SlideShare a Scribd company logo
1 of 4
Erbium-Doped Fiber Amplifier (EDFA)
Erbium-Doped Fiber Amplifier (EDFA) is an optical amplifier used in the C-band and L-
band, where the loss of telecom optical fibers becomes lowest in the entire optical
telecommunication wavelength bands. Invented in 1987, an EDFA is now most
commonly used to compensate the loss of an optical fiber in long-distance optical
communication. Another important characteristic is that EDFA can amplify multiple
optical signals simultaneously, and thus can be easily combined with WDM
technology.
Figure 1: Optical telecommunication optical bands
(EDFA operates in the C- and L-band)
EDFAs are used as a booster, inline, and pre-amplifier in an optical transmission line,
as schematically shown in Figure 2. The booster amplifier is placed just after the
transmitter to increase the optical power launched to the transmission line. The
inline amplifiers are placed in the transmission line, compensating the attenuation
induced by the optical fiber. The pre-amplifier is placed just before the receiver, such
that sufficient optical power is launched to the receiver. A typical distance between
each of the EDFAs is several tens of kilometers.
Figure 2: Booster, inline, and pre-amplifier EDFAs used in optical transmission line
Before the invention of EDFA, a long optical fiber transmission line required a
complicated optical-to-electrical (O-E) and E-O converter for signal regeneration. The
use of EDFA has eliminated the need for such O-E and E-O conversion, significantly
simplifying the system. This is especially of use in a submarine optical transmission,
where more than a hundred EDFA repeaters may be needed to construct one link.
The TPC-5CN (Trans-Pacific Cable 5 Cable Network), started its operation in 1996, is
the first submarine optical fiber network which employed EDFA.
Working principle
Figure 3 illustrates a simplified energy diagram of Er, showing how amplification
takes place at 1550 nm. Two typical wavelengths to pump an EDFA are 980 or 1480
nm.
Figure 3: Energy diagram of Er
When an EDFA is pumped at 1480 nm, Er ion doped in the fiber absorbs the pump
light and is excited to an excited state (Excited state 1 in Figure 3). When sufficient
pump power is launched to the fiber and population inversion is created between
the ground state and Excited state 1, amplification by stimulated emission takes
place at around 1550 nm. When an EDFA is pumped at 980 nm, Er ion absorbs the
pump light and is excited to another excited state (Excited state 2 in Figure 3). The
lifetime of the Excited state 2 is relatively short, and as a result, the Er ion is
immediately relaxed to the Excited state 1 by radiating heat (i.e. no photon
emission). This relaxation process creates the population inversion between the
ground level and Excited state 1, and amplification takes place at around 1550 nm.
Since the first demonstration of a diode-pumped EDFA in 1989 [2], intensive effort
has been made to make the pump LD highly reliable. Now high-power pump laser
diodes at 980 nm or 1480 nm are both commercially available, and most EDFAs are
pumped by laser diodes due to the compactness and robustness.
Internal configuration
Figure 4 shows one common configuration of EDFA. The input signal is combined
with the pump light by a WDM coupler and launched to the EDF. The pump light
launched to the EDF creates population inversion and the input signal is amplified by
stimulated emission. Isolators are placed both at the input and output, in order to
stabilize signal amplification by eliminating unwanted back reflection from the
output port, as well as to prevent the amplifier from operating as a laser. In this
common configuration, the wavelength of the pump LD is locked close to the peak
absorption wavelength of erbium (by an external fiber Bragg grating); the
wavelength range is normally between 974 nm to 980 nm.
Figure 4: Common configuration of EDFA

More Related Content

What's hot

Optical Amplifier Paul
Optical Amplifier   PaulOptical Amplifier   Paul
Optical Amplifier Paul
Bise Mond
 
Comparison among fiber amplifiers
Comparison among fiber amplifiersComparison among fiber amplifiers
Comparison among fiber amplifiers
Saimunur Rahman
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation final
bheemsain
 

What's hot (20)

Optical Amplifier Paul
Optical Amplifier   PaulOptical Amplifier   Paul
Optical Amplifier Paul
 
Comparison among fiber amplifiers
Comparison among fiber amplifiersComparison among fiber amplifiers
Comparison among fiber amplifiers
 
Optical amplifiers- review
Optical amplifiers- reviewOptical amplifiers- review
Optical amplifiers- review
 
Semiconductor optical amplifier (SOA)
Semiconductor optical amplifier (SOA)Semiconductor optical amplifier (SOA)
Semiconductor optical amplifier (SOA)
 
Receiver structures(optical communication)
Receiver structures(optical communication)Receiver structures(optical communication)
Receiver structures(optical communication)
 
