SlideShare a Scribd company logo
1 of 99
Rectifiers: Converting AC to DC
1
2.1 Single-Phase Half-Wave
Rectifiers
2.2 Performance Parameters
2.3 Single-Phase Full-Wave
Rectifiers
2.4 Single-Phase Full-Wave
Rectifier With RL Load
2.5 Three-Phase Bridge
Rectifiers
2.6 Three-Phase Bridge Rectifier
With RL Load
2
2.1 To understand the operation and
characteristics of single and three
phases uncontrolled rectifiers
2.2 To understand the performance
parameters of single and three phases
uncontrolled rectifiers
3
4
5
t
i ,vL
vL
vs /R
io
t
io
i=vs/R
t
i ,vC
vs /R
io
vC
vC
 Converts AC power signal into DC
power signal.
 Converts signal (voltage/current) in
sinusoid into a useful and reliable
constant (dc) voltage for the successful
operation of electronic circuits and
direct current machines.
 The conversion process is called the
rectification.
6
 The rectifiers are classified into two types,
single-phase and three-phase.
 The typical applications of the rectifier
circuits such as dc welder, dc motor drive,
Battery charger, dc power supply, High
Voltage Direct Current (HVDC).
7
8
9
Figure 2.1: Single-phase half-wave rectifier
(b) Waveforms
(a) Circuit diagram
!
!
!
?,
!
!
!
?,
prove
please
I
prove
please
I
dc
rms


Principle of rectifier operation .
 A single-phase half-wave rectifier is the
simplest type.
 
 
 
 
m
m
m
m
m
o
dc
V
V
V
t
V
t
d
t
V
V
318
.
0
0
cos
cos
2
cos
2
sin
2
1
0
0
,







 










10
m
m
m
m
m
T
m
rms
o
V
t
t
V
t
d
t
V
t
d
t
V
t
d
t
V
t
d
t
V
T
V
5
.
0
2
)
(
2
sin
)
(
4
)
(
2
)
(
2
cos
1
2
)
(
)
(
sin
2
1
)
(
)]
sin(
[
2
1
)
(
)]
sin(
[
1
0
2
0
2
0
2
2
0
2
0
2
,














 


























11
12
Single-Phase Half-Wave
Rectifiers – RL loads
•Due to inductive load, the conduction period of diode D1 will
extend beyond 180o until the current becomes zero at t =  + .
(a) Circuit diagram (b) Waveforms
Figure 2.3: Half-wave rectifier with RL load:
13
(c) Waveforms
14
•Vs, Vo & Io of the single phase half-wave
rectifier using the load is R and RL
 The waveforms for the current and
voltage are shown in Figure 2.3(b). The
average, VL of the inductor is zero.
 The average output voltage is
 The average load current is Idc = Vdc/R.
15
     
 

















 

 cos
1
2
cos
2
sin
2
0
0
m
m
m
dc
V
t
V
t
d
t
V
V
16
   





 















 
















 










2
)
(
2
sin
)
(
4
0
2
)
(
2
sin
)
(
4
2
)
(
2
sin
)
(
4
)
(
2
)
(
2
cos
1
2
)
(
)
(
sin
2
1
sin
2
1
2
2
`
0
2
0
2
0
2
2
0
2






























m
m
m
m
m
m
rms
V
V
t
t
V
t
d
t
V
t
d
t
V
t
d
t
V
V
 The effect of diode Dm is to prevent a
negative voltage appearing across the
load; and as a result, the magnetic
stored energy is increased.
 At t = t1 = /, the current from D1 is
transferred to Dm and this process is
called commutation of diodes and the
waveforms are shown in Figure 2.3(c).
 Load current i0 is discontinuous with a
resistive load and continuous with a
very high inductive load.
 The continuity of the load current
depends on its time constant  = L/R.
17
18
t
io
io (mode 1)
io (mode 2)
mode 2
mode 1
• Function of Dm : to remove dissipated as
a heat a cross the switch as sparks, it
was caused by energy in the inductive
19
 Although the output voltage as
shown is dc, it is discontinuous
and contains harmonics.
 A rectifier is a power processor
that should give a dc output
voltage with a minimum amount of
harmonic contents.
20
 At the same time, it should maintain the
input current as sinusoidal as possible and
in phase with the input voltage so that the
power factor is near unity.
 The power-processing quality of a rectifier
requires the determination of harmonic
contents of the input current, the output
voltage and the output current.
21
22
The average value of the output (load) Voltage, Vdc
The average value of the output (load) current, Idc
The output dc power, Pdc = VdcIdc
The root-mean-square (rms) value of the output voltage, Vrms
The rms value of the output current, Irms
The output ac power, Pac = VrmsIrms
efficiency The effective
(rms) value
The form factor
The ripple factor transformer
utilization factor
ac
dc
P
P

 2
2
dc
rms
ac V
V
V 

dc
rms
V
V
FF 
dc
ac
V
V
RF 
1
1 2
2











 FF
V
V
RF
dc
rms
s
s
dc
I
V
P
TUF 
23
The harmonic factor (HF) Crest factor (CF)
The input power factor (PF) The displacement
factor
DF = cos 
2
/
1
2
1
2
/
1
2
1
2
1
2
1

























 

s
s
s
s
s
I
I
I
I
I
HF

 cos
cos 1
1
s
s
s
s
s
s
I
I
I
V
I
V
PF 

s
peak
s
I
I
CF
)
(

 (displacement angle) is the angle between fundament component
of the input current and voltage
Finding the performance parameters of a Half-
wave Rectifier – R load
The rectifier in Figure 2.l(a) has a purely resistive
load of R. Determine,
(a) the efficiency,
(b) the FF,
(c) the RF,
(d) the TUF,
(e) the PIV of diode D1,
(f) the CF of the input current
(g) input PF.
24
25
Solution 2.1
 
 
%
5
.
40
5
.
0
5
.
0
318
.
0
318
.
0
)
















R
V
V
R
V
V
I
V
I
V
P
P
a
m
m
m
m
ac
ac
dc
dc
ac
dc

26
%
157
57
.
1
318
.
0
5
.
0
FF
)




m
m
dc
rms
V
V
V
V
b
%
121
21
.
1
1
F
) 2



 FF
R
c
27
Solution 2.1
d) The rms voltage of the transformer secondary is
  m
m
T
m
s V
V
dt
t
V
T
V 707
.
0
2
sin
1
2
/
1
0
2








