SlideShare a Scribd company logo
1 of 52
APPLICATION OF CYLINDRICAL ANDAPPLICATION OF CYLINDRICAL AND
SPHERICAL COORDINATE SYSTEM INSPHERICAL COORDINATE SYSTEM IN
DOUBLE-TRIPLE INTEGRATIONDOUBLE-TRIPLE INTEGRATION
DR. Sonendra Kumar Gupta
(Associate Professor)
Department of Basic Science
(Engineering Mathematics)
CONTENTSCONTENTS
►Jacobian Transformation function
►Use in Double integration.
►Use in Triple integration.
►Polar Coordinate system
►Use of polar coordinate in Double integral
►Solved example in polar coordinate
►Cylindrical Coordinate system
►Use of Cylindrical Coordinate in Triple Coordinate
►Spherical Coordinate System
►Limits of Spherical Coordinate System
►Problem on Spherical Coordinate System
►Problem on Cylindrical Coordinate System
JACOBIAN FUNCTIONJACOBIAN FUNCTION
Jacobian function is a transformation function , which convert a function into one
plane to another plane.
Y
X
v
u
P(x, y) P(u, v)
( ) ( ), ,P x y P u v⇒
It is denoted by J(u, v) and defined as
( )
( )
( )
,
,
,
x x
x y u v
J u v
y yu v
u v
∂ ∂
∂ ∂ ∂
= =
∂ ∂∂
∂ ∂
Carl Gustav Jacob
10 December 1804 – 18 February 1851
German mathematician
USE IN DOUBLE INTEGRATIONUSE IN DOUBLE INTEGRATION
Double integral
1 2
( , ) ( , )
R R
f x y dx dy f u v J du dv=
∫∫ ∫∫
Where
( )
( )
( )
,
,
,
x x
x y u v
J u v
y yu v
u v
∂ ∂
∂ ∂ ∂
= =
∂ ∂∂
∂ ∂
USE IN TRIPLE INTEGRATIONUSE IN TRIPLE INTEGRATION
Triple integral
1 2
( , , ) ( , , )
V V
f x y z dx dy dz f u v w J du dv dw=
∫∫∫ ∫∫∫
Where
( )
( )
( )
, ,
, ,
, ,
x x x
u v w
x y z y y y
J u v w
u v w u v w
z z z
u v w
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
POLAR COORDINATE SYSTEMPOLAR COORDINATE SYSTEM
( ) ( ), ,P x y P r θ⇒
x
y
2 2
r x y= +
X
Y
cosx r= θ
θ
siny r= θ
( ) ( ), ,P x y P r= θ
Cartesian to Polar Coordinate
cos , sinx r y r= θ = θ
Therefore, we have
2 2
tan
y
r x y and
x
= + θ =
Y
X
θ
r
P(x, y) P(r, θ)
Use of polar coordinate in Double integralUse of polar coordinate in Double integral
1 2
( , ) ( cos , sin )
R R
f x y dx dy f r r J dr d= θ θ θ
∫∫ ∫∫
( )
( )
( )
( )2 2
cos sin,
,
sin cos,
cos sin
x x
rx y r
and J r
y y rr
r
r r
∂ ∂
θ − θ∂ ∂ ∂θ
θ = = =
∂ ∂ θ θ∂ θ
∂ ∂θ
= θ+ θ =
cos cos , sin
sin sin , cos
x x
Here x r r
r
y y
y r r
r
∂ ∂
= θ ⇒ = θ = − θ
∂ ∂θ
∂ ∂
= θ ⇒ = θ = θ
∂ ∂θ
1 2
( , ) ( cos , sin )
R R
f x y dx dy f r r r dr d= θ θ θ
∫∫ ∫∫∴
Solve the integral
2
2 2
2 20 0
x x x
dx dy
x y
−
+
∫ ∫ by changing to polar coordinate system.
Solution: Given
2
2 2
2 20 0
x x x
I dx dy
x y
−
=
+
∫ ∫
The region of integration bounded by following limits,
(i). y = 0 i.e. X-axis
( ) ( )2 22 2 2
( ). 2 2 0 . . 1 0 1ii y x x x y x i e x y= − ⇒ + − = − + − =
equation of circle with centre (1, 0) and radius 1.
(iii). x = 0 i.e., Y-axis.
(iv). x = 2 i.e. straight line parallel to Y-axis.
Using polar coordinate system,
Putting x = r cos θ and y = r sinθ, So that 2 2 2
r x y= +
1
tan
y
x
−  
θ =  ÷
 
and
…. (1)
Use of Polar Coordinate in Double integralUse of Polar Coordinate in Double integral
Y
X
0x =
( )2, 0A
2x =
2 2
2 0x y x+ − =
g1 1
( )1, 0C( )0, 0O
Y
X
0x =
( )2, 0A ( )2, 0A
2x =
2 2
2 0x y x+ − =
g1 1
( )1, 0C( )0, 0O
Polar Coordinate System
Limits in polar form:
(i) Since, 2 2
2 0x y x+ − =
2
2 cos 0r r⇒ − θ =
( )2cos 0r r⇒ − θ =
0, 2cosr r⇒ = = θ
(ii). At y = 0, then 1 0
tan 0
x
−  
θ = = ÷
 
and at x = 0, then ( )1 1
tan tan
0 2
y− − π 
θ = = ∞ = ÷
 
Thus limits are,
0 2cos , 0
2
r and dx dy r dr d
π
≤ ≤ θ ≤ θ ≤ = θ
2
2 2 /2 2cos
2 20 0 0 0
cosx x x r
dx dy r dr d
rx y
− π θ θ 
= θ ÷
 +
∫ ∫ ∫ ∫
/2 2cos
0 0
cos r dr d
π θ 
= θ θ 
 ∫ ∫
2cos2 2/2 /2
0 0
0
4cos
cos cos 0
2 2
r
d d
θ
π π   θ
= θ θ = θ − θ   
      
∫ ∫
/2
0 3
0
0 1 3 1
2 2
2 sin cos 2
0 3 2
2
2
d
π
 + +    
Γ Γ ÷  ÷ 
    = θ θ θ =
+ +  Γ ÷   
∫
( )
1
2
1.1 42
3 15 3
2 22
 
