SlideShare a Scribd company logo
1 of 30
TRANSCENDENTAL
FUNCTIONS
OBJECTIVES
At the end of the lesson, the students are
expected to:
• use the Log Rule for Integration to integrate a
rational functions.
• integrate exponential functions.
• integrate trigonometric functions.
• integrate functions of the nth power of the
different trigonometric functions.
• use Walli’s Formula to shorten the solution in
finding the antiderivative of powers of sine
and cosine.
• integrate functions whose antiderivatives
involve inverse trigonometric functions.
• use the method of completing the square to
integrate a function.
• review the basic integration rules involving
elementary functions.
• integrate hyperbolic functions.
• integrate functions involving inverse
hyperbolic functions.
LOG RULE FOR INTEGRATION
Let u be a differentiable function of x.
𝑑𝑢
𝑢
= 𝑙𝑛 𝑢 + 𝐶
or the above formula can also be written as
𝑢′
𝑢
𝑑𝑥 = 𝑙𝑛 𝑢 + 𝐶
To apply this rule, look for quotients in which
the numerator is the derivative of the
denominator.
• EXAMPLE
• Find the indefinite integral.
1.
𝑥2
5−𝑥3 𝑑𝑥 5.
𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥
𝑠𝑒𝑐𝑥−1
𝑑𝑥
2.
𝑥3−6𝑥−20
𝑥+5
𝑑𝑥 6.
𝑒2𝑥
𝑒 𝑥−1
𝑑𝑥
3.
1
𝑥𝑙𝑛𝑥3 𝑑𝑥
4.
1
𝑥
2
3 1+𝑥
1
3
𝑑𝑥
INTEGRATION OF EXPONENTIAL
FUNCTIONS
Let u be a differentiable function of x.
𝒆 𝒖
𝒅𝒖 = 𝒆 𝒖
+ 𝒄
𝒂 𝒖
𝒅𝒖 =
𝒂 𝒖
𝒍𝒏𝒂
+ c
EXAMPLE
• Find the indefinite integral.
1.
𝑒
1
𝑥
𝑥2 𝑑𝑥 6. 𝑥473𝑥3
𝑑𝑥
2. 𝑒2𝑥
+ 𝑒−𝑥 2
𝑑𝑥
3. 𝑥𝑒3𝑥2+4
𝑑𝑥
4.
5𝑒 𝑙𝑛𝑥2
𝑥
𝑑𝑥
5. 10 𝑥3
𝑥2
𝑑𝑥
BASIC TRIGONOMETRIC FUNCTIONS
INTEGRATION FORMULAS
• cos 𝑢𝑑𝑢 = sin 𝑢 +c
• sin 𝑢𝑑𝑢 = -cos 𝑢 + c
• 𝑠𝑒𝑐2 𝑢𝑑𝑢 = tan 𝑢 + c
• 𝑐𝑠𝑐2 𝑢𝑑𝑢 = -cot 𝑢 + 𝑐
• sec 𝑢 tan 𝑢𝑑𝑢 = sec 𝑢 + c
• csc 𝑢 cot 𝑢 𝑑𝑢 = -csc 𝑢 + c
• tan 𝑢𝑑𝑢 = ln sec 𝑢 + c or - lncos 𝑢 + c
• cot 𝑢𝑑𝑢 = lnsin 𝑢 + c
• sec 𝑢𝑑𝑢 = ln ( sec 𝑢 +tan 𝑢 ) + c
• csc 𝑢𝑑𝑢 = -ln ( csc 𝑢 + cot 𝑢 ) + c
• In all these formulas, u is an angle. In dealing
with integrals involving trigonometric
functions, transformations using the
trigonometric identities are almost always
necessary to reduce the integral to one or
more of the standard forms.
EXAMPLE
Find the indefinite integral.
1.
cos 𝑥
sec 𝑥+tan 𝑥
𝑑𝑥
2. cot 3𝑥 sin 3𝑥𝑑𝑥 7.
1−cos 𝑥
𝑠𝑖𝑛2 𝑥
𝑑𝑥
3. 𝑥 csc 𝑥2
𝑑𝑥 8.
2
𝑐𝑜𝑠22𝑥
𝑑𝑥
4.
sin 2𝑥
𝑐𝑜𝑠2 𝑥 sin 𝑥
𝑑𝑥
5.
cos 𝑥
1− cos 𝑥
𝑑𝑥
6. (csc 𝑥 sin 2𝑥 +
1
sin 𝑥 sec 𝑥
) 𝑑𝑥
TRANSFORMATION OF
TRIGONOMETRIC FUNCTIONS
If we are given the product of an integral power
of sin 𝑥 and an integral power of cos 𝑥, where in
the powers may be equal or unequal, both even,
both odd, or one is even the other odd, we use
the trigonometric identities and express the
given integrand as a power of a trigonometric
function times the derivative of that function or
as the sum of powers of a function times the
derivative of the function
• We shall now see how to perform the details