  
The rms value of the transformer secondary current is the same as
that of the load:
R
V
I m
s
5
.
0

28
The volt-ampere rating (VA) of the transformer,
VA = VsIs = 0.707Vm × 0.5Vm/R.
%
6
.
28
286
.
0
5
.
0
)
707
.
0
(
/
)
318
.
0
( 2










R
V
V
R
V
I
V
P
TUF
m
m
m
s
s
dc
29
Solution 2.1
e) The peak reverse (or inverse) blocking voltage PIV = Vm
f) Is(peak) = Vm/R and Is = 0.5Vm/R
The CF of the input current is CF = Is(peak)/Is = 1/0.5 =2
g) The input PF for a resistive load can be found from
707
.
0
5
.
0
707
.
0
5
.
0 2




VA
P
PF ac
 If the output is
connected to a
battery, the rectifier
can be used as a
battery charger. This
is shown in Figure
2.4(a). For vs > E,
diode D1 conducts.
30
The angle () when the diode starts
conducting can be found from the
condition
31
m
V
E
1
sin 


E
Vm 

sin
 Diode D1 is turned off when Vs  E
at
  =  – 
 The charging current iL, which is
shown in Figure 2.4(b), can be
found from
32
R
E
t
V
R
E
v
i
i m
s
L






sin
0 for  < t < 
 
 
 
 
B
A
B
A
B
A
note
E
E
V
E
V
E
V
t
E
t
V
t
d
E
t
V
V
m
m
m
m
m
o
dc
sin
sin
cos
cos
)
cos(
:
2
cos
2
2
1
)
cos
(
))
(
)
cos(
(
2
1
cos
2
1
)
sin
(
2
1
,

















































33
34
   
   
   
 





































 
















 
















































cos
4
2
sin
2
2
2
2
1
cos
2
2
)
(
2
sin
2
)
(
sin
2
2
)
(
2
cos
1
2
)
(
)
sin
2
)
(
sin
(
2
1
sin
2
1
2
2
2
2
2
2
2
2
2
2
2
E
V
V
E
V
t
E
t
EV
t
t
V
t
d
E
t
EV
t
V
t
d
E
t
EV
t
V
t
d
E
t
V
V
m
m
m
m
m
m
m
m
m
rms
35
E
V
PIV
P
P
P
hours
time
h
h
P
W
EI
P
P
R
I
P
R
V
I
R
V
I
m
diode
R
dc
dc
o
o
dc
battery
dc
dc
battery
rms
resistor
R
o
rms
rms
o
dc
dc












)
(
;
;
2
)
(
,
,
 Question for Battery Charger:
 E=20volt, Pbattery=200Wh, Idc=10A,
Vmax(source)=120volt, f=60hz,
transformer ratio 2:1, determine:
 1) Conduction angle (-)
 2) The current limiting resistance R
 3) The power rating of R (PR)
 4) the charging time ho
 5) Efficiency of the rectifier
 6) PIV of the diode

36
Finding the Performance Parameters of a Battery
Charger
The battery voltage in Figure 2.4(a) is E = 12 V
and its capacity is 100 Wh. The average charging
current should be Idc = 5 A. The primary input
voltage is Vp = 120 V, 60 Hz, and the
transformer has a turn ratio of n = 2:1. Calculate
(a) the conduction angle  of the diode.
(b) the current-limiting resistance R.
(c) the power rating PR of R.
(d) the charging time h0 in hours.
(e) the rectifier efficiency .
(f) the PIV of the diode.
37
 When thyristor T1 is fired at t = , thyristor T1
conducts and the input voltage appears across the
load.
 When the input voltage starts to be negative at t = ,
the thyristor is negative with respect to its cathode
and thyristor T1 said to be reverse biased and it is
turned off.
 The time after the input voltage starts to go negative
until the thyristor is fired at t =  is called the delay
or firing angle . .
38
39
Figure 2.14: Single-phase thyristor converter with a resistive load
 If Vm is the peak input voltage, the average
output voltage Vdc can be found from.
 The maximum output voltage Vdm is (a=0)
 The normalized output voltage
40
     











cos
1
2
cos
2
sin
2
1




 
m
m
m
dc
V
t
V
t
td
V
V

m
dm
V
V 
 

cos
1
5
.
0 


dm
dc
n
V
V
V
 The root-mean-square (rms) output
voltage.
 
   
2
/
1
2
/
1
2
2
/
1
2
2
2
2
sin
1
2
2
cos
1
4
sin
2
1














































m
m
m
rms
V
t
d
t
V
t
td
V
V
41
Find the Performances of a Single-Phase
Controlled Converter
If the converter of Figure 2.14(a) has a
purely resistive load of R and the delay
angle is  = /2. Determine
(a) the rectification efficiency.
(b) the form factor (FF).
(c) the ripple factor (RF).
(d) the TUF.
(e) the peak inverse voltage (PIV) of
thyristor T1.
42
m
m
m
rms
V
V
V
V
3536
.
0
2
)
2
/
(
2
sin
2
1
2
2
2
sin
1
2
2
/
1
2
/
1







































43
Delay angle is  = /2
Vdc = Vm/2π(1 + cos ) = 0.1592Vm.
Idc = 0.1592Vm /R
Irms = 0.3536Vm/R
44
(a) The efficiency
(b)
(c)
(d)
(e) PIV = Vm
%
27
.
20
)
3536
.
0
(
)
1592
.
0
(
/
)
(
/
)
(
2
2
2
2




m
m
ac
dc
ac
dc
V
V
R
V
R
V
P
P

%
1
.
222
221
.
2
1592
.
0
3536
.
0




m
m
dc
rms
V
V
V
V
FF
983
.
1
1
221
.
2
1 2
2




 FF
RF
  1014
.
0
/
)
3536
.
0
(
2
/
/
)
1592
.
0
( 2



R
V
V
R
V
I
V
P
TUF
m
m
m
s
s
dc
45
 A full-wave rectifier circuit
with a center-tapped
transformer.
 Because there is no dc current
flowing through the
transformer, there is no dc
saturation problem of
transformer core. The average
output voltage is
46
 