Γ Γ ÷ π = = =
  × × πΓ ÷
 
2
2 2 /2 2cos
2 20 0 0 0
cos 4
3
x x x r
dx dy r dr d
rx y
− π θ θ
= θ =
+
∫ ∫ ∫ ∫
From equation (1), we get
CYLINDRICAL AND
SPHERICAL COORDINATES
Integration
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Recall polar representations in the plane
( ) ( ), , , ,P x y z P r zφ⇒
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
φr
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES.
φr
(r, φ, z)
CONVERTING BETWEENCONVERTING BETWEEN
RECTANGULAR ANDRECTANGULAR AND
CYLINDRICAL COORDINATESCYLINDRICAL COORDINATES
cos
sin
x r
y r
z z
φ
φ
=
=
=
φr
φr
(r, φ,z)
Rectangular to Cylindrical
2 2 2
tan( )
r x y
y
x
z h
φ
= +
=
=
Cylindrical to rectangularNo real surprises here!
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
RECTANGULARRECTANGULAR
COORDINATESCOORDINATES
We know that in a Riemann Sum approximation for a
triple integral, a summand
This computes the function value at some point in the little
“sub-cube” and multiplies it by the volume of the little
cube of length , width , and height .
* * *
( , , ) .i i i i i if x y z x y z∆ ∆ ∆
* * *
function value volume of the small
at a sampling point cube
( , , ) .i i i i i if x y z x y z∆ ∆ ∆
14243 14243
ix∆ iy∆ iz∆
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
What happens when we consider small changes
in the cylindrical coordinates r, φ, and z?
, , andr z∆ ∆φ ∆
We no longer get a
cube, and (similarly to
the 2D case with polar
coordinates) this affects
integration.
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
What happens when we consider small changes
in the cylindrical coordinates r, φ, and z?
, , andr z∆ ∆φ ∆
Start with our previous
picture of cylindrical
coordinates:
φr
φr
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
What happens when we consider small changes
in the cylindrical coordinates r, φ, and z?
, , andr z∆ ∆φ ∆
Start with our previous
picture of cylindrical
coordinates:
Expand the radius by a
small amount:
r∆
r
r+∆r
r
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
r+∆r
r
This leaves us with a thin cylindrical shell of inner radius r
and outer radius r +∆ r.
r
r+∆r
INTEGRATION ELEMENTS:
CYLINDRICAL
COORDINATES
Now we consider the angle φ.
We want to increase it by a small amount ∆φ.
φ
φ
∆φ
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
φ
This give us a “wedge.”
Combining this with the cylindrical shell created by the
change in r, we get
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
This give us a “wedge.”
Intersecting this wedge with the cylindrical shell created by
the change in r, we get
INTEGRATION ELEMENTS:INTEGRATION ELEMENTS:
CYLINDRICALCYLINDRICAL
COORDINATESCOORDINATES
Finally , we look at a small vertical change ∆ z .
INTEGRATION IN CYLINDRICALINTEGRATION IN CYLINDRICAL
COORDINATESCOORDINATES
dA r dr d≈ φ
We need to find the volume of this little solid. As in polar coordinates,
we have the area of a horizontal cross section is. .
INTEGRATION IN CYLINDRICALINTEGRATION IN CYLINDRICAL
COORDINATES.COORDINATES.
dV r dr d dz≈ φ
We need to find the volume of this little solid.
Since the volume is just the base times the height. . .
So . . .
( , , )
S
f r z r dr d dzφ φ∫∫∫
Use of Cylindrical Coordinate in Triple integralUse of Cylindrical Coordinate in Triple integral
1 2
( , , ) ( cos , sin , )
V V
f x y z dx dy dz f r r z J dr d dz= φ φ φ
∫∫∫ ∫∫∫
cos cos , sin , 0
sin sin , cos , 0
0, 0, 1
x x x
Here x r r
r z
y y y
y r r
r z
z z z
z z
r z
∂ ∂ ∂
= φ ⇒ = φ =− φ =
∂ ∂φ ∂
∂ ∂ ∂
= φ ⇒ = φ = φ =
∂ ∂φ ∂
∂ ∂ ∂
= ⇒ = = =
∂ ∂φ ∂
( )
( )
( )
cos sin 0
, ,
, , sin cos 0
, ,
0 0 1
x x x
r z
r
x y z y y y
J r z r r
r z r z
z z z
r z
∂ ∂ ∂
∂ ∂φ ∂
φ − φ
∂ ∂ ∂ ∂
φ = = = φ φ =
∂ φ ∂ ∂φ ∂
∂ ∂ ∂
∂ ∂φ ∂
and
1 2
( , , ) ( cos , sin , )
V V
f x y z dx dy dz f r r z r dr d dz∴ = φ φ φ
∫∫∫ ∫∫∫
Problem on Cylindrical Coordinate systemProblem on Cylindrical Coordinate system
Evaluate
over the region bounded by the paraboloid x2
+ y2
= 3z and the plane z = 3
( )2 2
x y dxdydz∫ ∫ ∫ +
Solution: Given ( )2 2
I x y dxdy dz∫ ∫ ∫= +
Using the cylindrical coordinate system,
x = r cos θ , y = r sin θ and z = z, where 2 2 2
, tan
y
r x y and
x
= + =θ
(i). Now, the equation of paraboloid,
2 2 2
3 3x y z r z+ = ⇒ =
(ii). Draw the elementary volume AB parallel to z-axis in the bounded region, which
starts from the paraboloid r2
= 3z and terminates on the plane z = 3
∴ Limits of z :
2
3
3
r
z to z= =
(iii). Projection of the region in rθ–plane in the curve of intersection of the paraboloid
r2
= 3z and plane z = 3, which is obtained as r2
= 9 i.e. r = 3, a circle with centre at the
origin and radius 3.
(iv). Draw the elementary radius vector OA′ in the region (circle r = 3) in XY(rθ) plane,
which starts from the origin and terminates on the circle r = 1
… (1)
Limits in Cylindrical Coordinate form are
Limits of z :
Limits of r :
Limits of θ :
2
3
3
r
z to z= =
r = 0 to r = 3
θ = 0 to θ = 2π
and dxdydz r dr d dz= θ
Z
Y
X
3z =
Cylindrical Coordinate
0r =
3r =
2 2
3x y z+ =
2 2
9x y+ =
From equation (1), we have
( ) ( )2
2 3 32 2 2
0 0
3
rr
z
x y dxdydz r r dr d dz= =
=
∫ ∫ ∫ ∫ ∫ ∫+ = π
θ θ
2
2 3 33
0 0 /31r z rr dz dr d= = =∫ ∫ ∫=   
π
θ θ
[ ] 2
2
32 3 2 33 3
0 0 0 0/3
3
3
r rr
r
r z dr d r dr d= = = =∫ ∫ ∫ ∫
 