under specified conditions.
POWERS OF SINE AND COSINE
• CASE 1. 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 𝒅𝒖
Transformations:
a) If n is odd and m is even, 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 =
𝒔𝒊𝒏 𝒏−𝟏
𝒖𝒄𝒐𝒔 𝒎
(𝒔𝒊𝒏 𝒖)
b) If m isoddand n is even,
𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 = 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎−𝟏
𝒖(𝒄𝒐𝒔𝒖) c) If
n and m are both odd,
transform the lesser power. If n and m are same
degree either can be transformed
CASE II. 𝒔𝒊𝒏 𝒏
𝒙𝒄𝒐𝒔 𝒎
𝒙 𝒅𝒙
where m and n are positive even integers.
When both m and n are even, the method of
type 1 fails. In this case, the identities,
𝒔𝒊𝒏 𝟐
𝒙 =
𝟏 − 𝒄𝒐𝒔𝟐𝒙
𝟐
,
𝒄𝒐𝒔 𝟐
𝒙 =
𝟏+𝒄𝒐𝒔𝟐𝒙
𝟐
,
𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 =
𝒔𝒊𝒏 𝟐𝒙
𝟐
will be used.
EXAMPLE
• Evaluate the following integrals:
1. 𝑐𝑜𝑠3
𝑥𝑠𝑖𝑛7
𝑥 𝑑𝑥 2. 𝑠𝑖𝑛5
2𝑥𝑐𝑜𝑠5
2𝑥 𝑑𝑥
3 𝑠𝑖𝑛−3
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥 4. 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠4
𝑥 𝑑𝑥
5. 𝑠𝑖𝑛4
2𝑥 𝑑𝑥 6. 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 2
𝑑𝑥
7. 𝑠𝑖𝑛6
𝑥𝑐𝑜𝑠4
𝑥 𝑑𝑥 8. 𝑠𝑖𝑛4
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥
9. 0
𝜋
2 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥 10. 0
𝜋
2 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠2
𝑥 𝑑𝑥
PRODUCT OF SINE AND COSINE
• Integration of the products sin 𝑎𝑥 sin 𝑏𝑥 ,
cos 𝑎𝑥 cos 𝑏𝑥 , sin 𝑎𝑥 cos 𝑏𝑥 , where a and b
are constants is carried out by using the
formulas:
sin 𝐴 sin 𝐵 =
1
2
cos 𝐴 − 𝐵 -
1
2
cos 𝐴 + 𝐵
sin 𝐴 cos 𝐵 =
1
2
sin 𝐴 − 𝐵 +
1
2
sin 𝐴 + 𝐵
cos 𝐴 cos 𝐵 =
1
2
cos 𝐴 − 𝐵 +
1
2
cos 𝐴 + 𝐵
EXAMPLE
• Perform the indicated integrations:
1. cos 8𝑥 cos 5𝑥 𝑑𝑥
2. sin 6𝑥 cos 8𝑥 𝑑𝑥
3. 2 cos 6𝑥 cos −4𝑥 𝑑𝑥
4. 2 sin(2𝑥 − 𝜋) sin 3𝜋 − 2𝑥 𝑑𝑥
5. cos 5𝑥 cos 7𝑥 sin 3𝑥 𝑑𝑥
6. sin 4𝑥 sin 10𝑥 𝑑𝑥
7. 2 cos 2𝑥 cos 𝑥 𝑑𝑥 8. 3 sin 𝑥 cos 3𝑥 𝑑𝑥
WALLIS’ FORMULA
𝟎
𝝅
𝟐
𝒔𝒊𝒏 𝒎
𝒙𝒄𝒐𝒔 𝒏
𝒙 𝒅𝒙
=
𝑚−1 𝑚−3 ...
2
𝑜𝑟
1
𝑛−1 𝑛−3 …
2
𝑜𝑟
1
𝑚+𝑛 𝑚+𝑛−2 …
2
𝑜𝑟
1
∙ 𝜃
where in m and n are integers ≥ 0,
𝜃 =
𝜋
2
, if m and n are both even, 𝜃 = 1 ,
if either one or both are odd,
and that the lower and upper limits are 0 and
𝜋
2
EXAMPLE
• Evaluate by Wallis’ Formula.
1. 0
𝜋
2 𝑠𝑖𝑛4
𝑥𝑑𝑥
2. 0
𝜋
2 𝑠𝑖𝑛5
𝑥𝑐𝑜𝑠6
𝑥𝑑𝑥
3. 0
𝜋
2 𝑠𝑖𝑛4
𝑥𝑐𝑜𝑠8
𝑥𝑑𝑥
4. 0
𝜋
6 𝑠𝑖𝑛6
3𝑦𝑐𝑜𝑠3
3𝑦𝑑𝑦
5. 0
𝜋
3 𝑠𝑖𝑛2 3𝑥
2
𝑐𝑜𝑠2 3𝑥
2
𝑑𝑥
POWERS OF TANGENT AND SECANT
(COTANGENT AND COSECANT)
I. 𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽 or 𝒄𝒐𝒕 𝒏
𝜽 𝒅𝜽
where n is a positive integer. When n=1
𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽= - ln𝒄𝒐𝒔 𝜽 + c
𝒄𝒐𝒕 𝒏
𝜽 𝒅𝜽 =ln sin 𝜽 + c
When n≥ 1, we set 𝑡𝑎𝑛 𝑛
𝜃 equal to
𝑡𝑎𝑛 𝑛−2
𝜃 𝑡𝑎𝑛2
𝜃 𝑜𝑟 𝑐𝑜𝑡2
𝜃 𝑏𝑦 𝑐𝑜𝑡 𝑛−2
𝜃𝑐𝑜𝑡2
𝜃 ,
replace 𝑡𝑎𝑛2
𝜃 𝑏𝑦 𝑠𝑒𝑐2
𝜃 − 1 𝑜𝑟 𝑐𝑜𝑡2
𝜃 by
(𝑐𝑠𝑐2
𝜃 − 1). Thus we get powers of tan𝜃 and by
power formula, we can evaluate the integral.
II. 𝒔𝒆𝒄 𝒎