2
/
0
6366
.
0
2
sin
2
T
m
m
m
dc V
V
dt
t
V
T
V


 Instead of using a center-tapped transformer,
we could use four diodes .
 This circuit is known as a bridge rectifier, and
it is commonly used in industrial applications.
47
48
Figure 2.5: Full-wave rectifier with center-tapped transformer
During the positive half cycle: D1 conduct and D2 does not
During the negative half cycle: D1 does not and D2 conduct
This enables the load current to be in the same direction for both
half cycles
49
With this circuit, when the AC supply voltage is positive at point A
and negative at point B, current flows from point B, through D2, the
load D1 and to point A.
Ehwn the AC supply voltage is positive at point B and negative at
point A, current flow from point A, through D4, the load, D3 and to
point B.
Figure 2.6: Full-wave bridge rectifier
!
!
!
?,
!
!
!
?,
!
!
!
?,
prove
please
I
prove
please
V
prove
please
I
rms
rms
dc



50
(a) Circuit diagram (b) Waveforms
Figure 2.5: Full-wave rectifier with center-tapped transformer
!
!
!
?,
!
!
!
?,
!
!
!
?,
prove
please
I
prove
please
V
prove
please
I
rms
rms
dc



51
(a)Circuit diagram (b) Waveforms
Figure 2.6: Full-wave bridge rectifier
 
 
 
 
m
m
m
m
m
o
dc
V
V
V
t
V
t
d
t
V
V
636
.
0
2
0
cos
cos
cos
sin
1
0
0
,







 










52
m
m
m
m
m
T
m
rms
o
V
t
t
V
t
d
t
V
t
d
t
V
t
d
t
V
t
d
t
V
T
V
707
.
0
2
)
(
2
sin
)
(
2
)
(
2
)
(
2
cos
1
)
(
)
(
sin
1
)
(
)]
sin(
[
1
)
(
)]
sin(
[
1
0
2
0
2
0
2
2
0
2
0
2
,














 


























53
Finding the Performance Parameters of a Full-
Wave Rectifier with Center-Tapped Transformer
If the rectifier in Figure 2.5(a) has a purely
resistive load of R, determine
(a) the efficiency.
(b) the FF.
(c) the RF.
(d) the TUF.
(e) the PIV of diode D1.
(f) the CF of the input current.
54
55
Single-Phase Full-wave Controlled Converter – R Load
 If Vm is the peak input voltage, the average
output voltage Vdc can be found from.
 The maximum output voltage Vdm is (a=0)
 The normalized output voltage
56
     











cos
1
cos
sin
1




  m
m
m
dc
V
t
V
t
td
V
V

m
dm
V
V
2

 

cos
1
5
.
0 


dm
dc
n
V
V
V
57
58
Figure 2.7:
Full-bridge
with RL-load
 In practice, most loads are R&L
 The load current depends on the values
of load resistance R and load inductance
L.
59
 If the input voltage,
 vs = Vm sin t = 2 Vs sin t
 The load current i0 can be found
from
   
R
E
e
A
t
Z
V
i t
L
R
s



  /
1
0 sin
2


60
 where load impedance:
Z = [R2 + (L)2]1/2
 load impedance angle:  = tan-1(L/R)
 Vs is the rms value of the input voltage.
61
Continuous load current
 The constant A1 at t = , i0 = I0.
62
  


 /
/
0
1 sin
2 L
R
s
e
Z
V
R
E
I
A











 Under a steady-state condition,
 i0(t = 0) = i0(t = )= I0.
63
  
  
R
E
e
e
Z
V
I L
R
L
R
s



 





 /
/
/
/
0
1
1
sin
2
for I0 ≥ 0
    
 
R
E
e
e
t
Z
V
i
t
L
R
L
R
s










 

/
/
/
0 sin
1
2
sin
2


 

and
for 0 ≤ (t – ) ≤  and i0 ≥ 0
Continuous load current
 The rms diode current.
64
 
2
/
1
0
2
0
2
1






 



t
d
i
Ir
 The rms output current .
 The average diode current
65
  r
r
r
rms I
I
I
I 2
2
/
1
2
2



 




 0
0
2
1
t
d
i
Id
66
Discontinuous load current
 The load current flows only during the
period  ≤ t ≤ .
 Let define x = E/Vm = E/2Vs as the
load battery (emf) constant. The diodes
start to conduct at t =  given by:
67
 
x
V
E
m
1
1
sin
sin 




 At t = , i0(t) = 0
    



 /
/
1 sin
2 L
R
s
e
Z
V
R
E
A 








68
Discontinuous load current
 The load current
 The rms diode current
69
      
R
E
e
Z
V
R
E
t
Z
V
i t
L
R
s
s













 





 /
/
0 sin
2
sin
2
 
2
/
1
0
2
0
2
1








 



t
d
i
Ir
 The average diode current
70
 




 0
0
2
1
t
d
i
Id
Boundary conditions
 
R
E
e
e
Z
V
L
R
L
R
s













































1
1
sin
2
0
Finding the Performance Parameters of a Full-
Wave Rectifier with an RL Load
The single-phase full-wave rectifier of Figure
2.7(a) has L = 6.5 mH, R = 2.5 H, and E = 10 V.
The input voltage is Vs = 120 V at 60 Hz.
Determine
(a) the steady-state load current I0 at t = 0,
(b) the average diode current Id.
(c) the rms diode current Ir.
(d) the rms output current Irms.
(e) Use PSpice to plot the instantaneous output
current i0.Assume diode parameters IS = 2.22E -
15, BV = 1800 V.
71
72
Single-Phase Full-wave Controlled Converter – RL Load
 During the period from  to , the input
voltage vs and input current is are +ve and the
power flows from the supply to the load.
 The converter is said to be operated in
rectification mode.
 During the period from  to  + , the input
voltage vs is -ve and the input current is is
positive and reverse power flows from the load
to the supply.
 The converter is said to be operated in
inversion mode.
 Depending on the value of , the average
output voltage could be either positive or
negative and it provides two-quadrant
operation.
73
 The average output voltage
 The rms value of the output voltage
74
    












cos
2
cos
2
2
sin
2
2 m
m
m
dc
V
t
V
t
td
V
V 






 
    s
m
m
m
rms
V
V
t
d
t
V
t
td
V
V





















2
2
cos
1
2
sin
2
2
2
/
1
2
2
/
1
2
2












 The load current iL.
 The steady-state condition iL (t =  + )
= IL1 = IL0.
75
mode 1 : when T1 and T2 conduct [ ≤ t ≤ ( + )]
      
t
L
R
s
L
s
L e
Z
V
R
E
I
R
E
t
Z
V
i 














 