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETOPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
 
Modulation of LED
Modulation of LEDModulation of LED
Modulation of LED
 
WDM principles
WDM principlesWDM principles
WDM principles
 
Link budget calculation
Link budget calculationLink budget calculation
Link budget calculation
 
microwave-communication-wave-guides
microwave-communication-wave-guidesmicrowave-communication-wave-guides
microwave-communication-wave-guides
 
FUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAFUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNA
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
Raman scatttering
Raman scattteringRaman scatttering
Raman scatttering
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation final
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
 
Optical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital Receiver
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
 
Optical amplifiers
Optical amplifiersOptical amplifiers
Optical amplifiers
 
Photodetector (Photodiode)
Photodetector (Photodiode)Photodetector (Photodiode)
Photodetector (Photodiode)
 
Optical Fiber
Optical FiberOptical Fiber
Optical Fiber
 

Similar to Erbium-Doped Fiber Amplifier (EDFA)

Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre CommunicationComparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
IJERD Editor
 
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
Arun K Mohan
 

Similar to Erbium-Doped Fiber Amplifier (EDFA) (20)

An Overview of EDFA Gain Flattening by Using Hybrid Amplifier
An Overview of EDFA Gain Flattening by Using Hybrid AmplifierAn Overview of EDFA Gain Flattening by Using Hybrid Amplifier
An Overview of EDFA Gain Flattening by Using Hybrid Amplifier
 
Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre CommunicationComparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
Comparatively analysis of Erbium Doped Fibre Amplifier for Fibre Communication
 
performance analysis of hg edfa and ln eycdfa
performance analysis of hg edfa and ln eycdfa performance analysis of hg edfa and ln eycdfa
performance analysis of hg edfa and ln eycdfa
 
Introduction to optical amplifiers
Introduction to optical amplifiersIntroduction to optical amplifiers
Introduction to optical amplifiers
 
LASER DRIVER FOR HIGH POWER ERBIUM DOPED FIBER AMPLIFIER (EDFA)
LASER DRIVER FOR HIGH POWER ERBIUM DOPED FIBER AMPLIFIER (EDFA)LASER DRIVER FOR HIGH POWER ERBIUM DOPED FIBER AMPLIFIER (EDFA)
LASER DRIVER FOR HIGH POWER ERBIUM DOPED FIBER AMPLIFIER (EDFA)
 
Gain and noise figure analysis of erbium doped fiber amplifiers
Gain and noise figure analysis of erbium doped fiber amplifiersGain and noise figure analysis of erbium doped fiber amplifiers
Gain and noise figure analysis of erbium doped fiber amplifiers
 
In-Depth Understanding of EDFA
In-Depth Understanding of EDFAIn-Depth Understanding of EDFA
In-Depth Understanding of EDFA
 
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...12 gain flattening in erbium doped fiber amplifier based optical communicatio...
12 gain flattening in erbium doped fiber amplifier based optical communicatio...
 
Optical amplifiers and networking
Optical amplifiers and networking Optical amplifiers and networking
Optical amplifiers and networking
 
OFC notes Unit -8 VTU
OFC notes Unit -8 VTUOFC notes Unit -8 VTU
OFC notes Unit -8 VTU
 
Mj2420512054
Mj2420512054Mj2420512054
Mj2420512054
 
Opamp1
Opamp1Opamp1
Opamp1
 
STUDIED ON A MULTICLADDED ERBIUM DOPED DISPERSION COMPENSATING FIBER AMPLIFIER
STUDIED ON A MULTICLADDED ERBIUM DOPED DISPERSION COMPENSATING FIBER AMPLIFIERSTUDIED ON A MULTICLADDED ERBIUM DOPED DISPERSION COMPENSATING FIBER AMPLIFIER
STUDIED ON A MULTICLADDED ERBIUM DOPED DISPERSION COMPENSATING FIBER AMPLIFIER
 
I41035057
I41035057I41035057
I41035057
 
Experimental study on a broadband erbium
Experimental study on a broadband erbiumExperimental study on a broadband erbium
Experimental study on a broadband erbium
 
Performance Improvement for Hybrid L-band Remote Erbium Doped Fiber Amplifier...
Performance Improvement for Hybrid L-band Remote Erbium Doped Fiber Amplifier...Performance Improvement for Hybrid L-band Remote Erbium Doped Fiber Amplifier...
Performance Improvement for Hybrid L-band Remote Erbium Doped Fiber Amplifier...
 