𝜽𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽 𝒐𝒓 𝒄𝒔𝒄 𝒎
𝜽𝒄𝒐𝒕 𝒏
𝜽𝒅𝜽
where m and n are positive integers.
• When m is even, we let 𝒔𝒆𝒄 𝒎
𝜽 =
𝒔𝒆𝒄 𝒎−𝟐
𝜽 𝒔𝒆𝒄 𝟐
𝜽, and express
𝒔𝒆𝒄 𝒎−𝟐
𝜽 = (𝒕𝒂𝒏 𝟐
𝜽 + 𝟏)
𝒎−𝟐
.We will then
obtain products of powers of tan 𝜃 𝑏𝑦 𝑠𝑒𝑐2
𝜃.
The integral could be integrated by means of
power formula.
• If n is odd, we express 𝒔𝒆𝒄 𝒎
𝒕𝒂𝒏 𝒏
𝜽 =
𝒔𝒆𝒄 𝒎−𝟏
𝜽𝒕𝒂𝒏 𝒏−𝟏
𝜽(𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽).Then we
transform 𝑡𝑎𝑛 𝑛−1
into power of sec𝜃 using
the identity 𝒕𝒂𝒏 𝟐
𝜽 = 𝒔𝒆𝒄 𝟐
𝜽 − 𝟏.
• If m is odd and n is even this can be evaluated
using integration by parts
EXAMPLE
• Find the indefinite integral.
1. 𝑡𝑎𝑛5
𝑥𝑑𝑥
2. 𝑡𝑎𝑛3
𝑥𝑠𝑒𝑐4
𝑥𝑑𝑥
3. 𝑐𝑠𝑐4
𝑥𝑑𝑥
4. 𝑐𝑜𝑡2
𝑥𝑐𝑠𝑐4
𝑥𝑑𝑥
5. 𝑡𝑎𝑛3
𝑥𝑠𝑒𝑐5
𝑥𝑑𝑥
INTEGRALS INVOLVING INVERSE
TRIGONOMETRIC FUNCTIONS
• Let u be a differentiable function of x, and let
a> 0.
1.
𝑑𝑢
𝑎2−𝑢2
= 𝑎𝑟𝑐𝑠𝑖𝑛
𝑢
𝑎
+ 𝐶
2.
𝑑𝑢
𝑎2+𝑢2 =
1
𝑎
𝑎𝑟𝑐𝑡𝑎𝑛
𝑢
𝑎
+ 𝐶
3.
𝑑𝑢
𝑢 𝑢2−𝑎2
=
1
𝑎
𝑎𝑟𝑐𝑠𝑒𝑐
𝑢
𝑎
+ 𝐶
EXAMPLE
• Find or evaluate the integral.
1.
𝑥−3
𝑥2+1
𝑑𝑥 6. 𝑙𝑛2
𝑙𝑛4 𝑒−𝑥
1−𝑒−2𝑥
𝑑𝑥
2.
𝑠𝑒𝑐2 𝑥
25−𝑡𝑎𝑛2 𝑥
𝑑𝑥 7.
𝑥
9+8𝑥2−𝑥4
𝑑𝑥
3.
3
2 𝑥(1+𝑥)
𝑑𝑥 8. 3
6 1
25+(𝑥−3)2 𝑑𝑥
4. 2
3 2𝑥−3
4𝑥−𝑥2
𝑑𝑥 9.
𝑥+2
−𝑥2−4𝑥
𝑑𝑥
5. −2
2 𝑑𝑥
𝑥2+4𝑥+13
10.
2𝑥−5
𝑥2+2𝑥+2
𝑑𝑥
HYPERBOLIC FUNCTIONS
• Definitions of the Hyperbolic Function
𝑠𝑖𝑛ℎ𝑥 =
𝑒𝑥 − 𝑒−𝑥
2
𝑐𝑠𝑐ℎ𝑥 =
1
𝑠𝑖𝑛ℎ𝑥
, 𝑥 ≠ 0
c𝑜𝑠ℎ𝑥 =
𝑒 𝑥+𝑒−𝑥
2
𝑠𝑒𝑐ℎ𝑥 =
1
𝑐𝑜𝑠ℎ𝑥
𝑡𝑎𝑛ℎ𝑥 =
𝑠𝑖𝑛ℎ𝑥
𝑐𝑜𝑠ℎ𝑥
𝑐𝑜𝑡ℎ𝑥 =
1
𝑡𝑎𝑛ℎ𝑥
, 𝑥 ≠ 0
• HYPERBOLIC IDENTITIES
𝑐𝑜𝑠ℎ2
𝑢 − 𝑠𝑖𝑛ℎ2
𝑢 = 1
𝑡𝑎𝑛ℎ2
𝑢 + 𝑠𝑒𝑐ℎ2
𝑢 = 1
𝑐𝑜𝑡ℎ2
𝑢 − 𝑐𝑠𝑐ℎ2
𝑢 = 1
cosh2u = 𝑐𝑜𝑠ℎ2
𝑢 + 𝑠𝑖𝑛ℎ2
𝑢
𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥
𝑠𝑖𝑛ℎ2
1
2
𝑢 =
1
2
(𝑐𝑜𝑠ℎ 𝑢 − 1)
𝑐𝑜𝑠ℎ2
𝑥 =
1 + 𝑐𝑜𝑠ℎ2𝑥
2
tanh(x + y) =
(𝑡𝑎𝑛ℎ 𝑥+𝑡𝑎𝑛ℎ 𝑦)
1+𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ𝑦
INTEGRALS OF HYPERBOLIC FUNCTIONS
Let u be a differentiable function of x.
1. 𝑠𝑖𝑛ℎ𝑢 𝑑𝑢 = 𝑐𝑜𝑠ℎ𝑢 + 𝐶
2. 𝑐𝑜𝑠ℎ𝑢 𝑑𝑢 = 𝑠𝑖𝑛ℎ𝑢 + 𝐶
3. 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑐𝑜𝑠ℎ𝑢 + 𝐶
4.
𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑠𝑖𝑛ℎ 𝑢 + 𝐶 5. 𝑠𝑒𝑐ℎ𝑢 𝑑𝑢 = 𝑡𝑎𝑛−1
𝑠𝑖𝑛
6. 𝑐𝑠𝑐ℎ𝑢 𝑑𝑢 = 𝑙𝑛(𝑐𝑜𝑡ℎ 𝑢 − 𝑐𝑠𝑐ℎ𝑢) + 𝐶
7. 𝑠𝑒𝑐ℎ2 𝑢 𝑑𝑢 = 𝑡𝑎𝑛ℎ𝑢 + 𝐶
8. 𝑐𝑠𝑐ℎ2 𝑢 𝑑𝑢 = − 𝑐𝑜𝑡ℎ 𝑢 + 𝐶
9. 𝑠𝑒𝑐ℎ𝑢 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = −𝑠𝑒𝑐ℎ𝑢 + 𝐶
10. 𝑐𝑠𝑐ℎ 𝑢 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = −𝑐𝑠𝑐ℎ𝑢 + 𝐶
INVERSE HYPERBOLIC FUNCTIONS
• Function Domain
• 𝑠𝑖𝑛ℎ−1
𝑥 = 𝑙𝑛(𝑥 + 𝑥2 + 1)(−∞, +∞)
• 𝑐𝑜𝑠ℎ−1
𝑥 = 𝑙𝑛(𝑥 + 𝑥2 − 1) 1, ∞
• 𝑡𝑎𝑛ℎ−1
𝑥 =
1
2
𝑙𝑛
1+𝑥
1−𝑥
−1,1
• 𝑐𝑜𝑡ℎ−1
𝑥 =
1
2
𝑙𝑛
𝑥+1
𝑥−1
−∞, −1 U(1, ∞)
• 𝑠𝑒𝑐ℎ−1
𝑥 = 𝑙𝑛
1+ 1−𝑥2
𝑥
(0,1
• 𝑐𝑠𝑐ℎ−1
𝑥 = 𝑙𝑛
1
𝑥
+
1+𝑥2
𝑥
−∞, 0 U(0, ∞)
INTEGRATION INVOLVING INVERSE
HYPERBOLIC FUNCTION
• Let u be a differentiable function of x.
•
𝑑𝑢
𝑢2±𝑎2
= 𝑙𝑛 𝑢 + 𝑢2 ± 𝑎2 + 𝐶
•
𝑑𝑢
𝑎2−𝑢2 =
1
2𝑎
𝑙𝑛
𝑎+𝑢
𝑎−𝑢
+ 𝐶
•
𝑑𝑢
𝑢 𝑎2±𝑢2
= −
1
𝑎
𝑙𝑛
𝑎+ 𝑎2±𝑢2
𝑢
+ 𝐶
EXAMPLE
• Find the indefinite integral.
1.
1
3−9𝑥2 𝑑𝑥
2.
1
𝑥 1+𝑥
𝑑𝑥
3.
1
1−4𝑥−2𝑥2 𝑑𝑥
4.
𝑑𝑥
(𝑥+2) 𝑥2+4𝑥+8
5.
𝑥
1+𝑥3
𝑑𝑥