 /
/
0 sin
2
sin
2
      
  
R
E
e
e
Z
V
I
I L
R
L
R
s
L
L 






 









/
/
/
/
1
0
1
sin
sin
2
for
0
0 
L
I
 The rms current.
 The rms output current.
76
 
2
/
1
2
2
1






 





t
d
i
I L
R
  R
R
R
rms I
I
I
I 2
2
/
1
2
2



 The average current
 The average output current.
 








t
d
i
I L
A
2
1
77
A
A
A
dc I
I
I
I 2



Finding the Current Ratings of Single-Phase
Controlled Full Converter with an RL load
The single-phase full converter of Figure 215(a)
has a RL load having L = 6.5 mH, R = 0.5 , and
E = 10 V. The input voltage is Vs = 120 V at (rms)
60 Hz. Determine
(a) the load current IL0 at t =  = 60°.
(b) the average thyristor current IA.
(c) the rms thyristor current IR.
(d) the rms output current Irms.
(e) the average output current Idc.
(f) the critical delay angle c.
78
79
 It can operate with or without a
transformer and gives six-pulse ripples
on the output voltage.
 The diodes are numbered in order of
conduction sequences and each one
conducts for 120°.
 .
80
 The conduction sequence for diodes is
D1 – D2, D3 – D2, D3 – D4, D5 – D4, D5 – D6
and D1 – D6.
 The pair of diodes which are connected
between that pair of supply lines having the
highest amount of instantaneous line-to-
line voltage will conduct
81
 The line-to-line voltage is 3 times the
phase voltage of a three-phase Y-
connected source.
 If Vm is the peak value of the phase
voltage, then the instantaneous phase
voltages can be described by
van = Vm sin(t),
vbn = Vm sin(t – 120o),
vcn = Vm sin(t – 240o)
82
Positive sequence
or abc sequence
83
Figure 2.10: Three-phase bridge rectifier
84
Figure 2.11: Waveforms and conduction times of diodes
 Because the line-line voltage leads the phase
voltage by 30o, the instantaneous line-line
voltages can be described by
vab = 3Vm sin(t + 30o),
vbc = 3Vm sin(t – 90o),
vca = 3Vm sin(t – 210o)
85
 The average output voltage
86
 
m
m
m
dc
V
V
t
d
t
V
V
654
.
1
3
3
cos
3
6
/
2
2
6
/
0


 





where Vm, is the peak phase voltage.
 The rms output voltage
87
 
m
m
m
rms
V
V
t
d
t
V
V
6554
.
1
4
3
9
2
3
cos
3
6
/
2
2
2
/
1
2
/
1
6
/
0
2
2

















 





 If the load is purely resistive, the peak
current through a diode is Im = 3Vm/R
and the rms value of the diode current
is
 
m
m
m
r
I
I
t
d
t
I
I
5518
.
0
6
2
sin
2
1
6
1
cos
2
4
2
/
1
2
/
1
6
/
0
2
2





















 







88
 the rms value of the transformer secondary
current,
89
 
m
m
m
s
I
I
t
d
t
I
I
7804
.
0
6
2
sin
2
1
6
2
cos
2
8
2
/
1
2
/
1
6
/
0
2
2





















 







where Im is the peak secondary line current.
Finding the Performance Parameters of a Three-
Phase Bridge Rectifier
A three-phase bridge rectifier has a purely
resistive load of R. Determine
(a) the efficiency.
(b) the FF.
(c) the RF.
(d) the TUF.
(e) the peak inverse (or reverse) voltage (PIV) of
each
diode.
(f) the peak current through a diode.
The rectifier delivers Idc = 60 A at an output
voltage of Vdc = 280.7 V and the source frequency
90
91
 The derivation of this Three-Phase
Bridge Rectifiers With RL Load is similar
to Single-Phase Bridge Rectifiers With
RL Load.
92
      
  
R
E
e
e
Z
V
I L
R
L
R
ab





 









3
/
/
3
/
/
0
1
3
/
sin
3
/
2
sin
2
for I0 ≥ 0
93
     
  
  
R
E
e
e
t
Z
V
i t
L
R
t
L
R
ab













 











 3
/
/
3
/
/
0
1
3
/
sin
3
/
2
sin
sin
2
for /3 ≤ t ≤ 2/3 and i0 ≥ 0
 The rms diode current.
 the rms output current
94
 
2
/
1
3
/
2
3
/
2
0
2
2






 




t
d
i
Ir
  r
r
r
r
rms I
I
I
I
I 3
2
/
1
2
2
2




 The average diode current
 Boundary conditions
95
 


3
/
2
3
/
0
2
2




t
d
i
Id
0
1
3
sin
3
2
sin
2
3
3


























































R
E
e
e
Z
V
L
R
L
R
AB








96
97
98
99

More Related Content

What's hot

3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor pptAjay Balar
 
Lab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersLab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersKatrina Little
 
Chapter 4 synchronous machine
Chapter 4 synchronous machineChapter 4 synchronous machine
Chapter 4 synchronous machinemkazree
 
Synchronous generator construction
Synchronous generator constructionSynchronous generator construction
Synchronous generator constructionAnilKumarJain19
 
DC Generator tutorial problem
DC Generator tutorial problem DC Generator tutorial problem
DC Generator tutorial problem Dr. Saravanan S
 
Instrumentation and Measurements MCQ - 6.pdf
Instrumentation and Measurements MCQ - 6.pdfInstrumentation and Measurements MCQ - 6.pdf
Instrumentation and Measurements MCQ - 6.pdfEngineering Funda
 
AC Machines
AC MachinesAC Machines
AC Machinesthokalpv
 
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...Prasant Kumar
 
Three phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionThree phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionMalarselvamV
 
Alternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAlternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAswin KP
 
three phase inverter
three phase inverterthree phase inverter
three phase inverterMalik Zaid
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generatorstes4
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
 
Single phase ac voltage controller
Single phase ac voltage controllerSingle phase ac voltage controller
Single phase ac voltage controllerSwati Tiwari
 

What's hot (20)