= = − 
 
π π
θ θθ θ
[ ]
35 4 6
22 3 3
0 0 0
0
3
1 3
3 4 18
r r r
d r dr=∫ ∫
   
= − = × − ÷  
   
ππ
θ θ θ
( )
5 6
53 3 9 6
2 0 2 3
4 18 36
−   
= − × − = × ×     
π π
5 3 81
2 3
36 2
= × × =
π
π
( ) ( )2
2 3 32 2 2
0 0
3
81
2
rr
z
x y dxdydz r r dr d dz= =
=
∫ ∫ ∫ ∫ ∫ ∫+ = =π
θ
π
θ
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
Spherical Coordinates are the 3D analog of polar
representations in the plane.
We divide 3-dimensional space into
1. a set of concentric spheres centered at the origin.
2. rays emanating outward from the origin
( ) ( ), , , ,P x y z P r φ θ⇒
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
(x,y,z) We start with a point (x, y, z)
given in rectangular coordinates.
Then, measuring its distance r
from the origin, we locate it on a
sphere of radius r centered at the
origin.
Next, we have to find a way to
describe its location on the sphere.
r
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
We use a method similar to the method
used to measure latitude and longitude on
the surface of the Earth.
We find the great circle that goes through
the “north pole,” the “south pole,” and the
point.
SPHERICAL COORDINATES SYSTEMSPHERICAL COORDINATES SYSTEM
θ
We measure the latitude or polar
angle starting at the north pole in the
plane given by the great circle.
This angle is called θ. The range of
this angle is
Note:
all angles are measured in
radians, as always.
0 .≤ ≤θ π
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
We use a method similar to the
method used to measure latitude and
longitude on the surface of the Earth.
Next, we draw a horizontal circle on
the sphere that passes through the
point.
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
and “drop it down” onto the xy-plane.
REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN
SPHERICAL COORDINATESSPHERICAL COORDINATES
We measure the latitude or azimuthal
angle on the latitude circle, starting at the
positive x-axis and rotating
toward the positive y-axis.
The range of the angle is
Angle is called φ.
0 2 .≤ <φ π
Note that this is the same angle as the φ in cylindrical coordinates!
FINALLY, A POINT INFINALLY, A POINT IN
SPHERICAL COORDINATES!SPHERICAL COORDINATES!
(r ,φ ,θ)
Our designated point on the sphere is
indicated by the three spherical
coordinates (r, φ, θ ) … (radial distance,
azimuthal angle, polar angle).
Please note that this notation is not at all
standard and varies from author to author
and discipline to discipline. (In
particular, physicists often use θ to refer
to the azimuthal angle and φ refer to the
polar angle.)
r
CONVERTING BETWEENCONVERTING BETWEEN
RECTANGULAR AND SPHERICALRECTANGULAR AND SPHERICAL
COORDINATESCOORDINATES
θ
(x,y,z)
z
r
ρ
First note that if ρ is the usual cylindrical
coordinate for (x,y,z)
we have a right triangle with
•acute angle θ,
•hypotenuse r, and
•legs ρ and z.
It follows that
.
sin( ) sin
.
cos( ) cos
.
.
tan( ) tan
Per
r
Hyp r
Base z
z r
Hyp r
Per
z
Base z
ρ
θ ρ θ
θ θ
ρ
θ ρ θ
= = ⇒ =
= = ⇒ =
= = ⇒ =
What happens if
θ is not acute?
CONVERTING BETWEENCONVERTING BETWEEN
RECTANGULAR AND SPHERICALRECTANGULAR AND SPHERICAL
COORDINATESCOORDINATES
θ
(x,y,z)
z
r
ρ
Spherical to rectangular in
φ
ρ
φ
ρ
cos( )x ρ φ=
sin( )y ρ φ=
( ). cos( )i x = ρ φ
sin( )cos( )x r⇒ = θ φ
( ). sin( )ii y = ρ φ
sin( )sin( )y r⇒ = θ φ
( ) cos( )iii z r= θ
CONVERTING FROMCONVERTING FROM
SPHERICAL TO RECTANGULARSPHERICAL TO RECTANGULAR
COORDINATESCOORDINATES
θ
(x,y,z)
z
r
ρ
Rectangular to Spherical
φ
ρ
2 2 2
r x y z= + +
tan( )
y
x
=φ
2 2
tan( )
x y
z z
+
= =
ρ
θ
2 2
x y= +ρ
LIMITS OF SPHERICAL COORDINATELIMITS OF SPHERICAL COORDINATE
SYSTEMSYSTEM
If the region of integration is a sphere x2
+ y2
+z2
= a2
with centre at (0, 0, 0) and
radius a, then limits of r, φ, θ are
1. Positive octant of a sphere
: 0
: 0 / 2
: 0 / 2
r r to r a
to
to
= =
θ θ= θ=π
φ φ= φ=π
2. Hemisphere (Above XY-plane, i.e. z > 0)
: 0
: 0 / 2
: 0 2
r r to r a
to
to
= =
θ θ= θ=π
φ φ= φ= π
Use of Spherical coordinate in Triple integralUse of Spherical coordinate in Triple integral
1 2
( , , ) ( sin cos , sin sin , cos )
V V
f x y z dxdy dz f r r r J dr d d= θ φ θ φ θ φ θ
∫∫∫ ∫∫∫
sin cos sin cos , sin sin , cos cos
x x x
x r r r
r
∂ ∂ ∂
= θ φ ⇒ = θ φ = − θ φ = θ φ
∂ ∂φ ∂θ
sin sin sin sin , sin cos , cos sin
y y y
y r r r
r
∂ ∂ ∂
= θ φ ⇒ = θ φ = θ φ = θ
∂ ∂φ ∂θ
cos cos , 0, sin
z z z
z r r
r
∂ ∂ ∂
= θ ⇒ = θ = = − θ
∂ ∂φ ∂θ
∴
and
( )
( )
( )
2
sin cos sin sin cos cos
, ,
, , sin sin sin cos cos sin sin
, ,
cos 0 sin
x x x
r
r r
x y z y y y
J x y z r r r
r r
r
z z z
r
∂ ∂ ∂
∂ ∂φ ∂θ
θ φ − θ φ θ φ
∂ ∂ ∂ ∂
= = = θ φ θ φ θ φ = θ
∂ φ θ ∂ ∂φ ∂θ
θ − θ
∂ ∂ ∂
∂ ∂φ ∂θ
1 2
2
( , , ) ( sin cos , sin sin , cos ) sin
V V
f x y z dxdy dz f r r r r dr d d∴ = θ φ θ φ θ θ φ θ
∫∫∫ ∫∫∫
Problem on Spherical Coordinate systemProblem on Spherical Coordinate system
Evaluate
2
2 2
1 1 1
0 0 2 2 2
x
x y
dxdydz
x y z
−
+∫ ∫ ∫
+ +
Solution:
2
2 2
1 1 1
0 0 2 2 2
x
x y
dxdydz
I
x y z
−
+∫ ∫ ∫=
+ +
It is difficult to integrate in Cartesian form, so we can solve by spherical coordinate
system and using the following steps.
Given the limits of integration is
Limits of x : 0 1x to x= =
Limits of y : 2 2 2
0 1 1y to y x x y= = − ⇒ + =
Limits of z : 2 2
1z x y to z= + = i.e., equation of cone 2 2 2
,z x y= + 1z =
Clearly the region of integration is bounded by the cone 2 2 2
,z x y= +
and the cylinder x2
+ y2
= 1, plane z = 1, in the positive octant of the plane as shown in
figure.
Now, using spherical coordinate system
x = r sinθ cosφ, y = r sin θ sinφ, z = r cos θ and r2
= x2
+ y2
+ z2
… (1)
2 2
2
tan , tan , sin
x yy
and dxdydz r dr d d
x z
+
= = =φ θ θ θ φ
(i). z = r cosθ
1 = r cosθ i.e., r = secθ
∴ 0 ≤ r ≤ secθ
Limits in Spherical Coordinate form
2 2 2
tan 1
4
x y z
z z
+
= = = ⇒ =
π
θ θ(ii).
at y = 0 ⇒
1 0
tan 0
x
−  
= = ÷
 