More Related Content

What's hot

Rational functions
Rational functionsRational functions
Rational functions
zozima
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functions
Carlos Erepol
 
4 2 rules of radicals
4 2 rules of radicals4 2 rules of radicals
4 2 rules of radicals
math123b
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
Ron Eick
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
Jessica Garcia
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 

What's hot (20)

Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
Distance formula
Distance formulaDistance formula
Distance formula
 
Rational functions
Rational functionsRational functions
Rational functions
 
Trigonometry: Circular Functions
Trigonometry: Circular FunctionsTrigonometry: Circular Functions
Trigonometry: Circular Functions
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Parabola complete
Parabola completeParabola complete
Parabola complete
 
Domain and range
Domain and rangeDomain and range
Domain and range
 
Circular Functions
Circular FunctionsCircular Functions
Circular Functions
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
4 2 rules of radicals
4 2 rules of radicals4 2 rules of radicals
4 2 rules of radicals
 
Exponential Equation & Inequalities.pptx
Exponential Equation & Inequalities.pptxExponential Equation & Inequalities.pptx
Exponential Equation & Inequalities.pptx
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities.
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Problem solving involving arithmetic sequences and series
Problem solving involving arithmetic sequences and seriesProblem solving involving arithmetic sequences and series
Problem solving involving arithmetic sequences and series
 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
 

Viewers also liked

Rlc circuits and differential equations1
Rlc circuits and differential equations1Rlc circuits and differential equations1
Rlc circuits and differential equations1
Ghanima Eyleeuhs
 
Law of sine and cosines
Law of sine and cosinesLaw of sine and cosines
Law of sine and cosines
itutor
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
itutor
 

Viewers also liked (20)

Lecture 27 inductors. stored energy. lr circuits
Lecture 27  inductors. stored energy. lr circuitsLecture 27  inductors. stored energy. lr circuits
Lecture 27 inductors. stored energy. lr circuits
 
Deep or dark web
Deep or dark webDeep or dark web
Deep or dark web
 
Rlc circuits and differential equations1
Rlc circuits and differential equations1Rlc circuits and differential equations1
Rlc circuits and differential equations1
 
A presentation on differencial calculus
A presentation on differencial calculusA presentation on differencial calculus
A presentation on differencial calculus
 
Calculus
CalculusCalculus
Calculus
 
Law of Sines ppt
Law of Sines pptLaw of Sines ppt
Law of Sines ppt
 
Resonance in R-L-C circuit
Resonance in R-L-C circuitResonance in R-L-C circuit
Resonance in R-L-C circuit
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Law of sine and cosines
Law of sine and cosinesLaw of sine and cosines
Law of sine and cosines
 
Calculus I basic concepts
Calculus I basic conceptsCalculus I basic concepts
Calculus I basic concepts
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Lecture 28 lc, rlc circuits.
Lecture 28   lc, rlc circuits.Lecture 28   lc, rlc circuits.
Lecture 28 lc, rlc circuits.
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 
RLC Circuit
RLC CircuitRLC Circuit
RLC Circuit
 
