Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

of

Gradient , Directional Derivative , Divergence , Curl  Slide 1 Gradient , Directional Derivative , Divergence , Curl  Slide 2 Gradient , Directional Derivative , Divergence , Curl  Slide 3 Gradient , Directional Derivative , Divergence , Curl  Slide 4 Gradient , Directional Derivative , Divergence , Curl  Slide 5 Gradient , Directional Derivative , Divergence , Curl  Slide 6 Gradient , Directional Derivative , Divergence , Curl  Slide 7 Gradient , Directional Derivative , Divergence , Curl  Slide 8 Gradient , Directional Derivative , Divergence , Curl  Slide 9 Gradient , Directional Derivative , Divergence , Curl  Slide 10 Gradient , Directional Derivative , Divergence , Curl  Slide 11 Gradient , Directional Derivative , Divergence , Curl  Slide 12
Upcoming SlideShare
What to Upload to SlideShare
Next
Download to read offline and view in fullscreen.

15 Likes

Share

Download to read offline

Gradient , Directional Derivative , Divergence , Curl

Download to read offline

In this presentation we will learn Del operator, Gradient of scalar function , Directional Derivative, Divergence of vector function, Curl of a vector function and after that solved some example related to above.

Gradient in math
Directional derivative in math
Divergence in math
Curl in math
Gradient , Directional Derivative , Divergence , Curl in mathematics
Gradient , Directional Derivative , Divergence , Curl in math
Gradient , Directional Derivative , Divergence , Curl

Related Books

Free with a 30 day trial from Scribd

See all

Gradient , Directional Derivative , Divergence , Curl

  1. 1. • Operator is called vector differential operator defined as  ˆˆ ˆi j k x y z             
  2. 2.  ( , , )x y z• If is a scalar function of three variables and is differentiable, the gradient of is defined as Where , is a scalar function is a vector function ˆˆ ˆgrad i j k x y z                  
  3. 3. If ,determine at point P=(1,3,2). solution 2 3 2 2 x yz xy z   grad       2 3 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 2 , 2 , 3 2 , ˆˆ ˆ ˆˆ ˆ2 2 3 2 (1,3,2) ˆˆ ˆ84 32 72 x yz xy z xyz y z x z xyz x yz xy z x y z Therefore i j k x y z xyz y z i x z xyz j x yz xy z k at P i j k                                            
  4. 4. If A and B are two scalars ,then 1) 2) ( )A B A B      ( ) ( ) ( )AB A B B A    
  5. 5. Directional derivative of in the direction of a is ˆ. d a grad ds   where, Which is a unit vector in the direction of .dr ˆ dr a dr 
  6. 6. Compute the directional derivative of at the point (1,2,-1) in the direction of the vector A=2i+3j-4k. Solution 2 2 2 2x z xy yz    Directional derivative of in the direction of a Where, And ,  ˆ. d a grad ds   ˆˆ ˆgrad i j k x y z                 ˆ A a A  2 2 2 2x z xy yz    Hence ,      2 2 2 ˆˆ ˆ2 2 4 2 (1,2, 1), ˆˆ ˆ6 9 3 xz y i xy z j x yz k At i j k              
  7. 7. Also given ,thenˆˆ ˆ2 3 4A i j k       22 2 2 3 4 29 , 1 ˆˆ ˆˆ 2 3 4 29 , ˆ. 51 29 A Therefore A a i j k A then d a grad ds             
  8. 8. If ,the divergence of A is defined as ˆˆ ˆ x y z A i j ka a a     . ˆ ˆˆ ˆ ˆ ˆ. . x y z yx z divA A i j k i j k x y z x y z a a a aa a                        
  9. 9. If , determine at point (1,2,3) . solution 2 2 ˆˆ ˆA x yi xyzj yz k   divA   . ˆ ˆˆ ˆ ˆ ˆ. . x y z yx z divA A i j k i j k x y z x y z a a a aa a                         2 2divA xy xz yz   (1, 2,3) 2(1)(2) (1)(3) 2(2)(3) 13 at divA divA    
  10. 10. If ,the curl of A is defined byˆˆ ˆ x y z A i j ka a a    ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ x y z x y z curlA A i j k i j k x y z i j k curlA x y z a a a a a a                         
  11. 11. If ,determine curl A at (1,3,-2). solution 4 2 2 2 2 2 ˆˆ ˆ( ) ( )A y x z i x y j x yzk     4 2 2 2 2 2 2 2 3 ˆˆ ˆ ˆˆ( 2 2 ) (2 4 ) (1,3, 2), ˆˆ ˆ2 8 106 i j k curlA A x y z y x z x y x yz x zi xyz x z j x y k At curlA i j k                       
  • TejasviN2

    Jul. 18, 2021
  • ssaridha

    May. 17, 2021
  • AmoghDeshpande9

    Mar. 18, 2021
  • talhaqureshi32

    Jan. 22, 2021
  • ImrulKayes68

    Jan. 18, 2021
  • irfanahmed108

    Dec. 27, 2020
  • ArchanaAwasthi2

    Nov. 17, 2020
  • AhmedIhssan

    Sep. 8, 2020
  • FouadHasan2

    Jul. 29, 2020
  • SarahAli189

    Jul. 6, 2020
  • BharathiBinu

    Jun. 19, 2020
  • BilalyEsir1

    Feb. 18, 2020
  • Nishant0452

    Sep. 16, 2019
  • Muneeb07

    May. 15, 2019
  • AlphaHale98

    Oct. 25, 2018

In this presentation we will learn Del operator, Gradient of scalar function , Directional Derivative, Divergence of vector function, Curl of a vector function and after that solved some example related to above. Gradient in math Directional derivative in math Divergence in math Curl in math Gradient , Directional Derivative , Divergence , Curl in mathematics Gradient , Directional Derivative , Divergence , Curl in math Gradient , Directional Derivative , Divergence , Curl

Views

Total views

5,161

On Slideshare

0

From embeds

0

Number of embeds

27

Actions

Downloads

262

Shares

0

Comments

0

Likes

15

×