Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
Loading in …5
×

of

Upcoming SlideShare
What to Upload to SlideShare
Next
Download to read offline and view in fullscreen.

15 Likes

Share

# Gradient , Directional Derivative , Divergence , Curl

In this presentation we will learn Del operator, Gradient of scalar function , Directional Derivative, Divergence of vector function, Curl of a vector function and after that solved some example related to above.

Gradient in math
Directional derivative in math
Divergence in math
Curl in math
Gradient , Directional Derivative , Divergence , Curl in mathematics
Gradient , Directional Derivative , Divergence , Curl in math
Gradient , Directional Derivative , Divergence , Curl

See all

See all

### Gradient , Directional Derivative , Divergence , Curl

1. 1. • Operator is called vector differential operator defined as  ˆˆ ˆi j k x y z             
2. 2.  ( , , )x y z• If is a scalar function of three variables and is differentiable, the gradient of is defined as Where , is a scalar function is a vector function ˆˆ ˆgrad i j k x y z                  
3. 3. If ,determine at point P=(1,3,2). solution 2 3 2 2 x yz xy z   grad       2 3 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 2 , 2 , 3 2 , ˆˆ ˆ ˆˆ ˆ2 2 3 2 (1,3,2) ˆˆ ˆ84 32 72 x yz xy z xyz y z x z xyz x yz xy z x y z Therefore i j k x y z xyz y z i x z xyz j x yz xy z k at P i j k                                            
4. 4. If A and B are two scalars ,then 1) 2) ( )A B A B      ( ) ( ) ( )AB A B B A    
5. 5. Directional derivative of in the direction of a is ˆ. d a grad ds   where, Which is a unit vector in the direction of .dr ˆ dr a dr 
6. 6. Compute the directional derivative of at the point (1,2,-1) in the direction of the vector A=2i+3j-4k. Solution 2 2 2 2x z xy yz    Directional derivative of in the direction of a Where, And ,  ˆ. d a grad ds   ˆˆ ˆgrad i j k x y z                 ˆ A a A  2 2 2 2x z xy yz    Hence ,      2 2 2 ˆˆ ˆ2 2 4 2 (1,2, 1), ˆˆ ˆ6 9 3 xz y i xy z j x yz k At i j k              
7. 7. Also given ,thenˆˆ ˆ2 3 4A i j k       22 2 2 3 4 29 , 1 ˆˆ ˆˆ 2 3 4 29 , ˆ. 51 29 A Therefore A a i j k A then d a grad ds             
8. 8. If ,the divergence of A is defined as ˆˆ ˆ x y z A i j ka a a     . ˆ ˆˆ ˆ ˆ ˆ. . x y z yx z divA A i j k i j k x y z x y z a a a aa a                        
9. 9. If , determine at point (1,2,3) . solution 2 2 ˆˆ ˆA x yi xyzj yz k   divA   . ˆ ˆˆ ˆ ˆ ˆ. . x y z yx z divA A i j k i j k x y z x y z a a a aa a                         2 2divA xy xz yz   (1, 2,3) 2(1)(2) (1)(3) 2(2)(3) 13 at divA divA    
10. 10. If ,the curl of A is defined byˆˆ ˆ x y z A i j ka a a    ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ x y z x y z curlA A i j k i j k x y z i j k curlA x y z a a a a a a                         
11. 11. If ,determine curl A at (1,3,-2). solution 4 2 2 2 2 2 ˆˆ ˆ( ) ( )A y x z i x y j x yzk     4 2 2 2 2 2 2 2 3 ˆˆ ˆ ˆˆ( 2 2 ) (2 4 ) (1,3, 2), ˆˆ ˆ2 8 106 i j k curlA A x y z y x z x y x yz x zi xyz x z j x y k At curlA i j k                       
• #### TejasviN2

Jul. 18, 2021
• #### ssaridha

May. 17, 2021
• #### AmoghDeshpande9

Mar. 18, 2021
• #### talhaqureshi32

Jan. 22, 2021
• #### ImrulKayes68

Jan. 18, 2021
• #### irfanahmed108

Dec. 27, 2020
• #### ArchanaAwasthi2

Nov. 17, 2020

Sep. 8, 2020
• #### FouadHasan2

Jul. 29, 2020

Jul. 6, 2020
• #### BharathiBinu

Jun. 19, 2020
• #### BilalyEsir1

Feb. 18, 2020
• #### Nishant0452

Sep. 16, 2019
• #### Muneeb07

May. 15, 2019
• #### AlphaHale98

Oct. 25, 2018

In this presentation we will learn Del operator, Gradient of scalar function , Directional Derivative, Divergence of vector function, Curl of a vector function and after that solved some example related to above. Gradient in math Directional derivative in math Divergence in math Curl in math Gradient , Directional Derivative , Divergence , Curl in mathematics Gradient , Directional Derivative , Divergence , Curl in math Gradient , Directional Derivative , Divergence , Curl

Total views

5,161

On Slideshare

0

From embeds

0

Number of embeds

27

Downloads

262

Shares

0

Comments

0

Likes

15