Barilla Spagethi Case Study
Barilla Spagethi Case StudyBarilla Spagethi Case Study
Barilla Spagethi Case Study
 
Basic calculus
Basic calculusBasic calculus
Basic calculus
 
Barilla Spa: A case on Supply Chain Integration
Barilla Spa: A case on Supply Chain IntegrationBarilla Spa: A case on Supply Chain Integration
Barilla Spa: A case on Supply Chain Integration
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 

Similar to Lesson 9 transcendental functions

MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
massm99m
 

Similar to Lesson 9 transcendental functions (20)

Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdf
 
2 Indefinte Integral.pptx
2 Indefinte Integral.pptx2 Indefinte Integral.pptx
2 Indefinte Integral.pptx
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
INTEGRATION.pptx
INTEGRATION.pptxINTEGRATION.pptx
INTEGRATION.pptx
 
Specific topics in optimisation
Specific topics in optimisationSpecific topics in optimisation
Specific topics in optimisation
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
 
CALCULUS 2.pptx
CALCULUS 2.pptxCALCULUS 2.pptx
CALCULUS 2.pptx
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptx
 
PM [B09] The Trigo Companions
PM [B09] The Trigo CompanionsPM [B09] The Trigo Companions
PM [B09] The Trigo Companions
 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
 
Trigonometry - Trigonometric Identities
Trigonometry - Trigonometric IdentitiesTrigonometry - Trigonometric Identities
Trigonometry - Trigonometric Identities
 
Illustrating QE.pdf
Illustrating QE.pdfIllustrating QE.pdf
Illustrating QE.pdf
 
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
 
Lecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptxLecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptx
 
Statitical Inference Ch3 uncertainties .pptx
Statitical Inference Ch3 uncertainties .pptxStatitical Inference Ch3 uncertainties .pptx
Statitical Inference Ch3 uncertainties .pptx
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 

More from Lawrence De Vera

Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functions
Lawrence De Vera
 

More from Lawrence De Vera (20)

Links
LinksLinks
Links
 
Lesson 19 improper intergals
Lesson 19 improper intergalsLesson 19 improper intergals
Lesson 19 improper intergals
 
Lesson 18 force due to liquid pressure revised
Lesson 18 force due to liquid pressure revisedLesson 18 force due to liquid pressure revised
Lesson 18 force due to liquid pressure revised
 
Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
Lesson 15 pappus theorem
Lesson 15 pappus theoremLesson 15 pappus theorem
Lesson 15 pappus theorem
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an area
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitutionLesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 7 antidifferentiation generalized power formula-simple substitution
 
Lesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvatureLesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvature
 
Lesson 5 indeterminate forms
Lesson 5 indeterminate formsLesson 5 indeterminate forms
Lesson 5 indeterminate forms
 
Lesson 4 derivative of inverse hyperbolic functions
Lesson 4 derivative of inverse hyperbolic functionsLesson 4 derivative of inverse hyperbolic functions
Lesson 4 derivative of inverse hyperbolic functions
 
Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functions
 
Lesson 2 derivative of inverse trigonometric functions
Lesson 2 derivative of inverse trigonometric functionsLesson 2 derivative of inverse trigonometric functions
Lesson 2 derivative of inverse trigonometric functions
 
Lecture co4 math21-1
Lecture co4 math21-1Lecture co4 math21-1
Lecture co4 math21-1
 
Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
Lecture co1 math 21-1
Lecture co1 math 21-1Lecture co1 math 21-1
Lecture co1 math 21-1
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Recently uploaded (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Lesson 9 transcendental functions

