SlideShare a Scribd company logo
1 of 74
Download to read offline
Types of a Function
Chapter 2
This Photo by Unknown Author is licensed under CC BY
Types of
Functions
Polynomials
Radical
Functions
Rational
Functions
Absolute Value
Functions
Exponential
Functions
Logarithmic
Functions
Trigonometric
Functions
Hyperbolic
Functions
2
Polynomials
Linear Quadratic Cubic
3
• A polynomial of degree 1 is of the form 𝑓 𝑥 = 𝑚𝑥 + 𝑏 and so it is a linear
function.
• A polynomial of degree 2 is of the form 𝒇 𝒙 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 and is called a
quadratic function.
• The parabola opens upward if 𝑎 > 0 and downward if 𝑎 < 0 .
• A polynomial of degree 3 is of the form 𝒇 𝒙 = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 and is
called a cubic function.
4
slope Y-intercept
Completing Square
𝑥 ±
𝑎
2
2
−
𝑎
2
2
± 𝑏
5
Example 2.1
6
Sketch 𝑓 𝑥 = 𝑥2
+ 6𝑥 + 10
Completing the square, we write the equation of the graph as
y = 𝑥2
+ 6𝑥 + 10 = 𝑥 + 3 2
+ 1
This means we
obtain the
desired graph by
starting with the
parabola and
shifting 3 units to
the left and then
1 unit upward.
Base Graph
Rational Functions
Square Root Cubic Root
7
Sketch the Following Functions in Steps
8
𝑓 𝑥 = 𝑥 − 1 − 2
𝑓 𝑥 = 2 − 1 − 𝑥
𝑓 𝑥 = − −𝑥
Example 2.2
Example 2.2.a
9
Sketch 𝑓 𝑥 = 𝑥 − 1 − 2
Example 2.2.b
10
Sketch 𝑓 𝑥 = 2 − 1 − 𝑥
Example 2.2.c
11
Sketch 𝑓 𝑥 = − −𝑥
Some Special Radical Functions
12
Sketch the Following Functions in Steps
Example 2.3
𝑓 𝑥 =
1
𝑥 − 1
+ 3
𝑓 𝑥 =
1
(𝑥 − 1)2
+ 4
𝑓 𝑥 =
1
2(1 − 𝑥)3
+ 5
Example 2.3.a
14
Graph 𝑓 𝑥 =
1
𝑥−1
+ 3
Example 2.3.b
15
Graph 𝑓 𝑥 =
1
(𝑥−1)2 + 4
Example 2.3.c
16
Graph 𝑓 𝑥 =
1
2(1−𝑥)3 + 5
Challenging
Problem
Absolute Value Functions
17
𝑎 = 𝑎 𝑖𝑓 𝑎 ≥ 0
𝑎 = −𝑎 𝑖𝑓 𝑎 < 0
(Remember that if a is
negative, then "a is
positive.)
𝑥 = ቊ
−𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0
Example 2.4
18
Sketch the Following Functions in Steps
𝑓 𝑥 = 𝑥 − 2 + 1
𝑓 𝑥 = 𝑥2
− 1
Example 2.4.a
19
Graph 𝑓 𝑥 = 𝑥2
− 1 in steps
We first graph the parabola
𝑓 𝑥 = 𝑥2
− 1 by shifting the parabola
𝑦 = 𝑥2 downward 1 unit. We see that
the graph lies below the x-axis when
− 1 < 𝑥 < 1, so we reflect that part of
the graph about the x-axis to obtain the
graph of 𝑓 𝑥 = 𝑥2
− 1
Example 2.4.b
20
Graph 𝑓 𝑥 = 𝑥 − 2 + 1 in steps
Try to sketch in steps and then find domain &
Range
𝑦 = (𝑥 + 1)2
𝑦 = 𝑥2
𝑦 = 𝑥2
+ 3
𝑦 = (𝑥 + 1)2
+3
𝑦 = 𝑥2
+ 2𝑥 + 1
𝑦 = 𝑥2
− 4𝑥 + 7
𝑦 = 2𝑥2
− 8𝑥 + 14
𝑦 =
2
𝑥 − 3
𝑦 =
2𝑥 − 3
𝑥 − 1
𝑦 = 𝑥 − 1 − 1
𝑦 =
3
𝑥 − 1 − 1
𝑦 = 1 − 𝑥2
𝑦 = 12 − 4𝑥 − 𝑥2 − 2
𝑦 =
2𝑥 − 3
𝑥 − 1
𝑦 = 𝑥 − 1 − 1
Trigonometric Functions
Sine Cosine Tangent
22
• An important property of the sine and cosine functions is that they are
periodic functions and have period 2𝜋.