φ
and at x = 0 ⇒
1
tan
0 2
y−  
= = ÷
 
π
φ
(iii).
∴ Limits in spherical coordinate system are
Limits of r : r = 0 to r = secθ
Limits of θ : θ = 0 to θ = π/4
Limits of φ : φ = 0 to φ = π/2
From equation (1), we have
z
X
Y
φ
θ r
2 2
1x y+ =
2 2 2
z x y= +
O
2
2 2
1 1 1 / 2 / 4 sec 2
0 0 0 0 02 2 2 2
1
sinx
x y r
dxdydz
r dr d d
x y z r
−
+ = = =∫ ∫ ∫ ∫ ∫ ∫=
+ +
π π θ
φ θ θ θ φ
/ 2 / 4 sec
0 0 0 sinr r dr d d= = =∫ ∫ ∫= π π θ
φ θ θ θ φ
/ 2 / 4 sec
0 0 0sin r r dr d d= = =∫ ∫ ∫=   
π π θ
φ θ θ θ φ
sec2
/ 2 / 4
0 0
0
sin
2
r
d d= =∫ ∫
 
=  
 
θ
π π
φ θ θ θ φ
/ 2 / 4 2
0 0
1
sin sec
2
d d= =∫ ∫= π π
φ θ θ θ θ φ
/ 2 / 4
0 0
1
sec tan
2
d d= =∫ ∫=   
π π
φ θ θ θ θ φ
[ ]
/ 4/ 2 / 2
0 00
1 1
sec sec 1
2 2 4
d d= =∫ ∫
 
= = −  
ππ π
φ φ
π
θ φ φ
[ ] ( )/ 2
0
1
2 1 2 1
2 4
 = × − = − 
π π
φ
( )
2
2 2
1 1 1 / 2 / 4 sec 2
0 0 0 0 02 2 2 2
1
sin 2 1
4
x
x y r
dxdydz
r dr d d
x y z r
−
+ = = =∫ ∫ ∫ ∫ ∫ ∫= = −
+ +
π π θ
φ θ
π
θ θ φ
THANKS

More Related Content

What's hot

Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesMatthew Leingang
 
spherical coordinates system
spherical coordinates systemspherical coordinates system
spherical coordinates systemPankaj Nakum
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinatesEmiey Shaari
 
General Quadrature Equation
General Quadrature EquationGeneral Quadrature Equation
General Quadrature EquationMrinalDev1
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Fazeel Sajid
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vectorJobins George
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)Kumar
 
IIR filter design, Digital signal processing
IIR filter design, Digital signal processingIIR filter design, Digital signal processing
IIR filter design, Digital signal processingAbhishek Thakkar
 
Cyclic group- group theory
Cyclic group- group theoryCyclic group- group theory
Cyclic group- group theoryAyush Agrawal
 

What's hot (20)

Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
 
spherical coordinates system
spherical coordinates systemspherical coordinates system
spherical coordinates system
 
Power series
Power series Power series
Power series
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Engineering Mathematics & Probability Distributions
Engineering Mathematics & Probability DistributionsEngineering Mathematics & Probability Distributions
Engineering Mathematics & Probability Distributions
 
Properties of laplace transform
Properties of laplace transformProperties of laplace transform
Properties of laplace transform
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Green Theorem
Green TheoremGreen Theorem
Green Theorem
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
General Quadrature Equation
General Quadrature EquationGeneral Quadrature Equation
General Quadrature Equation
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
IIR filter design, Digital signal processing
IIR filter design, Digital signal processingIIR filter design, Digital signal processing
IIR filter design, Digital signal processing
 