Advance in optical fiber amplifier
Advance in optical fiber amplifierAdvance in optical fiber amplifier
Advance in optical fiber amplifier
 
Gain Analysis of EDF Amplifier Based WDM System Using Different Pumping Wavel...
Gain Analysis of EDF Amplifier Based WDM System Using Different Pumping Wavel...Gain Analysis of EDF Amplifier Based WDM System Using Different Pumping Wavel...
Gain Analysis of EDF Amplifier Based WDM System Using Different Pumping Wavel...
 
P01062114120
P01062114120P01062114120
P01062114120
 
Optical Amplifier and Networks
Optical Amplifier and NetworksOptical Amplifier and Networks
Optical Amplifier and Networks
 

More from Naku Technology Co,. Ltd

More from Naku Technology Co,. Ltd (20)

C+L Band 26dBm 400mW Erbium-doped Fiber Amplifier
C+L Band 26dBm 400mW Erbium-doped Fiber AmplifierC+L Band 26dBm 400mW Erbium-doped Fiber Amplifier
C+L Band 26dBm 400mW Erbium-doped Fiber Amplifier
 
1550nm 10KW Peak Power Pulse Nanosecond Fiber Laser
1550nm 10KW Peak Power Pulse Nanosecond Fiber Laser1550nm 10KW Peak Power Pulse Nanosecond Fiber Laser
1550nm 10KW Peak Power Pulse Nanosecond Fiber Laser
 
1550nm 200MHz Fiber Coupled Acousto-Optic Modulator
1550nm 200MHz Fiber Coupled Acousto-Optic Modulator1550nm 200MHz Fiber Coupled Acousto-Optic Modulator
1550nm 200MHz Fiber Coupled Acousto-Optic Modulator
 
395nm 2000mW UV Fiber Coupled Laser System
395nm 2000mW UV Fiber Coupled Laser System395nm 2000mW UV Fiber Coupled Laser System
395nm 2000mW UV Fiber Coupled Laser System
 
1550nm 37dBm 5W SM Fiber Laser Source Benchtop
1550nm 37dBm 5W SM Fiber Laser Source Benchtop1550nm 37dBm 5W SM Fiber Laser Source Benchtop
1550nm 37dBm 5W SM Fiber Laser Source Benchtop
 
1550nm 200MHz Fiber Coupled AO Modulator
1550nm 200MHz Fiber Coupled AO Modulator1550nm 200MHz Fiber Coupled AO Modulator
1550nm 200MHz Fiber Coupled AO Modulator
 
637nm 15W High Power Semiconductor Laser System
637nm 15W High Power Semiconductor Laser System637nm 15W High Power Semiconductor Laser System
637nm 15W High Power Semiconductor Laser System
 
37dBm 5W High Power Er-doped Fiber Amplifier
37dBm 5W High Power Er-doped Fiber Amplifier37dBm 5W High Power Er-doped Fiber Amplifier
37dBm 5W High Power Er-doped Fiber Amplifier
 
2023 Latest High Power EDFA Fiber Amplifier.docx
2023 Latest High Power EDFA Fiber Amplifier.docx2023 Latest High Power EDFA Fiber Amplifier.docx
2023 Latest High Power EDFA Fiber Amplifier.docx
 
60W IR Invisible Laser 915nm Strong Laser
60W IR Invisible Laser 915nm Strong Laser60W IR Invisible Laser 915nm Strong Laser
60W IR Invisible Laser 915nm Strong Laser
 
2023 Newest! Touch Screen Laser System
2023 Newest! Touch Screen Laser System 2023 Newest! Touch Screen Laser System
2023 Newest! Touch Screen Laser System
 
1550nm Narrow Line-width DFB Laser PM1550 Fiber Output
1550nm Narrow Line-width DFB Laser PM1550 Fiber Output1550nm Narrow Line-width DFB Laser PM1550 Fiber Output
1550nm Narrow Line-width DFB Laser PM1550 Fiber Output
 
808nm 100mW IR Laser System PM Fiber Output
808nm 100mW IR Laser System PM Fiber Output808nm 100mW IR Laser System PM Fiber Output
808nm 100mW IR Laser System PM Fiber Output
 
C+L Band SM ASE Broadband Light Source
C+L Band SM ASE Broadband Light SourceC+L Band SM ASE Broadband Light Source
C+L Band SM ASE Broadband Light Source
 
37dBm 5W High Power YDFA SM Fiber Amplifier
37dBm 5W High Power YDFA SM Fiber Amplifier37dBm 5W High Power YDFA SM Fiber Amplifier
37dBm 5W High Power YDFA SM Fiber Amplifier
 
40dBm YDFA High Power Yb-doped PM Fiber Amplifier Benchtop.doc
40dBm YDFA High Power Yb-doped PM Fiber Amplifier Benchtop.doc40dBm YDFA High Power Yb-doped PM Fiber Amplifier Benchtop.doc
40dBm YDFA High Power Yb-doped PM Fiber Amplifier Benchtop.doc
 