• The period of tangent is 𝜋.
• The remaining three trigonometric functions (cosecant, secant, and cotangent)
are the reciprocals of the sine, cosine, and tangent functions; therefore, they
have the same period.
23
Notice that for both the sine and cosine functions the domain is and the range
is the closed interval . Thus, for all values of , we have
−1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 − 1 ≤ 𝑐𝑜𝑠𝑥 ≤ 1
or, in terms of absolute values, 𝑠𝑖𝑛𝑥 ≤ 1 𝑐𝑜𝑠𝑥 ≤ 1
Example 2.5 Sketch the Following Functions
𝑓(𝑥) = 1 + 4𝑐𝑜𝑠3𝑥
𝑓 𝑥 = 𝑠𝑖𝑛2𝑥
𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥
𝑓(𝑥) =
1
4
𝑡𝑎𝑛 𝑥 −
𝜋
4
Example 2.5.a
25
Sketch the Graph 𝑓 𝑥 = 𝑠𝑖𝑛2𝑥
We obtain the graph of 𝑓 𝑥 from
that of 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 by
compressing horizontally by a
factor of 2. Thus, whereas the
period of 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 is 2𝜋, the
period of 𝑓 𝑥 = 𝑠𝑖𝑛2𝑥 is
2𝜋
2
= π .
Example 2.5.b
26
Sketch the Graph 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥
To obtain the graph of 𝑓 𝑥 = 1 −
𝑠𝑖𝑛𝑥, we again start with 𝑓 𝑥 =
𝑠𝑖𝑛𝑥 . We reflect about the x-axis
to get the graph of 𝑓 𝑥 = −𝑠𝑖𝑛𝑥
and then we shift 1 unit upward to
get 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥.
Example 2.5.c
27
Sketch The graph 𝑓(𝑥) =
1
4
𝑡𝑎𝑛 𝑥 −
𝜋
4
Example 2.5.d Sketch The Graph 𝑓(𝑥) = 1 + 4𝑐𝑜𝑠3𝑥
Trigonometric Functions
Cosecant Secant Cotangent
29
Basic Trigonometric Identities
30
𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
𝑡𝑎𝑛2
𝜃 + 1 = 𝑠𝑒𝑐2
𝜃
1 + 𝑐𝑜𝑡2
𝜃 = 𝑐𝑠𝑐2
𝜃
sin −𝜃 = −𝑠𝑖𝑛𝜃
cos −𝜃 = 𝑐𝑜𝑠𝜃
cos 𝐴 + 𝐵 = 𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 − 𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵
sin 𝐴 + 𝐵 = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵
𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠2
𝜃 − 𝑠𝑖𝑛2
𝜃 = 2𝑐𝑜𝑠2
𝜃 − 1
𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
𝑐𝑜𝑠2
𝜃 =
1 + 𝑐𝑜𝑠2𝜃
2
𝑠𝑖𝑛2
𝜃 =
1 − 𝑐𝑜𝑠2𝜃
2
31
tan2
𝜃 + 1 = sec2
𝑥
We start with the identity 𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
Dividing both sides of this equation by 𝑐𝑜𝑠2
𝜃,
we obtain
𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
+ 1 =
1
𝑐𝑜𝑠2𝜃
Since
𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
= 𝑡𝑎𝑛𝜃 and
1
𝑐𝑜𝑠𝜃
= 𝑠𝑒𝑐𝜃, we
conclude that tan2
𝜃 + 1 = sec2
𝑥
Exponential Functions
32
𝑒𝑥+𝑦
= 𝑒𝑥
𝑒𝑦
𝑒𝑥−𝑦
=
𝑒𝑥
𝑒𝑦
(𝑒𝑥
)𝑦
= 𝑒𝑥𝑦
(𝑎𝑏)𝑥
= 𝑎𝑥
𝑏𝑦
𝑒−𝑥
=
1
𝑒𝑥
Example 2.6
33
𝑓 𝑥 = 𝑒𝑥+1
33
𝑓 𝑥 = 3 − 2𝑥
Sketch the Following Graph in Steps
𝑓 𝑥 =
1
2
𝑒−𝑥
− 1
𝑓 𝑥 = −(3𝑥
+ 2)
𝑓 𝑥 = 2𝑥
+ 1
𝑓 𝑥 = −3−𝑥
Example 2.6.a
34
Sketch the Graph 𝑓 𝑥 = 3 − 2𝑥
First, we reflect the graph
of 𝑦 = 2𝑥
about the x-axis
to get the graph of 𝑦 =
− 2𝑥
Base
graph
Then, we shift the
graph of 𝑦 = −2𝑥
upward 3 units to
obtain the graph of
𝑦 = 3 − 2𝑥
The Domain is ℝ
The Range is (-∞,3)
Example 2.6.b
35
Sketch the Graph 𝑓 𝑥 =
1
2
𝑒−𝑥
− 1
Base
graph
First, we reflect the graph
of 𝑦 = 𝑒𝑥 about the y-axis
to get the graph of 𝑦 =
𝑒−𝑥
. (Notice that the graph
crosses the y-axis with a
slope of -1)
Then, Then we
compress the graph
vertically by a factor
of 2 to obtain the
graph of 𝑦 =
1
2
𝑒−𝑥
Finally, we shift the
graph downward one
unit to get 𝑓 𝑥 =
1
2
𝑒−𝑥 − 1
The Domain is ℝ
The Range is (-1, ∞)
Example 2.6.c
36
Sketch the Graph 𝑓 x = e𝑥+1
36
Example 2.6.d
37
Sketch the Graph 𝑓 x = −(3𝑥
+ 2)
37
Example 2.6.e
38
Sketch the Graph 𝑓 x = 2𝑥
+ 1
38
Example 2.6.f
39
Sketch the Graph 𝑓 x = −3−𝑥
39
Logarithmic Functions
40
log𝑎(𝑎𝑥) = 𝑥 𝑥 = ℝ
ln 𝑒𝑥 = 𝑥
𝑙𝑛𝑥 = 𝑦 ⇔ 𝑒𝑦
= 𝑥
log𝑎(𝑥𝑟) = rlog𝑎 𝑥