  • 2. OBJECTIVES At the end of the lesson, the students are expected to: • use the Log Rule for Integration to integrate a rational functions. • integrate exponential functions. • integrate trigonometric functions. • integrate functions of the nth power of the different trigonometric functions. • use Walli’s Formula to shorten the solution in finding the antiderivative of powers of sine and cosine.
  • 3. • integrate functions whose antiderivatives involve inverse trigonometric functions. • use the method of completing the square to integrate a function. • review the basic integration rules involving elementary functions. • integrate hyperbolic functions. • integrate functions involving inverse hyperbolic functions.
  • 4. LOG RULE FOR INTEGRATION Let u be a differentiable function of x. 𝑑𝑢 𝑢 = 𝑙𝑛 𝑢 + 𝐶 or the above formula can also be written as 𝑢′ 𝑢 𝑑𝑥 = 𝑙𝑛 𝑢 + 𝐶 To apply this rule, look for quotients in which the numerator is the derivative of the denominator.
  • 5. • EXAMPLE • Find the indefinite integral. 1. 𝑥2 5−𝑥3 𝑑𝑥 5. 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 𝑠𝑒𝑐𝑥−1 𝑑𝑥 2. 𝑥3−6𝑥−20 𝑥+5 𝑑𝑥 6. 𝑒2𝑥 𝑒 𝑥−1 𝑑𝑥 3. 1 𝑥𝑙𝑛𝑥3 𝑑𝑥 4. 1 𝑥 2 3 1+𝑥 1 3 𝑑𝑥
  • 6. INTEGRATION OF EXPONENTIAL FUNCTIONS Let u be a differentiable function of x. 𝒆 𝒖 𝒅𝒖 = 𝒆 𝒖 + 𝒄 𝒂 𝒖 𝒅𝒖 = 𝒂 𝒖 𝒍𝒏𝒂 + c
  • 7. EXAMPLE • Find the indefinite integral. 1. 𝑒 1 𝑥 𝑥2 𝑑𝑥 6. 𝑥473𝑥3 𝑑𝑥 2. 𝑒2𝑥 + 𝑒−𝑥 2 𝑑𝑥 3. 𝑥𝑒3𝑥2+4 𝑑𝑥 4. 5𝑒 𝑙𝑛𝑥2 𝑥 𝑑𝑥 5. 10 𝑥3 𝑥2 𝑑𝑥
  • 8. BASIC TRIGONOMETRIC FUNCTIONS INTEGRATION FORMULAS • cos 𝑢𝑑𝑢 = sin 𝑢 +c • sin 𝑢𝑑𝑢 = -cos 𝑢 + c • 𝑠𝑒𝑐2 𝑢𝑑𝑢 = tan 𝑢 + c • 𝑐𝑠𝑐2 𝑢𝑑𝑢 = -cot 𝑢 + 𝑐 • sec 𝑢 tan 𝑢𝑑𝑢 = sec 𝑢 + c • csc 𝑢 cot 𝑢 𝑑𝑢 = -csc 𝑢 + c • tan 𝑢𝑑𝑢 = ln sec 𝑢 + c or - lncos 𝑢 + c • cot 𝑢𝑑𝑢 = lnsin 𝑢 + c • sec 𝑢𝑑𝑢 = ln ( sec 𝑢 +tan 𝑢 ) + c • csc 𝑢𝑑𝑢 = -ln ( csc 𝑢 + cot 𝑢 ) + c
  • 9. • In all these formulas, u is an angle. In dealing with integrals involving trigonometric functions, transformations using the trigonometric identities are almost always necessary to reduce the integral to one or more of the standard forms.
  • 10. EXAMPLE Find the indefinite integral. 1. cos 𝑥 sec 𝑥+tan 𝑥 𝑑𝑥 2. cot 3𝑥 sin 3𝑥𝑑𝑥 7. 1−cos 𝑥 𝑠𝑖𝑛2 𝑥 𝑑𝑥 3. 𝑥 csc 𝑥2 𝑑𝑥 8. 2 𝑐𝑜𝑠22𝑥 𝑑𝑥 4. sin 2𝑥 𝑐𝑜𝑠2 𝑥 sin 𝑥 𝑑𝑥 5. cos 𝑥 1− cos 𝑥 𝑑𝑥 6. (csc 𝑥 sin 2𝑥 + 1 sin 𝑥 sec 𝑥 ) 𝑑𝑥
  • 11. TRANSFORMATION OF TRIGONOMETRIC FUNCTIONS If we are given the product of an integral power of sin 𝑥 and an integral power of cos 𝑥, where in the powers may be equal or unequal, both even, both odd, or one is even the other odd, we use the trigonometric identities and express the given integrand as a power of a trigonometric function times the derivative of that function or as the sum of powers of a function times the derivative of the function • We shall now see how to perform the details under specified conditions.