Software Control Laser Output 520nm 22W Fiber Laser
Software Control Laser Output 520nm 22W Fiber LaserSoftware Control Laser Output 520nm 22W Fiber Laser
Software Control Laser Output 520nm 22W Fiber Laser
 
1650nm 600mW Fiber Laser All-in-one System
1650nm 600mW Fiber Laser All-in-one System1650nm 600mW Fiber Laser All-in-one System
1650nm 600mW Fiber Laser All-in-one System
 
450nm Fiber Output Laser Software Control.docx
450nm Fiber Output Laser Software Control.docx450nm Fiber Output Laser Software Control.docx
450nm Fiber Output Laser Software Control.docx
 
2022 The Latest 532nm 10W DPSS Laser system .docx
2022 The Latest 532nm 10W DPSS Laser system .docx2022 The Latest 532nm 10W DPSS Laser system .docx
2022 The Latest 532nm 10W DPSS Laser system .docx
 

Recently uploaded

Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
meharikiros2
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 

Recently uploaded (20)

Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 

Erbium-Doped Fiber Amplifier (EDFA)

  • 1. Erbium-Doped Fiber Amplifier (EDFA) Erbium-Doped Fiber Amplifier (EDFA) is an optical amplifier used in the C-band and L- band, where the loss of telecom optical fibers becomes lowest in the entire optical telecommunication wavelength bands. Invented in 1987, an EDFA is now most commonly used to compensate the loss of an optical fiber in long-distance optical communication. Another important characteristic is that EDFA can amplify multiple optical signals simultaneously, and thus can be easily combined with WDM technology. Figure 1: Optical telecommunication optical bands (EDFA operates in the C- and L-band) EDFAs are used as a booster, inline, and pre-amplifier in an optical transmission line, as schematically shown in Figure 2. The booster amplifier is placed just after the transmitter to increase the optical power launched to the transmission line. The inline amplifiers are placed in the transmission line, compensating the attenuation induced by the optical fiber. The pre-amplifier is placed just before the receiver, such that sufficient optical power is launched to the receiver. A typical distance between each of the EDFAs is several tens of kilometers.
  • 2. Figure 2: Booster, inline, and pre-amplifier EDFAs used in optical transmission line Before the invention of EDFA, a long optical fiber transmission line required a complicated optical-to-electrical (O-E) and E-O converter for signal regeneration. The use of EDFA has eliminated the need for such O-E and E-O conversion, significantly simplifying the system. This is especially of use in a submarine optical transmission, where more than a hundred EDFA repeaters may be needed to construct one link. The TPC-5CN (Trans-Pacific Cable 5 Cable Network), started its operation in 1996, is the first submarine optical fiber network which employed EDFA. Working principle Figure 3 illustrates a simplified energy diagram of Er, showing how amplification takes place at 1550 nm. Two typical wavelengths to pump an EDFA are 980 or 1480 nm.
  • 3. Figure 3: Energy diagram of Er When an EDFA is pumped at 1480 nm, Er ion doped in the fiber absorbs the pump light and is excited to an excited state (Excited state 1 in Figure 3). When sufficient pump power is launched to the fiber and population inversion is created between the ground state and Excited state 1, amplification by stimulated emission takes place at around 1550 nm. When an EDFA is pumped at 980 nm, Er ion absorbs the pump light and is excited to another excited state (Excited state 2 in Figure 3). The lifetime of the Excited state 2 is relatively short, and as a result, the Er ion is immediately relaxed to the Excited state 1 by radiating heat (i.e. no photon emission). This relaxation process creates the population inversion between the ground level and Excited state 1, and amplification takes place at around 1550 nm. Since the first demonstration of a diode-pumped EDFA in 1989 [2], intensive effort has been made to make the pump LD highly reliable. Now high-power pump laser diodes at 980 nm or 1480 nm are both commercially available, and most EDFAs are pumped by laser diodes due to the compactness and robustness. Internal configuration Figure 4 shows one common configuration of EDFA. The input signal is combined with the pump light by a WDM coupler and launched to the EDF. The pump light launched to the EDF creates population inversion and the input signal is amplified by stimulated emission. Isolators are placed both at the input and output, in order to stabilize signal amplification by eliminating unwanted back reflection from the output port, as well as to prevent the amplifier from operating as a laser. In this
  • 4. common configuration, the wavelength of the pump LD is locked close to the peak absorption wavelength of erbium (by an external fiber Bragg grating); the wavelength range is normally between 974 nm to 980 nm. Figure 4: Common configuration of EDFA