Cyclic group- group theory
Cyclic group- group theoryCyclic group- group theory
Cyclic group- group theory
 

Similar to Application of Cylindrical and Spherical coordinate system in double-triple integration

Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motionJa-Keoung Koo
 
3D Coordinate Geometry
3D Coordinate Geometry 3D Coordinate Geometry
3D Coordinate Geometry ParasKulhari
 
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalitiesRyotaroTsukada
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfThapeloTsepo1
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalinishalini singh
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Ali Farooq
 
Calculus multiple integral
Calculus multiple integralCalculus multiple integral
Calculus multiple integralprashant chelani
 
EMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx5610UmarIqbal
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsijtsrd
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptxmath267
 
MTH_301_Lecture_12b_2022_.pdf
MTH_301_Lecture_12b_2022_.pdfMTH_301_Lecture_12b_2022_.pdf
MTH_301_Lecture_12b_2022_.pdfGlory676438
 
Another possibility
Another possibilityAnother possibility
Another possibilityCss Founder
 
3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics FundamentalsMuhammed Afsal Villan
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 

Similar to Application of Cylindrical and Spherical coordinate system in double-triple integration (20)

Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
3D Coordinate Geometry
3D Coordinate Geometry 3D Coordinate Geometry
3D Coordinate Geometry
 
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Calculus multiple integral
Calculus multiple integralCalculus multiple integral
Calculus multiple integral
 
EMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx
 
Differential Calculus
Differential CalculusDifferential Calculus
Differential Calculus
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 
MTH_301_Lecture_12b_2022_.pdf
MTH_301_Lecture_12b_2022_.pdfMTH_301_Lecture_12b_2022_.pdf
MTH_301_Lecture_12b_2022_.pdf
 
presentation
presentationpresentation
presentation
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 

Application of Cylindrical and Spherical coordinate system in double-triple integration