3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor ppt
 
Function generator
Function generatorFunction generator
Function generator
 
Lab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersLab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt Triggers
 
Chapter 4 synchronous machine
Chapter 4 synchronous machineChapter 4 synchronous machine
Chapter 4 synchronous machine
 
Synchronous generator construction
Synchronous generator constructionSynchronous generator construction
Synchronous generator construction
 
DC Generator tutorial problem
DC Generator tutorial problem DC Generator tutorial problem
DC Generator tutorial problem
 
Synchronous machine
Synchronous machineSynchronous machine
Synchronous machine
 
Instrumentation and Measurements MCQ - 6.pdf
Instrumentation and Measurements MCQ - 6.pdfInstrumentation and Measurements MCQ - 6.pdf
Instrumentation and Measurements MCQ - 6.pdf
 
AC Machines
AC MachinesAC Machines
AC Machines
 
Single Phase Converter
Single Phase ConverterSingle Phase Converter
Single Phase Converter
 
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...
MCQ OF ELECTRICAL MACHINES PART I_OBJECTIVE QUESTIONS AND ANSWERS_ELECTRICAL ...
 
Three phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionThree phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of Conduction
 
Alternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAlternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing Panel
 
three phase inverter
three phase inverterthree phase inverter
three phase inverter
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generators
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
rectifiers
rectifiersrectifiers
rectifiers
 
Single phase ac voltage controller
Single phase ac voltage controllerSingle phase ac voltage controller
Single phase ac voltage controller
 

Similar to chapter_2 AC to DC Converter.pptx

05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdfROCIOMAMANIALATA1
 
chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptLiewChiaPing
 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdfLIEWHUIFANGUNIMAP
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfLiewChiaPing
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...LucasMogaka
 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulatorsssuser2038c9
 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter pptMamta Bagoria
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfLiewChiaPing
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdfLiewChiaPing
 
A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manojIACM SmartLearn Ltd.
 
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptBEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptLiewChiaPing
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronicsSagar Bagwe
 

Similar to chapter_2 AC to DC Converter.pptx (20)

Edc unit 2
Edc unit 2Edc unit 2
Edc unit 2
 
Edcqnaunit 2
Edcqnaunit 2Edcqnaunit 2
Edcqnaunit 2
 
Ppt 2
Ppt 2Ppt 2
Ppt 2
 
Chapter02
Chapter02Chapter02
Chapter02
 
05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf05 Cap 4 - chapter-4-2015.pdf
05 Cap 4 - chapter-4-2015.pdf
 
Unit2
Unit2Unit2
Unit2
 
chapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.pptchapter4 DC to AC Converter.ppt
chapter4 DC to AC Converter.ppt
 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
 
Eg1108 rectifiers
Eg1108 rectifiersEg1108 rectifiers
Eg1108 rectifiers
 
2.ppt
2.ppt2.ppt
2.ppt
 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulators
 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
Chapter 4 Inverters.pdf
Chapter 4 Inverters.pdfChapter 4 Inverters.pdf
Chapter 4 Inverters.pdf
 
A presentation on inverter by manoj
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manoj
 
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptBEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronics
 

More from LiewChiaPing

chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptLiewChiaPing
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfLiewChiaPing
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfLiewChiaPing
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfLiewChiaPing
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfLiewChiaPing
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfLiewChiaPing
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfLiewChiaPing
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfLiewChiaPing
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfLiewChiaPing
 
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfBEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfLiewChiaPing
 
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfBEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfLiewChiaPing
 
6_Fault analysis.pdf
6_Fault analysis.pdf6_Fault analysis.pdf
6_Fault analysis.pdfLiewChiaPing
 
5_Load flow studies.pdf
5_Load flow studies.pdf5_Load flow studies.pdf
5_Load flow studies.pdfLiewChiaPing
 
4_Differential Protection_rar(1).pdf
4_Differential Protection_rar(1).pdf4_Differential Protection_rar(1).pdf
4_Differential Protection_rar(1).pdfLiewChiaPing
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdfLiewChiaPing
 

More from LiewChiaPing (20)

chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Chapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdfChapter 7 Application of Electronic Converters.pdf
Chapter 7 Application of Electronic Converters.pdf
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Chapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdfChapter 1 Introduction to power Electronic Devices.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
 
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdfBEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdfBEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
 
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdfBEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
 
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdfBEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W10.pdf
 
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdfBEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
 
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdfBEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
 
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdfBEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
 
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdfBEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
 
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdfBEF43303 - 201620171 W3 Power Flow Analysis.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
 
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdfBEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W2 Power System Analysis and Protection.pdf
 
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdfBEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
 
6_Fault analysis.pdf
6_Fault analysis.pdf6_Fault analysis.pdf
6_Fault analysis.pdf
 
5_Load flow studies.pdf
5_Load flow studies.pdf5_Load flow studies.pdf
5_Load flow studies.pdf
 
4_Differential Protection_rar(1).pdf
4_Differential Protection_rar(1).pdf4_Differential Protection_rar(1).pdf
4_Differential Protection_rar(1).pdf
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf
 

Recently uploaded

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 

Recently uploaded (20)