  • 12. POWERS OF SINE AND COSINE • CASE 1. 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 𝒅𝒖 Transformations: a) If n is odd and m is even, 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 = 𝒔𝒊𝒏 𝒏−𝟏 𝒖𝒄𝒐𝒔 𝒎 (𝒔𝒊𝒏 𝒖) b) If m isoddand n is even, 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 = 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎−𝟏 𝒖(𝒄𝒐𝒔𝒖) c) If n and m are both odd, transform the lesser power. If n and m are same degree either can be transformed
  • 13. CASE II. 𝒔𝒊𝒏 𝒏 𝒙𝒄𝒐𝒔 𝒎 𝒙 𝒅𝒙 where m and n are positive even integers. When both m and n are even, the method of type 1 fails. In this case, the identities, 𝒔𝒊𝒏 𝟐 𝒙 = 𝟏 − 𝒄𝒐𝒔𝟐𝒙 𝟐 , 𝒄𝒐𝒔 𝟐 𝒙 = 𝟏+𝒄𝒐𝒔𝟐𝒙 𝟐 , 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 = 𝒔𝒊𝒏 𝟐𝒙 𝟐 will be used.
  • 14. EXAMPLE • Evaluate the following integrals: 1. 𝑐𝑜𝑠3 𝑥𝑠𝑖𝑛7 𝑥 𝑑𝑥 2. 𝑠𝑖𝑛5 2𝑥𝑐𝑜𝑠5 2𝑥 𝑑𝑥 3 𝑠𝑖𝑛−3 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 4. 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠4 𝑥 𝑑𝑥 5. 𝑠𝑖𝑛4 2𝑥 𝑑𝑥 6. 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 2 𝑑𝑥 7. 𝑠𝑖𝑛6 𝑥𝑐𝑜𝑠4 𝑥 𝑑𝑥 8. 𝑠𝑖𝑛4 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 9. 0 𝜋 2 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 10. 0 𝜋 2 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠2 𝑥 𝑑𝑥
  • 15. PRODUCT OF SINE AND COSINE • Integration of the products sin 𝑎𝑥 sin 𝑏𝑥 , cos 𝑎𝑥 cos 𝑏𝑥 , sin 𝑎𝑥 cos 𝑏𝑥 , where a and b are constants is carried out by using the formulas: sin 𝐴 sin 𝐵 = 1 2 cos 𝐴 − 𝐵 - 1 2 cos 𝐴 + 𝐵 sin 𝐴 cos 𝐵 = 1 2 sin 𝐴 − 𝐵 + 1 2 sin 𝐴 + 𝐵 cos 𝐴 cos 𝐵 = 1 2 cos 𝐴 − 𝐵 + 1 2 cos 𝐴 + 𝐵
  • 16. EXAMPLE • Perform the indicated integrations: 1. cos 8𝑥 cos 5𝑥 𝑑𝑥 2. sin 6𝑥 cos 8𝑥 𝑑𝑥 3. 2 cos 6𝑥 cos −4𝑥 𝑑𝑥 4. 2 sin(2𝑥 − 𝜋) sin 3𝜋 − 2𝑥 𝑑𝑥 5. cos 5𝑥 cos 7𝑥 sin 3𝑥 𝑑𝑥 6. sin 4𝑥 sin 10𝑥 𝑑𝑥 7. 2 cos 2𝑥 cos 𝑥 𝑑𝑥 8. 3 sin 𝑥 cos 3𝑥 𝑑𝑥
  • 17. WALLIS’ FORMULA 𝟎 𝝅 𝟐 𝒔𝒊𝒏 𝒎 𝒙𝒄𝒐𝒔 𝒏 𝒙 𝒅𝒙 = 𝑚−1 𝑚−3 ... 2 𝑜𝑟 1 𝑛−1 𝑛−3 … 2 𝑜𝑟 1 𝑚+𝑛 𝑚+𝑛−2 … 2 𝑜𝑟 1 ∙ 𝜃 where in m and n are integers ≥ 0, 𝜃 = 𝜋 2 , if m and n are both even, 𝜃 = 1 , if either one or both are odd, and that the lower and upper limits are 0 and 𝜋 2
  • 18. EXAMPLE • Evaluate by Wallis’ Formula. 1. 0 𝜋 2 𝑠𝑖𝑛4 𝑥𝑑𝑥 2. 0 𝜋 2 𝑠𝑖𝑛5 𝑥𝑐𝑜𝑠6 𝑥𝑑𝑥 3. 0 𝜋 2 𝑠𝑖𝑛4 𝑥𝑐𝑜𝑠8 𝑥𝑑𝑥 4. 0 𝜋 6 𝑠𝑖𝑛6 3𝑦𝑐𝑜𝑠3 3𝑦𝑑𝑦 5. 0 𝜋 3 𝑠𝑖𝑛2 3𝑥 2 𝑐𝑜𝑠2 3𝑥 2 𝑑𝑥
  • 19. POWERS OF TANGENT AND SECANT (COTANGENT AND COSECANT) I. 𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽 or 𝒄𝒐𝒕 𝒏 𝜽 𝒅𝜽 where n is a positive integer. When n=1 𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽= - ln𝒄𝒐𝒔 𝜽 + c 𝒄𝒐𝒕 𝒏 𝜽 𝒅𝜽 =ln sin 𝜽 + c When n≥ 1, we set 𝑡𝑎𝑛 𝑛 𝜃 equal to 𝑡𝑎𝑛 𝑛−2 𝜃 𝑡𝑎𝑛2 𝜃 𝑜𝑟 𝑐𝑜𝑡2 𝜃 𝑏𝑦 𝑐𝑜𝑡 𝑛−2 𝜃𝑐𝑜𝑡2 𝜃 , replace 𝑡𝑎𝑛2 𝜃 𝑏𝑦 𝑠𝑒𝑐2 𝜃 − 1 𝑜𝑟 𝑐𝑜𝑡2 𝜃 by (𝑐𝑠𝑐2 𝜃 − 1). Thus we get powers of tan𝜃 and by power formula, we can evaluate the integral.