  • 1. APPLICATION OF CYLINDRICAL ANDAPPLICATION OF CYLINDRICAL AND SPHERICAL COORDINATE SYSTEM INSPHERICAL COORDINATE SYSTEM IN DOUBLE-TRIPLE INTEGRATIONDOUBLE-TRIPLE INTEGRATION DR. Sonendra Kumar Gupta (Associate Professor) Department of Basic Science (Engineering Mathematics)
  • 2. CONTENTSCONTENTS ►Jacobian Transformation function ►Use in Double integration. ►Use in Triple integration. ►Polar Coordinate system ►Use of polar coordinate in Double integral ►Solved example in polar coordinate ►Cylindrical Coordinate system ►Use of Cylindrical Coordinate in Triple Coordinate ►Spherical Coordinate System ►Limits of Spherical Coordinate System ►Problem on Spherical Coordinate System ►Problem on Cylindrical Coordinate System
  • 3. JACOBIAN FUNCTIONJACOBIAN FUNCTION Jacobian function is a transformation function , which convert a function into one plane to another plane. Y X v u P(x, y) P(u, v) ( ) ( ), ,P x y P u v⇒ It is denoted by J(u, v) and defined as ( ) ( ) ( ) , , , x x x y u v J u v y yu v u v ∂ ∂ ∂ ∂ ∂ = = ∂ ∂∂ ∂ ∂ Carl Gustav Jacob 10 December 1804 – 18 February 1851 German mathematician
  • 4. USE IN DOUBLE INTEGRATIONUSE IN DOUBLE INTEGRATION Double integral 1 2 ( , ) ( , ) R R f x y dx dy f u v J du dv= ∫∫ ∫∫ Where ( ) ( ) ( ) , , , x x x y u v J u v y yu v u v ∂ ∂ ∂ ∂ ∂ = = ∂ ∂∂ ∂ ∂
  • 5. USE IN TRIPLE INTEGRATIONUSE IN TRIPLE INTEGRATION Triple integral 1 2 ( , , ) ( , , ) V V f x y z dx dy dz f u v w J du dv dw= ∫∫∫ ∫∫∫ Where ( ) ( ) ( ) , , , , , , x x x u v w x y z y y y J u v w u v w u v w z z z u v w ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
  • 6. POLAR COORDINATE SYSTEMPOLAR COORDINATE SYSTEM ( ) ( ), ,P x y P r θ⇒ x y 2 2 r x y= + X Y cosx r= θ θ siny r= θ ( ) ( ), ,P x y P r= θ Cartesian to Polar Coordinate cos , sinx r y r= θ = θ Therefore, we have 2 2 tan y r x y and x = + θ = Y X θ r P(x, y) P(r, θ)
  • 7. Use of polar coordinate in Double integralUse of polar coordinate in Double integral 1 2 ( , ) ( cos , sin ) R R f x y dx dy f r r J dr d= θ θ θ ∫∫ ∫∫ ( ) ( ) ( ) ( )2 2 cos sin, , sin cos, cos sin x x rx y r and J r y y rr r r r ∂ ∂ θ − θ∂ ∂ ∂θ θ = = = ∂ ∂ θ θ∂ θ ∂ ∂θ = θ+ θ = cos cos , sin sin sin , cos x x Here x r r r y y y r r r ∂ ∂ = θ ⇒ = θ = − θ ∂ ∂θ ∂ ∂ = θ ⇒ = θ = θ ∂ ∂θ 1 2 ( , ) ( cos , sin ) R R f x y dx dy f r r r dr d= θ θ θ ∫∫ ∫∫∴
  • 8. Solve the integral 2 2 2 2 20 0 x x x dx dy x y − + ∫ ∫ by changing to polar coordinate system. Solution: Given 2 2 2 2 20 0 x x x I dx dy x y − = + ∫ ∫ The region of integration bounded by following limits, (i). y = 0 i.e. X-axis ( ) ( )2 22 2 2 ( ). 2 2 0 . . 1 0 1ii y x x x y x i e x y= − ⇒ + − = − + − = equation of circle with centre (1, 0) and radius 1. (iii). x = 0 i.e., Y-axis. (iv). x = 2 i.e. straight line parallel to Y-axis. Using polar coordinate system, Putting x = r cos θ and y = r sinθ, So that 2 2 2 r x y= + 1 tan y x −   θ =  ÷   and …. (1) Use of Polar Coordinate in Double integralUse of Polar Coordinate in Double integral Y X 0x = ( )2, 0A 2x = 2 2 2 0x y x+ − = g1 1 ( )1, 0C( )0, 0O
  • 9. Y X 0x = ( )2, 0A ( )2, 0A 2x = 2 2 2 0x y x+ − = g1 1 ( )1, 0C( )0, 0O Polar Coordinate System Limits in polar form: (i) Since, 2 2 2 0x y x+ − = 2 2 cos 0r r⇒ − θ = ( )2cos 0r r⇒ − θ = 0, 2cosr r⇒ = = θ (ii). At y = 0, then 1 0 tan 0 x −   θ = = ÷   and at x = 0, then ( )1 1 tan tan 0 2 y− − π  θ = = ∞ = ÷   Thus limits are, 0 2cos , 0 2 r and dx dy r dr d π ≤ ≤ θ ≤ θ ≤ = θ
  • 10. 2 2 2 /2 2cos 2 20 0 0 0 cosx x x r dx dy r dr d rx y − π θ θ  = θ ÷  + ∫ ∫ ∫ ∫ /2 2cos 0 0 cos r dr d π θ  = θ θ   ∫ ∫ 2cos2 2/2 /2 0 0 0 4cos cos cos 0 2 2 r d d θ π π   θ = θ θ = θ − θ           ∫ ∫ /2 0 3 0 0 1 3 1 2 2 2 sin cos 2 0 3 2 2 2 d π  + +     Γ Γ ÷  ÷      = θ θ θ = + +  Γ ÷    ∫ ( ) 1 2 1.1 42 3 15 3 2 22   Γ Γ ÷ π = = =   × × πΓ ÷   2 2 2 /2 2cos 2 20 0 0 0 cos 4 3 x x x r dx dy r dr d rx y − π θ θ = θ = + ∫ ∫ ∫ ∫ From equation (1), we get
  • 12. CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Recall polar representations in the plane ( ) ( ), , , ,P x y z P r zφ⇒
  • 13. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 14. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 15. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 16. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 17. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 18. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr Cylindrical coordinates just adds a z-coordinate to the polar coordinates (r, φ).
  • 19. φr REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN CYLINDRICAL COORDINATES.CYLINDRICAL COORDINATES. φr (r, φ, z)
  • 20. CONVERTING BETWEENCONVERTING BETWEEN RECTANGULAR ANDRECTANGULAR AND CYLINDRICAL COORDINATESCYLINDRICAL COORDINATES cos sin x r y r z z φ φ = = = φr φr (r, φ,z) Rectangular to Cylindrical 2 2 2 tan( ) r x y y x z h φ = + = = Cylindrical to rectangularNo real surprises here!
  • 21. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: RECTANGULARRECTANGULAR COORDINATESCOORDINATES We know that in a Riemann Sum approximation for a triple integral, a summand This computes the function value at some point in the little “sub-cube” and multiplies it by the volume of the little cube of length , width , and height . * * * ( , , ) .i i i i i if x y z x y z∆ ∆ ∆ * * * function value volume of the small at a sampling point cube ( , , ) .i i i i i if x y z x y z∆ ∆ ∆ 14243 14243 ix∆ iy∆ iz∆