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 

chapter_2 AC to DC Converter.pptx

  • 2. 2.1 Single-Phase Half-Wave Rectifiers 2.2 Performance Parameters 2.3 Single-Phase Full-Wave Rectifiers 2.4 Single-Phase Full-Wave Rectifier With RL Load 2.5 Three-Phase Bridge Rectifiers 2.6 Three-Phase Bridge Rectifier With RL Load 2
  • 3. 2.1 To understand the operation and characteristics of single and three phases uncontrolled rectifiers 2.2 To understand the performance parameters of single and three phases uncontrolled rectifiers 3
  • 4. 4
  • 6.  Converts AC power signal into DC power signal.  Converts signal (voltage/current) in sinusoid into a useful and reliable constant (dc) voltage for the successful operation of electronic circuits and direct current machines.  The conversion process is called the rectification. 6
  • 7.  The rectifiers are classified into two types, single-phase and three-phase.  The typical applications of the rectifier circuits such as dc welder, dc motor drive, Battery charger, dc power supply, High Voltage Direct Current (HVDC). 7
  • 8. 8
  • 9. 9 Figure 2.1: Single-phase half-wave rectifier (b) Waveforms (a) Circuit diagram ! ! ! ?, ! ! ! ?, prove please I prove please I dc rms   Principle of rectifier operation .
  • 10.  A single-phase half-wave rectifier is the simplest type.         m m m m m o dc V V V t V t d t V V 318 . 0 0 cos cos 2 cos 2 sin 2 1 0 0 ,                    10
  • 12. 12 Single-Phase Half-Wave Rectifiers – RL loads •Due to inductive load, the conduction period of diode D1 will extend beyond 180o until the current becomes zero at t =  + . (a) Circuit diagram (b) Waveforms Figure 2.3: Half-wave rectifier with RL load:
  • 14. 14 •Vs, Vo & Io of the single phase half-wave rectifier using the load is R and RL
  • 15.  The waveforms for the current and voltage are shown in Figure 2.3(b). The average, VL of the inductor is zero.  The average output voltage is  The average load current is Idc = Vdc/R. 15                              cos 1 2 cos 2 sin 2 0 0 m m m dc V t V t d t V V
  • 16. 16                                                         2 ) ( 2 sin ) ( 4 0 2 ) ( 2 sin ) ( 4 2 ) ( 2 sin ) ( 4 ) ( 2 ) ( 2 cos 1 2 ) ( ) ( sin 2 1 sin 2 1 2 2 ` 0 2 0 2 0 2 2 0 2                               m m m m m m rms V V t t V t d t V t d t V t d t V V
  • 17.  The effect of diode Dm is to prevent a negative voltage appearing across the load; and as a result, the magnetic stored energy is increased.  At t = t1 = /, the current from D1 is transferred to Dm and this process is called commutation of diodes and the waveforms are shown in Figure 2.3(c).  Load current i0 is discontinuous with a resistive load and continuous with a very high inductive load.  The continuity of the load current depends on its time constant  = L/R. 17
  • 18. 18 t io io (mode 1) io (mode 2) mode 2 mode 1 • Function of Dm : to remove dissipated as a heat a cross the switch as sparks, it was caused by energy in the inductive
  • 19. 19
  • 20.  Although the output voltage as shown is dc, it is discontinuous and contains harmonics.  A rectifier is a power processor that should give a dc output voltage with a minimum amount of harmonic contents. 20
  • 21.  At the same time, it should maintain the input current as sinusoidal as possible and in phase with the input voltage so that the power factor is near unity.  The power-processing quality of a rectifier requires the determination of harmonic contents of the input current, the output voltage and the output current. 21
  • 22. 22 The average value of the output (load) Voltage, Vdc The average value of the output (load) current, Idc The output dc power, Pdc = VdcIdc The root-mean-square (rms) value of the output voltage, Vrms The rms value of the output current, Irms The output ac power, Pac = VrmsIrms efficiency The effective (rms) value The form factor The ripple factor transformer utilization factor ac dc P P   2 2 dc rms ac V V V   dc rms V V FF  dc ac V V RF  1 1 2 2             FF V V RF dc rms s s dc I V P TUF 
  • 23. 23 The harmonic factor (HF) Crest factor (CF) The input power factor (PF) The displacement factor DF = cos  2 / 1 2 1 2 / 1 2 1 2 1 2 1                             s s s s s I I I I I HF   cos cos 1 1 s s s s s s I I I V I V PF   s peak s I I CF ) (   (displacement angle) is the angle between fundament component of the input current and voltage
  • 24. Finding the performance parameters of a Half- wave Rectifier – R load The rectifier in Figure 2.l(a) has a purely resistive load of R. Determine, (a) the efficiency, (b) the FF, (c) the RF, (d) the TUF, (e) the PIV of diode D1, (f) the CF of the input current (g) input PF. 24
  • 25. 25 Solution 2.1     % 5 . 40 5 . 0 5 . 0 318 . 0 318 . 0 )                 R V V R V V I V I V P P a m m m m ac ac dc dc ac dc 
  • 27. 27 Solution 2.1 d) The rms voltage of the transformer secondary is   m m T m s V V dt t V T V 707 . 0 2 sin 1 2 / 1 0 2            The rms value of the transformer secondary current is the same as that of the load: R V I m s 5 . 0 
  • 28. 28 The volt-ampere rating (VA) of the transformer, VA = VsIs = 0.707Vm × 0.5Vm/R. % 6 . 28 286 . 0 5 . 0 ) 707 . 0 ( / ) 318 . 0 ( 2           R V V R V I V P TUF m m m s s dc
  • 29. 29 Solution 2.1 e) The peak reverse (or inverse) blocking voltage PIV = Vm f) Is(peak) = Vm/R and Is = 0.5Vm/R The CF of the input current is CF = Is(peak)/Is = 1/0.5 =2 g) The input PF for a resistive load can be found from 707 . 0 5 . 0 707 . 0 5 . 0 2     VA P PF ac
  • 30.  If the output is connected to a battery, the rectifier can be used as a battery charger. This is shown in Figure 2.4(a). For vs > E, diode D1 conducts. 30
  • 31. The angle () when the diode starts conducting can be found from the condition 31 m V E 1 sin    E Vm   sin
  • 32.  Diode D1 is turned off when Vs  E at   =  –   The charging current iL, which is shown in Figure 2.4(b), can be found from 32 R E t V R E v i i m s L       sin 0 for  < t < 
