Vn/Vdc for Bipolar PWM
  • 49. Example 3.5 The inverter has a resistive load of 10Ω and inductive load of 25mH connected in series with the fundamental frequency current amplitude of 9.27A. The THD of the inverter is not more than 10%. If at the beginning of designing the inverter, the THD of the current is 16.7% which is does not meet the specification, find the voltage amplitude at the fundamental frequency, the required DC input supply and the new THD of the current.
  • 50. Example 3.6 The single-phase full-bridge inverter is used to produce a 60Hz voltage across a series R-L load using bipolar PWM. The DC input to the bridge is 100V, the amplitude modulation ratio is 0.8, and the frequency modulation ratio is 21. The load has resistance of R = 10Ω and inductance L = 20mH. Determine: (a) The amplitude of the 60Hz component of the output voltage and load current. (b) The power absorbed by the load resistor (c) The THD of the load current