  • 22. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES What happens when we consider small changes in the cylindrical coordinates r, φ, and z? , , andr z∆ ∆φ ∆ We no longer get a cube, and (similarly to the 2D case with polar coordinates) this affects integration.
  • 23. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES What happens when we consider small changes in the cylindrical coordinates r, φ, and z? , , andr z∆ ∆φ ∆ Start with our previous picture of cylindrical coordinates: φr φr
  • 24. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES What happens when we consider small changes in the cylindrical coordinates r, φ, and z? , , andr z∆ ∆φ ∆ Start with our previous picture of cylindrical coordinates: Expand the radius by a small amount: r∆ r r+∆r r
  • 25. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES r+∆r r This leaves us with a thin cylindrical shell of inner radius r and outer radius r +∆ r. r r+∆r
  • 26. INTEGRATION ELEMENTS: CYLINDRICAL COORDINATES Now we consider the angle φ. We want to increase it by a small amount ∆φ. φ φ ∆φ
  • 27. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES φ This give us a “wedge.” Combining this with the cylindrical shell created by the change in r, we get
  • 28. INTEGRATION ELEMENTS:INTEGRATION ELEMENTS: CYLINDRICALCYLINDRICAL COORDINATESCOORDINATES This give us a “wedge.” Intersecting this wedge with the cylindrical shell created by the change in r, we get
  • 30. INTEGRATION IN CYLINDRICALINTEGRATION IN CYLINDRICAL COORDINATESCOORDINATES dA r dr d≈ φ We need to find the volume of this little solid. As in polar coordinates, we have the area of a horizontal cross section is. .
  • 31. INTEGRATION IN CYLINDRICALINTEGRATION IN CYLINDRICAL COORDINATES.COORDINATES. dV r dr d dz≈ φ We need to find the volume of this little solid. Since the volume is just the base times the height. . . So . . . ( , , ) S f r z r dr d dzφ φ∫∫∫
  • 32. Use of Cylindrical Coordinate in Triple integralUse of Cylindrical Coordinate in Triple integral 1 2 ( , , ) ( cos , sin , ) V V f x y z dx dy dz f r r z J dr d dz= φ φ φ ∫∫∫ ∫∫∫ cos cos , sin , 0 sin sin , cos , 0 0, 0, 1 x x x Here x r r r z y y y y r r r z z z z z z r z ∂ ∂ ∂ = φ ⇒ = φ =− φ = ∂ ∂φ ∂ ∂ ∂ ∂ = φ ⇒ = φ = φ = ∂ ∂φ ∂ ∂ ∂ ∂ = ⇒ = = = ∂ ∂φ ∂ ( ) ( ) ( ) cos sin 0 , , , , sin cos 0 , , 0 0 1 x x x r z r x y z y y y J r z r r r z r z z z z r z ∂ ∂ ∂ ∂ ∂φ ∂ φ − φ ∂ ∂ ∂ ∂ φ = = = φ φ = ∂ φ ∂ ∂φ ∂ ∂ ∂ ∂ ∂ ∂φ ∂ and 1 2 ( , , ) ( cos , sin , ) V V f x y z dx dy dz f r r z r dr d dz∴ = φ φ φ ∫∫∫ ∫∫∫
  • 33. Problem on Cylindrical Coordinate systemProblem on Cylindrical Coordinate system Evaluate over the region bounded by the paraboloid x2 + y2 = 3z and the plane z = 3 ( )2 2 x y dxdydz∫ ∫ ∫ + Solution: Given ( )2 2 I x y dxdy dz∫ ∫ ∫= + Using the cylindrical coordinate system, x = r cos θ , y = r sin θ and z = z, where 2 2 2 , tan y r x y and x = + =θ (i). Now, the equation of paraboloid, 2 2 2 3 3x y z r z+ = ⇒ = (ii). Draw the elementary volume AB parallel to z-axis in the bounded region, which starts from the paraboloid r2 = 3z and terminates on the plane z = 3 ∴ Limits of z : 2 3 3 r z to z= = (iii). Projection of the region in rθ–plane in the curve of intersection of the paraboloid r2 = 3z and plane z = 3, which is obtained as r2 = 9 i.e. r = 3, a circle with centre at the origin and radius 3. (iv). Draw the elementary radius vector OA′ in the region (circle r = 3) in XY(rθ) plane, which starts from the origin and terminates on the circle r = 1 … (1)
  • 34. Limits in Cylindrical Coordinate form are Limits of z : Limits of r : Limits of θ : 2 3 3 r z to z= = r = 0 to r = 3 θ = 0 to θ = 2π and dxdydz r dr d dz= θ Z Y X 3z = Cylindrical Coordinate 0r = 3r = 2 2 3x y z+ = 2 2 9x y+ = From equation (1), we have ( ) ( )2 2 3 32 2 2 0 0 3 rr z x y dxdydz r r dr d dz= = = ∫ ∫ ∫ ∫ ∫ ∫+ = π θ θ 2 2 3 33 0 0 /31r z rr dz dr d= = =∫ ∫ ∫=    π θ θ
  • 35. [ ] 2 2 32 3 2 33 3 0 0 0 0/3 3 3 r rr r r z dr d r dr d= = = =∫ ∫ ∫ ∫   = = −    π π θ θθ θ [ ] 35 4 6 22 3 3 0 0 0 0 3 1 3 3 4 18 r r r d r dr=∫ ∫     = − = × − ÷       ππ θ θ θ ( ) 5 6 53 3 9 6 2 0 2 3 4 18 36 −    = − × − = × ×      π π 5 3 81 2 3 36 2 = × × = π π ( ) ( )2 2 3 32 2 2 0 0 3 81 2 rr z x y dxdydz r r dr d dz= = = ∫ ∫ ∫ ∫ ∫ ∫+ = =π θ π θ
  • 36. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES Spherical Coordinates are the 3D analog of polar representations in the plane. We divide 3-dimensional space into 1. a set of concentric spheres centered at the origin. 2. rays emanating outward from the origin ( ) ( ), , , ,P x y z P r φ θ⇒
  • 37. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES (x,y,z) We start with a point (x, y, z) given in rectangular coordinates. Then, measuring its distance r from the origin, we locate it on a sphere of radius r centered at the origin. Next, we have to find a way to describe its location on the sphere. r
  • 38. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES We use a method similar to the method used to measure latitude and longitude on the surface of the Earth. We find the great circle that goes through the “north pole,” the “south pole,” and the point.
  • 39. SPHERICAL COORDINATES SYSTEMSPHERICAL COORDINATES SYSTEM θ We measure the latitude or polar angle starting at the north pole in the plane given by the great circle. This angle is called θ. The range of this angle is Note: all angles are measured in radians, as always. 0 .≤ ≤θ π