  • 33.         B A B A B A note E E V E V E V t E t V t d E t V V m m m m m o dc sin sin cos cos ) cos( : 2 cos 2 2 1 ) cos ( )) ( ) cos( ( 2 1 cos 2 1 ) sin ( 2 1 ,                                                  33
  • 34. 34                                                                                                                        cos 4 2 sin 2 2 2 2 1 cos 2 2 ) ( 2 sin 2 ) ( sin 2 2 ) ( 2 cos 1 2 ) ( ) sin 2 ) ( sin ( 2 1 sin 2 1 2 2 2 2 2 2 2 2 2 2 2 E V V E V t E t EV t t V t d E t EV t V t d E t EV t V t d E t V V m m m m m m m m m rms
  • 36.  Question for Battery Charger:  E=20volt, Pbattery=200Wh, Idc=10A, Vmax(source)=120volt, f=60hz, transformer ratio 2:1, determine:  1) Conduction angle (-)  2) The current limiting resistance R  3) The power rating of R (PR)  4) the charging time ho  5) Efficiency of the rectifier  6) PIV of the diode  36
  • 37. Finding the Performance Parameters of a Battery Charger The battery voltage in Figure 2.4(a) is E = 12 V and its capacity is 100 Wh. The average charging current should be Idc = 5 A. The primary input voltage is Vp = 120 V, 60 Hz, and the transformer has a turn ratio of n = 2:1. Calculate (a) the conduction angle  of the diode. (b) the current-limiting resistance R. (c) the power rating PR of R. (d) the charging time h0 in hours. (e) the rectifier efficiency . (f) the PIV of the diode. 37
  • 38.  When thyristor T1 is fired at t = , thyristor T1 conducts and the input voltage appears across the load.  When the input voltage starts to be negative at t = , the thyristor is negative with respect to its cathode and thyristor T1 said to be reverse biased and it is turned off.  The time after the input voltage starts to go negative until the thyristor is fired at t =  is called the delay or firing angle . . 38
  • 39. 39 Figure 2.14: Single-phase thyristor converter with a resistive load
  • 40.  If Vm is the peak input voltage, the average output voltage Vdc can be found from.  The maximum output voltage Vdm is (a=0)  The normalized output voltage 40                  cos 1 2 cos 2 sin 2 1       m m m dc V t V t td V V  m dm V V     cos 1 5 . 0    dm dc n V V V
  • 41.  The root-mean-square (rms) output voltage.       2 / 1 2 / 1 2 2 / 1 2 2 2 2 sin 1 2 2 cos 1 4 sin 2 1                                               m m m rms V t d t V t td V V 41
  • 42. Find the Performances of a Single-Phase Controlled Converter If the converter of Figure 2.14(a) has a purely resistive load of R and the delay angle is  = /2. Determine (a) the rectification efficiency. (b) the form factor (FF). (c) the ripple factor (RF). (d) the TUF. (e) the peak inverse voltage (PIV) of thyristor T1. 42
  • 44. 44 (a) The efficiency (b) (c) (d) (e) PIV = Vm % 27 . 20 ) 3536 . 0 ( ) 1592 . 0 ( / ) ( / ) ( 2 2 2 2     m m ac dc ac dc V V R V R V P P  % 1 . 222 221 . 2 1592 . 0 3536 . 0     m m dc rms V V V V FF 983 . 1 1 221 . 2 1 2 2      FF RF   1014 . 0 / ) 3536 . 0 ( 2 / / ) 1592 . 0 ( 2    R V V R V I V P TUF m m m s s dc
  • 45. 45
  • 46.  A full-wave rectifier circuit with a center-tapped transformer.  Because there is no dc current flowing through the transformer, there is no dc saturation problem of transformer core. The average output voltage is 46     2 / 0 6366 . 0 2 sin 2 T m m m dc V V dt t V T V  
  • 47.  Instead of using a center-tapped transformer, we could use four diodes .  This circuit is known as a bridge rectifier, and it is commonly used in industrial applications. 47
  • 48. 48 Figure 2.5: Full-wave rectifier with center-tapped transformer During the positive half cycle: D1 conduct and D2 does not During the negative half cycle: D1 does not and D2 conduct This enables the load current to be in the same direction for both half cycles
  • 49. 49 With this circuit, when the AC supply voltage is positive at point A and negative at point B, current flows from point B, through D2, the load D1 and to point A. Ehwn the AC supply voltage is positive at point B and negative at point A, current flow from point A, through D4, the load, D3 and to point B. Figure 2.6: Full-wave bridge rectifier
  • 50. ! ! ! ?, ! ! ! ?, ! ! ! ?, prove please I prove please V prove please I rms rms dc    50 (a) Circuit diagram (b) Waveforms Figure 2.5: Full-wave rectifier with center-tapped transformer
  • 52.         m m m m m o dc V V V t V t d t V V 636 . 0 2 0 cos cos cos sin 1 0 0 ,                    52
  • 54. Finding the Performance Parameters of a Full- Wave Rectifier with Center-Tapped Transformer If the rectifier in Figure 2.5(a) has a purely resistive load of R, determine (a) the efficiency. (b) the FF. (c) the RF. (d) the TUF. (e) the PIV of diode D1. (f) the CF of the input current. 54
  • 55. 55 Single-Phase Full-wave Controlled Converter – R Load
  • 56.  If Vm is the peak input voltage, the average output voltage Vdc can be found from.  The maximum output voltage Vdm is (a=0)  The normalized output voltage 56                  cos 1 cos sin 1       m m m dc V t V t td V V  m dm V V 2     cos 1 5 . 0    dm dc n V V V
  • 57. 57
  • 59.  In practice, most loads are R&L  The load current depends on the values of load resistance R and load inductance L. 59
  • 60.  If the input voltage,  vs = Vm sin t = 2 Vs sin t  The load current i0 can be found from     R E e A t Z V i t L R s      / 1 0 sin 2   60
  • 61.  where load impedance: Z = [R2 + (L)2]1/2  load impedance angle:  = tan-1(L/R)  Vs is the rms value of the input voltage. 61
  • 62. Continuous load current  The constant A1 at t = , i0 = I0. 62       / / 0 1 sin 2 L R s e Z V R E I A           
  • 63.  Under a steady-state condition,  i0(t = 0) = i0(t = )= I0. 63       R E e e Z V I L R L R s            / / / / 0 1 1 sin 2 for I0 ≥ 0        R E e e t Z V i t L R L R s              / / / 0 sin 1 2 sin 2      and for 0 ≤ (t – ) ≤  and i0 ≥ 0
  • 64. Continuous load current  The rms diode current. 64   2 / 1 0 2 0 2 1            t d i Ir
  • 65.  The rms output current .  The average diode current 65   r r r rms I I I I 2 2 / 1 2 2           0 0 2 1 t d i Id
  • 66. 66