log𝑎(𝑥𝑦) = log𝑎 𝑥 + log𝑎 𝑦 log𝑎
𝑥
𝑦
= log𝑎 𝑥 − log𝑎 𝑦
𝑎log𝑎 𝑥 = 𝑥 𝑥 > 0
log𝑎(𝑥) =
𝑙𝑛𝑥
𝑙𝑛𝑎
for any positive numbers
𝑙𝑛𝑒 = 1
𝑒𝑙𝑛𝑥 = 𝑥 𝑥 > 0
Example 2.7
41
Simplify the Following Expressions
41
𝑒ln(7.2)
𝑙𝑛
sin2 𝑥 tan4 𝑥
𝑥2 + 1 2
𝑙𝑛
4 𝑥2 + 1
𝑥2 − 1
𝑙𝑛𝑒(2 ln 𝑥)
ln[ln 𝑒𝑒 ]
2ln( 𝑒)
𝑒x−ln(𝑥)
𝑒ln(𝑥2+𝑦2)
𝑒 ln 𝑥 −ln 𝑦
𝑒−ln(𝑥2)
ln 𝑒𝑒𝑥
𝑙𝑛
𝑥3 + 1 4sin2 𝑥
3
𝑥
ln(𝑠𝑖𝑛𝜃) − ln
𝑠𝑖𝑛𝜃
5
ln(3𝑥2 − 9𝑥) + ln
1
3𝑥
ln(𝑠𝑒𝑐𝜃) + ln(𝑐𝑜𝑠𝜃)
3𝑙𝑛
3
𝑡2 − 1 − ln(𝑡 + 1)
𝑒5−3𝑥
= 10
Example 2.8
42
Solve the Equation 𝑒5−3𝑥
= 10
42
𝑙𝑛𝑒5−3𝑥
= 𝑙𝑛10
5 − 3𝑥 = 𝑙𝑛10
3𝑥 = 5 − 𝑙𝑛10
𝑥 =
1
3
5 − 𝑙𝑛10
We take natural logarithms
of both sides of the equation
Apply ln 𝑒𝑥 = 𝑥
𝑒−ln(𝑥2)
𝑒
ln
1
𝑥2 =
1
𝑥2
43
Example 2.8
𝑒ln(7.2)
7.2
44
Example 2.8
𝑒 ln 𝑥 −ln 𝑦
𝑒 ln 𝑥 −ln 𝑦
= ൝
𝑒𝑙𝑛𝑥−𝑙𝑛𝑦
𝑥 ≥ 𝑦
𝑒𝑙𝑛𝑦−𝑙𝑛𝑥 𝑥 < 𝑦
= ቐ
ൗ
𝑥
𝑦 𝑥 ≥ 𝑦
ൗ
𝑦
𝑥 𝑥 < 𝑦
45
Example 2.8
𝑒ln(𝑥2+𝑦2)
𝑥2 + 𝑦2
46
Example 2.8
𝑒x−ln(𝑥)
𝑒𝑥
𝑒𝑙𝑛𝑥
=
𝑒𝑥
𝑥
47
Example 2.8
2ln( 𝑒)
2 ln 𝑒
1
2 = 𝑙𝑛𝑒 = 1
48
Example 2.8
ln 𝑒𝑒𝑥
𝑒𝑥
49
Example 2.8
𝑙𝑛𝑒(2 ln 𝑥)
ln 𝑒𝑙𝑛𝑥2
= 𝑙𝑛𝑥2
= 2𝑙𝑛𝑥
50
Example 2.8
𝑙𝑛
4 𝑥2 + 1
𝑥2 − 1
𝑙𝑛
4 𝑥2 + 1
𝑥2 − 1
=
1
4
𝑙𝑛
𝑥2
+ 1
𝑥2 − 1
=
1
4
[ln 𝑥2
+ 1 − ln(𝑥2
− 1)
51
Example 2.8
𝑙𝑛
sin2
𝑥 tan4
𝑥
𝑥2 + 1 2
ln sin2
𝑥 + ln tan4
𝑥 − ln 𝑥2
+ 1 2
= 2 ln 𝑠𝑖𝑛𝑥 + 4 ln 𝑡𝑎𝑛𝑥 − 2ln(𝑥2
+ 1)
52
Example 2.8
𝑙𝑛
𝑥3
+ 1 4
sin2
𝑥
3
𝑥
𝑙𝑛
𝑥3
+ 1 4
sin2
𝑥
3
𝑥
= 4 ln 𝑥3
+ 1 + 2 ln 𝑠𝑖𝑛𝑥 −
𝑙𝑛𝑥
3
53
Example 2.8
ln(𝑠𝑖𝑛𝜃) − ln
𝑠𝑖𝑛𝜃
5
ln(𝑠𝑖𝑛𝜃) − ln
𝑠𝑖𝑛𝜃
5
= ln 𝑠𝑖𝑛𝜃 − ln 𝑠𝑖𝑛𝜃 − −𝑙𝑛5 = 𝑙𝑛5
54
Example 2.8
ln(3𝑥2
− 9𝑥) + ln
1
3𝑥
= 𝑙𝑛3𝑥 𝑥 − 3 + 𝑙𝑛
1
3𝑥
= 𝑙𝑛 3𝑥 + 𝑙𝑛 𝑥 − 3 − 𝑙𝑛 3𝑥
= 𝑙𝑛(𝑥 − 3)
55
Example 2.8
ln(𝑠𝑒𝑐𝜃) + ln(𝑐𝑜𝑠𝜃)
ln 𝑐𝑜𝑠𝜃 −1
+ ln 𝑐𝑜𝑠𝜃 = 0
56
Example 2.8
3𝑙𝑛
3
𝑡2 − 1 − ln(𝑡 + 1)
ln 𝑡2
− 1 − ln 𝑡 + 1 = ln 𝑡 − 1 𝑡 + 1 − ln 𝑡 + 1 = ln(𝑡 − 1)
57
Example 2.8
ln[ln 𝑒𝑒
]
𝑙𝑛𝑒 = 1
58
Example 2.8
Example 2.9
59
Sketch the Following Functions
59
𝑦 = ln 𝑥 − 2 − 1 𝑓 𝑥 = ln(𝑥 + 2)