  • 20. II. 𝒔𝒆𝒄 𝒎 𝜽𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽 𝒐𝒓 𝒄𝒔𝒄 𝒎 𝜽𝒄𝒐𝒕 𝒏 𝜽𝒅𝜽 where m and n are positive integers. • When m is even, we let 𝒔𝒆𝒄 𝒎 𝜽 = 𝒔𝒆𝒄 𝒎−𝟐 𝜽 𝒔𝒆𝒄 𝟐 𝜽, and express 𝒔𝒆𝒄 𝒎−𝟐 𝜽 = (𝒕𝒂𝒏 𝟐 𝜽 + 𝟏) 𝒎−𝟐 .We will then obtain products of powers of tan 𝜃 𝑏𝑦 𝑠𝑒𝑐2 𝜃. The integral could be integrated by means of power formula.
  • 21. • If n is odd, we express 𝒔𝒆𝒄 𝒎 𝒕𝒂𝒏 𝒏 𝜽 = 𝒔𝒆𝒄 𝒎−𝟏 𝜽𝒕𝒂𝒏 𝒏−𝟏 𝜽(𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽).Then we transform 𝑡𝑎𝑛 𝑛−1 into power of sec𝜃 using the identity 𝒕𝒂𝒏 𝟐 𝜽 = 𝒔𝒆𝒄 𝟐 𝜽 − 𝟏. • If m is odd and n is even this can be evaluated using integration by parts
  • 22. EXAMPLE • Find the indefinite integral. 1. 𝑡𝑎𝑛5 𝑥𝑑𝑥 2. 𝑡𝑎𝑛3 𝑥𝑠𝑒𝑐4 𝑥𝑑𝑥 3. 𝑐𝑠𝑐4 𝑥𝑑𝑥 4. 𝑐𝑜𝑡2 𝑥𝑐𝑠𝑐4 𝑥𝑑𝑥 5. 𝑡𝑎𝑛3 𝑥𝑠𝑒𝑐5 𝑥𝑑𝑥
  • 23. INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS • Let u be a differentiable function of x, and let a> 0. 1. 𝑑𝑢 𝑎2−𝑢2 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑢 𝑎 + 𝐶 2. 𝑑𝑢 𝑎2+𝑢2 = 1 𝑎 𝑎𝑟𝑐𝑡𝑎𝑛 𝑢 𝑎 + 𝐶 3. 𝑑𝑢 𝑢 𝑢2−𝑎2 = 1 𝑎 𝑎𝑟𝑐𝑠𝑒𝑐 𝑢 𝑎 + 𝐶
  • 24. EXAMPLE • Find or evaluate the integral. 1. 𝑥−3 𝑥2+1 𝑑𝑥 6. 𝑙𝑛2 𝑙𝑛4 𝑒−𝑥 1−𝑒−2𝑥 𝑑𝑥 2. 𝑠𝑒𝑐2 𝑥 25−𝑡𝑎𝑛2 𝑥 𝑑𝑥 7. 𝑥 9+8𝑥2−𝑥4 𝑑𝑥 3. 3 2 𝑥(1+𝑥) 𝑑𝑥 8. 3 6 1 25+(𝑥−3)2 𝑑𝑥 4. 2 3 2𝑥−3 4𝑥−𝑥2 𝑑𝑥 9. 𝑥+2 −𝑥2−4𝑥 𝑑𝑥 5. −2 2 𝑑𝑥 𝑥2+4𝑥+13 10. 2𝑥−5 𝑥2+2𝑥+2 𝑑𝑥
  • 25. HYPERBOLIC FUNCTIONS • Definitions of the Hyperbolic Function 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥 − 𝑒−𝑥 2 𝑐𝑠𝑐ℎ𝑥 = 1 𝑠𝑖𝑛ℎ𝑥 , 𝑥 ≠ 0 c𝑜𝑠ℎ𝑥 = 𝑒 𝑥+𝑒−𝑥 2 𝑠𝑒𝑐ℎ𝑥 = 1 𝑐𝑜𝑠ℎ𝑥 𝑡𝑎𝑛ℎ𝑥 = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑡ℎ𝑥 = 1 𝑡𝑎𝑛ℎ𝑥 , 𝑥 ≠ 0
  • 26. • HYPERBOLIC IDENTITIES 𝑐𝑜𝑠ℎ2 𝑢 − 𝑠𝑖𝑛ℎ2 𝑢 = 1 𝑡𝑎𝑛ℎ2 𝑢 + 𝑠𝑒𝑐ℎ2 𝑢 = 1 𝑐𝑜𝑡ℎ2 𝑢 − 𝑐𝑠𝑐ℎ2 𝑢 = 1 cosh2u = 𝑐𝑜𝑠ℎ2 𝑢 + 𝑠𝑖𝑛ℎ2 𝑢 𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥 𝑠𝑖𝑛ℎ2 1 2 𝑢 = 1 2 (𝑐𝑜𝑠ℎ 𝑢 − 1) 𝑐𝑜𝑠ℎ2 𝑥 = 1 + 𝑐𝑜𝑠ℎ2𝑥 2 tanh(x + y) = (𝑡𝑎𝑛ℎ 𝑥+𝑡𝑎𝑛ℎ 𝑦) 1+𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ𝑦
  • 27. INTEGRALS OF HYPERBOLIC FUNCTIONS Let u be a differentiable function of x. 1. 𝑠𝑖𝑛ℎ𝑢 𝑑𝑢 = 𝑐𝑜𝑠ℎ𝑢 + 𝐶 2. 𝑐𝑜𝑠ℎ𝑢 𝑑𝑢 = 𝑠𝑖𝑛ℎ𝑢 + 𝐶 3. 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑐𝑜𝑠ℎ𝑢 + 𝐶 4. 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑠𝑖𝑛ℎ 𝑢 + 𝐶 5. 𝑠𝑒𝑐ℎ𝑢 𝑑𝑢 = 𝑡𝑎𝑛−1 𝑠𝑖𝑛 6. 𝑐𝑠𝑐ℎ𝑢 𝑑𝑢 = 𝑙𝑛(𝑐𝑜𝑡ℎ 𝑢 − 𝑐𝑠𝑐ℎ𝑢) + 𝐶 7. 𝑠𝑒𝑐ℎ2 𝑢 𝑑𝑢 = 𝑡𝑎𝑛ℎ𝑢 + 𝐶 8. 𝑐𝑠𝑐ℎ2 𝑢 𝑑𝑢 = − 𝑐𝑜𝑡ℎ 𝑢 + 𝐶 9. 𝑠𝑒𝑐ℎ𝑢 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = −𝑠𝑒𝑐ℎ𝑢 + 𝐶 10. 𝑐𝑠𝑐ℎ 𝑢 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = −𝑐𝑠𝑐ℎ𝑢 + 𝐶
  • 28. INVERSE HYPERBOLIC FUNCTIONS • Function Domain • 𝑠𝑖𝑛ℎ−1 𝑥 = 𝑙𝑛(𝑥 + 𝑥2 + 1)(−∞, +∞) • 𝑐𝑜𝑠ℎ−1 𝑥 = 𝑙𝑛(𝑥 + 𝑥2 − 1) 1, ∞ • 𝑡𝑎𝑛ℎ−1 𝑥 = 1 2 𝑙𝑛 1+𝑥 1−𝑥 −1,1 • 𝑐𝑜𝑡ℎ−1 𝑥 = 1 2 𝑙𝑛 𝑥+1 𝑥−1 −∞, −1 U(1, ∞) • 𝑠𝑒𝑐ℎ−1 𝑥 = 𝑙𝑛 1+ 1−𝑥2 𝑥 (0,1 • 𝑐𝑠𝑐ℎ−1 𝑥 = 𝑙𝑛 1 𝑥 + 1+𝑥2 𝑥 −∞, 0 U(0, ∞)
  • 29. INTEGRATION INVOLVING INVERSE HYPERBOLIC FUNCTION • Let u be a differentiable function of x. • 𝑑𝑢 𝑢2±𝑎2 = 𝑙𝑛 𝑢 + 𝑢2 ± 𝑎2 + 𝐶 • 𝑑𝑢 𝑎2−𝑢2 = 1 2𝑎 𝑙𝑛 𝑎+𝑢 𝑎−𝑢 + 𝐶 • 𝑑𝑢 𝑢 𝑎2±𝑢2 = − 1 𝑎 𝑙𝑛 𝑎+ 𝑎2±𝑢2 𝑢 + 𝐶
  • 30. EXAMPLE • Find the indefinite integral. 1. 1 3−9𝑥2 𝑑𝑥 2. 1 𝑥 1+𝑥 𝑑𝑥 3. 1 1−4𝑥−2𝑥2 𝑑𝑥 4. 𝑑𝑥 (𝑥+2) 𝑥2+4𝑥+8 5. 𝑥 1+𝑥3 𝑑𝑥