  • 67. Discontinuous load current  The load current flows only during the period  ≤ t ≤ .  Let define x = E/Vm = E/2Vs as the load battery (emf) constant. The diodes start to conduct at t =  given by: 67   x V E m 1 1 sin sin     
  • 68.  At t = , i0(t) = 0          / / 1 sin 2 L R s e Z V R E A          68
  • 69. Discontinuous load current  The load current  The rms diode current 69        R E e Z V R E t Z V i t L R s s                      / / 0 sin 2 sin 2   2 / 1 0 2 0 2 1              t d i Ir
  • 70.  The average diode current 70        0 0 2 1 t d i Id Boundary conditions   R E e e Z V L R L R s                                              1 1 sin 2 0
  • 71. Finding the Performance Parameters of a Full- Wave Rectifier with an RL Load The single-phase full-wave rectifier of Figure 2.7(a) has L = 6.5 mH, R = 2.5 H, and E = 10 V. The input voltage is Vs = 120 V at 60 Hz. Determine (a) the steady-state load current I0 at t = 0, (b) the average diode current Id. (c) the rms diode current Ir. (d) the rms output current Irms. (e) Use PSpice to plot the instantaneous output current i0.Assume diode parameters IS = 2.22E - 15, BV = 1800 V. 71
  • 72. 72 Single-Phase Full-wave Controlled Converter – RL Load
  • 73.  During the period from  to , the input voltage vs and input current is are +ve and the power flows from the supply to the load.  The converter is said to be operated in rectification mode.  During the period from  to  + , the input voltage vs is -ve and the input current is is positive and reverse power flows from the load to the supply.  The converter is said to be operated in inversion mode.  Depending on the value of , the average output voltage could be either positive or negative and it provides two-quadrant operation. 73
  • 74.  The average output voltage  The rms value of the output voltage 74                  cos 2 cos 2 2 sin 2 2 m m m dc V t V t td V V              s m m m rms V V t d t V t td V V                      2 2 cos 1 2 sin 2 2 2 / 1 2 2 / 1 2 2            
  • 75.  The load current iL.  The steady-state condition iL (t =  + ) = IL1 = IL0. 75 mode 1 : when T1 and T2 conduct [ ≤ t ≤ ( + )]        t L R s L s L e Z V R E I R E t Z V i                       / / 0 sin 2 sin 2           R E e e Z V I I L R L R s L L                   / / / / 1 0 1 sin sin 2 for 0 0  L I
  • 76.  The rms current.  The rms output current. 76   2 / 1 2 2 1              t d i I L R   R R R rms I I I I 2 2 / 1 2 2   
  • 77.  The average current  The average output current.           t d i I L A 2 1 77 A A A dc I I I I 2   
  • 78. Finding the Current Ratings of Single-Phase Controlled Full Converter with an RL load The single-phase full converter of Figure 215(a) has a RL load having L = 6.5 mH, R = 0.5 , and E = 10 V. The input voltage is Vs = 120 V at (rms) 60 Hz. Determine (a) the load current IL0 at t =  = 60°. (b) the average thyristor current IA. (c) the rms thyristor current IR. (d) the rms output current Irms. (e) the average output current Idc. (f) the critical delay angle c. 78
  • 79. 79
  • 80.  It can operate with or without a transformer and gives six-pulse ripples on the output voltage.  The diodes are numbered in order of conduction sequences and each one conducts for 120°.  . 80
  • 81.  The conduction sequence for diodes is D1 – D2, D3 – D2, D3 – D4, D5 – D4, D5 – D6 and D1 – D6.  The pair of diodes which are connected between that pair of supply lines having the highest amount of instantaneous line-to- line voltage will conduct 81
  • 82.  The line-to-line voltage is 3 times the phase voltage of a three-phase Y- connected source.  If Vm is the peak value of the phase voltage, then the instantaneous phase voltages can be described by van = Vm sin(t), vbn = Vm sin(t – 120o), vcn = Vm sin(t – 240o) 82 Positive sequence or abc sequence
  • 83. 83 Figure 2.10: Three-phase bridge rectifier
  • 84. 84 Figure 2.11: Waveforms and conduction times of diodes
  • 85.  Because the line-line voltage leads the phase voltage by 30o, the instantaneous line-line voltages can be described by vab = 3Vm sin(t + 30o), vbc = 3Vm sin(t – 90o), vca = 3Vm sin(t – 210o) 85
  • 86.  The average output voltage 86   m m m dc V V t d t V V 654 . 1 3 3 cos 3 6 / 2 2 6 / 0          where Vm, is the peak phase voltage.
  • 87.  The rms output voltage 87   m m m rms V V t d t V V 6554 . 1 4 3 9 2 3 cos 3 6 / 2 2 2 / 1 2 / 1 6 / 0 2 2                        
  • 88.  If the load is purely resistive, the peak current through a diode is Im = 3Vm/R and the rms value of the diode current is   m m m r I I t d t I I 5518 . 0 6 2 sin 2 1 6 1 cos 2 4 2 / 1 2 / 1 6 / 0 2 2                               88
  • 89.  the rms value of the transformer secondary current, 89   m m m s I I t d t I I 7804 . 0 6 2 sin 2 1 6 2 cos 2 8 2 / 1 2 / 1 6 / 0 2 2                               where Im is the peak secondary line current.
  • 90. Finding the Performance Parameters of a Three- Phase Bridge Rectifier A three-phase bridge rectifier has a purely resistive load of R. Determine (a) the efficiency. (b) the FF. (c) the RF. (d) the TUF. (e) the peak inverse (or reverse) voltage (PIV) of each diode. (f) the peak current through a diode. The rectifier delivers Idc = 60 A at an output voltage of Vdc = 280.7 V and the source frequency 90
  • 91. 91
  • 92.  The derivation of this Three-Phase Bridge Rectifiers With RL Load is similar to Single-Phase Bridge Rectifiers With RL Load. 92           R E e e Z V I L R L R ab                 3 / / 3 / / 0 1 3 / sin 3 / 2 sin 2 for I0 ≥ 0
  • 93. 93             R E e e t Z V i t L R t L R ab                            3 / / 3 / / 0 1 3 / sin 3 / 2 sin sin 2 for /3 ≤ t ≤ 2/3 and i0 ≥ 0
  • 94.  The rms diode current.  the rms output current 94   2 / 1 3 / 2 3 / 2 0 2 2             t d i Ir   r r r r rms I I I I I 3 2 / 1 2 2 2    
  • 95.  The average diode current  Boundary conditions 95     3 / 2 3 / 0 2 2     t d i Id 0 1 3 sin 3 2 sin 2 3 3                                                           R E e e Z V L R L R AB        
  • 96. 96
  • 97. 97
  • 98. 98
  • 99. 99