  • 40. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES We use a method similar to the method used to measure latitude and longitude on the surface of the Earth. Next, we draw a horizontal circle on the sphere that passes through the point.
  • 41. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES and “drop it down” onto the xy-plane.
  • 42. REPRESENTING 3D POINTS INREPRESENTING 3D POINTS IN SPHERICAL COORDINATESSPHERICAL COORDINATES We measure the latitude or azimuthal angle on the latitude circle, starting at the positive x-axis and rotating toward the positive y-axis. The range of the angle is Angle is called φ. 0 2 .≤ <φ π Note that this is the same angle as the φ in cylindrical coordinates!
  • 43. FINALLY, A POINT INFINALLY, A POINT IN SPHERICAL COORDINATES!SPHERICAL COORDINATES! (r ,φ ,θ) Our designated point on the sphere is indicated by the three spherical coordinates (r, φ, θ ) … (radial distance, azimuthal angle, polar angle). Please note that this notation is not at all standard and varies from author to author and discipline to discipline. (In particular, physicists often use θ to refer to the azimuthal angle and φ refer to the polar angle.) r
  • 44. CONVERTING BETWEENCONVERTING BETWEEN RECTANGULAR AND SPHERICALRECTANGULAR AND SPHERICAL COORDINATESCOORDINATES θ (x,y,z) z r ρ First note that if ρ is the usual cylindrical coordinate for (x,y,z) we have a right triangle with •acute angle θ, •hypotenuse r, and •legs ρ and z. It follows that . sin( ) sin . cos( ) cos . . tan( ) tan Per r Hyp r Base z z r Hyp r Per z Base z ρ θ ρ θ θ θ ρ θ ρ θ = = ⇒ = = = ⇒ = = = ⇒ = What happens if θ is not acute?
  • 45. CONVERTING BETWEENCONVERTING BETWEEN RECTANGULAR AND SPHERICALRECTANGULAR AND SPHERICAL COORDINATESCOORDINATES θ (x,y,z) z r ρ Spherical to rectangular in φ ρ φ ρ cos( )x ρ φ= sin( )y ρ φ= ( ). cos( )i x = ρ φ sin( )cos( )x r⇒ = θ φ ( ). sin( )ii y = ρ φ sin( )sin( )y r⇒ = θ φ ( ) cos( )iii z r= θ
  • 46. CONVERTING FROMCONVERTING FROM SPHERICAL TO RECTANGULARSPHERICAL TO RECTANGULAR COORDINATESCOORDINATES θ (x,y,z) z r ρ Rectangular to Spherical φ ρ 2 2 2 r x y z= + + tan( ) y x =φ 2 2 tan( ) x y z z + = = ρ θ 2 2 x y= +ρ
  • 47. LIMITS OF SPHERICAL COORDINATELIMITS OF SPHERICAL COORDINATE SYSTEMSYSTEM If the region of integration is a sphere x2 + y2 +z2 = a2 with centre at (0, 0, 0) and radius a, then limits of r, φ, θ are 1. Positive octant of a sphere : 0 : 0 / 2 : 0 / 2 r r to r a to to = = θ θ= θ=π φ φ= φ=π 2. Hemisphere (Above XY-plane, i.e. z > 0) : 0 : 0 / 2 : 0 2 r r to r a to to = = θ θ= θ=π φ φ= φ= π
  • 48. Use of Spherical coordinate in Triple integralUse of Spherical coordinate in Triple integral 1 2 ( , , ) ( sin cos , sin sin , cos ) V V f x y z dxdy dz f r r r J dr d d= θ φ θ φ θ φ θ ∫∫∫ ∫∫∫ sin cos sin cos , sin sin , cos cos x x x x r r r r ∂ ∂ ∂ = θ φ ⇒ = θ φ = − θ φ = θ φ ∂ ∂φ ∂θ sin sin sin sin , sin cos , cos sin y y y y r r r r ∂ ∂ ∂ = θ φ ⇒ = θ φ = θ φ = θ ∂ ∂φ ∂θ cos cos , 0, sin z z z z r r r ∂ ∂ ∂ = θ ⇒ = θ = = − θ ∂ ∂φ ∂θ ∴ and ( ) ( ) ( ) 2 sin cos sin sin cos cos , , , , sin sin sin cos cos sin sin , , cos 0 sin x x x r r r x y z y y y J x y z r r r r r r z z z r ∂ ∂ ∂ ∂ ∂φ ∂θ θ φ − θ φ θ φ ∂ ∂ ∂ ∂ = = = θ φ θ φ θ φ = θ ∂ φ θ ∂ ∂φ ∂θ θ − θ ∂ ∂ ∂ ∂ ∂φ ∂θ 1 2 2 ( , , ) ( sin cos , sin sin , cos ) sin V V f x y z dxdy dz f r r r r dr d d∴ = θ φ θ φ θ θ φ θ ∫∫∫ ∫∫∫
  • 49. Problem on Spherical Coordinate systemProblem on Spherical Coordinate system Evaluate 2 2 2 1 1 1 0 0 2 2 2 x x y dxdydz x y z − +∫ ∫ ∫ + + Solution: 2 2 2 1 1 1 0 0 2 2 2 x x y dxdydz I x y z − +∫ ∫ ∫= + + It is difficult to integrate in Cartesian form, so we can solve by spherical coordinate system and using the following steps. Given the limits of integration is Limits of x : 0 1x to x= = Limits of y : 2 2 2 0 1 1y to y x x y= = − ⇒ + = Limits of z : 2 2 1z x y to z= + = i.e., equation of cone 2 2 2 ,z x y= + 1z = Clearly the region of integration is bounded by the cone 2 2 2 ,z x y= + and the cylinder x2 + y2 = 1, plane z = 1, in the positive octant of the plane as shown in figure. Now, using spherical coordinate system x = r sinθ cosφ, y = r sin θ sinφ, z = r cos θ and r2 = x2 + y2 + z2 … (1)
  • 50. 2 2 2 tan , tan , sin x yy and dxdydz r dr d d x z + = = =φ θ θ θ φ (i). z = r cosθ 1 = r cosθ i.e., r = secθ ∴ 0 ≤ r ≤ secθ Limits in Spherical Coordinate form 2 2 2 tan 1 4 x y z z z + = = = ⇒ = π θ θ(ii). at y = 0 ⇒ 1 0 tan 0 x −   = = ÷   φ and at x = 0 ⇒ 1 tan 0 2 y−   = = ÷   π φ (iii). ∴ Limits in spherical coordinate system are Limits of r : r = 0 to r = secθ Limits of θ : θ = 0 to θ = π/4 Limits of φ : φ = 0 to φ = π/2 From equation (1), we have z X Y φ θ r 2 2 1x y+ = 2 2 2 z x y= + O
  • 51. 2 2 2 1 1 1 / 2 / 4 sec 2 0 0 0 0 02 2 2 2 1 sinx x y r dxdydz r dr d d x y z r − + = = =∫ ∫ ∫ ∫ ∫ ∫= + + π π θ φ θ θ θ φ / 2 / 4 sec 0 0 0 sinr r dr d d= = =∫ ∫ ∫= π π θ φ θ θ θ φ / 2 / 4 sec 0 0 0sin r r dr d d= = =∫ ∫ ∫=    π π θ φ θ θ θ φ sec2 / 2 / 4 0 0 0 sin 2 r d d= =∫ ∫   =     θ π π φ θ θ θ φ / 2 / 4 2 0 0 1 sin sec 2 d d= =∫ ∫= π π φ θ θ θ θ φ / 2 / 4 0 0 1 sec tan 2 d d= =∫ ∫=    π π φ θ θ θ θ φ [ ] / 4/ 2 / 2 0 00 1 1 sec sec 1 2 2 4 d d= =∫ ∫   = = −   ππ π φ φ π θ φ φ [ ] ( )/ 2 0 1 2 1 2 1 2 4  = × − = −  π π φ ( ) 2 2 2 1 1 1 / 2 / 4 sec 2 0 0 0 0 02 2 2 2 1 sin 2 1 4 x x y r dxdydz r dr d d x y z r − + = = =∫ ∫ ∫ ∫ ∫ ∫= = − + + π π θ φ θ π θ θ φ