𝑓 𝑥 = 𝑙𝑛𝑥 + 2
𝑓 𝑥 = 1 + ln(−𝑥)
𝑓 𝑥 = 𝑙𝑛 𝑥
𝑓 𝑥 = 2 − log(2 − 𝑥)
Example 2.9
60
Sketch the Graph 𝑦 = ln 𝑥 − 2 − 1
60
We start with the
graph of 𝑦 = 𝑙𝑛𝑥
Using the transformations, we
shift it 2 units to the right to get
the graph of 𝑦 = ln(𝑥 − 2)
Then we shift it 1 unit
downward to get the
graph of 𝑦 = 𝑥 − 2 − 1
Example 2.9
61
Sketch the Graph 𝑓 𝑥 = ln(𝑥 + 2)
61
62
Sketch the Graph 𝑓 𝑥 = 𝑙𝑛𝑥 + 2
62
Example 2.9
63
Sketch the Graph 𝑓 𝑥 = 1 + ln(−𝑥)
63
Example 2.9
64
Sketch the Graph 𝑓 𝑥 = 𝑙𝑛 𝑥
64
Example 2.9
65
Sketch the Graph 𝑓 𝑥 = 2 − log(2 − 𝑥)
65
Example 2.9
Hyperbolic Functions
Hyperbolic Sine of
x
𝑠𝑖𝑛ℎ𝑥 =
𝑒𝑥
− 𝑒−𝑥
2
𝑠𝑖𝑛ℎ0 = 0
Hyperbolic Cosine
of x
𝑐𝑜𝑠ℎ𝑥 =
𝑒𝑥
+ 𝑒−𝑥
2
𝑐𝑜𝑠ℎ0 = 1
Hyperbolic of
Tangent of x
𝑡𝑎𝑛ℎ𝑥 =
𝑠𝑖𝑛ℎ𝑥
𝑐𝑜𝑠ℎ𝑥
=
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥
−1 < 𝑡𝑎𝑛ℎ𝑥 < 1
66
Exercise 2.10
cosh 2𝑙𝑛𝑥
Simplify the Following Expressions
sinh 5𝑙𝑛𝑥 cosh(𝑙𝑛3)
sinh(𝑙𝑛2)
If 𝑠𝑖𝑛ℎ𝑥 =
3
4
, find the values of the remaining five hyperbolic functions.
sinh(𝑙𝑛2)
Using the definition of sinh function, we write
sinh 𝑙𝑛2 =
𝑒𝑙𝑛2 − 𝑒−𝑙𝑛2
2
=
2 −
1
2
2
=
3
4
68
sinh 5𝑙𝑛𝑥
Using the definition of sinh function, we write
sinh 5𝑙𝑛𝑥 =
𝑒5𝑙𝑛𝑥 − 𝑒−5𝑙𝑛𝑥
2
=
𝑒ln 𝑥5
− 𝑒𝑙𝑛𝑥−5
2
=
𝑥5 − 𝑥−5
2
69
cosh(𝑙𝑛3)
Using the definition of cosh function, we write
cosh 𝑙𝑛3 =
𝑒ln 3 + 𝑒−𝑙𝑛3
2
=
3 +
1
3
2
=
10
6
=
5
3
70
If 𝑠𝑖𝑛ℎ𝑥 =
3
4
, find the values of the remaining five
hyperbolic functions.
Using the identity cosh2 𝑥 − sinh2 𝑥 = 1, we see that
cosh2
𝑥 = 1 +
3
4
2
=
25
16
Since 𝑐𝑜𝑠ℎ𝑥 ≥ 1 for all x, we must have cosh 𝑥 =
5
4
.
Then, using the definitions for the other hyperbolic functions, we conclude
that 𝑡𝑎𝑛ℎ𝑥 =
3
5
, 𝑐𝑠𝑐ℎ𝑥 =
4
3
, 𝑠𝑒𝑐ℎ𝑥 =
4
5
, 𝑐𝑜𝑡ℎ𝑥 =
5
3
.
71
Hyperbolic Functions
Hyperbolic
cotangent of x
𝑐𝑜𝑡ℎ𝑥 =
𝑐𝑜𝑠ℎ𝑥
𝑠𝑖𝑛ℎ𝑥
=
𝑒𝑥
+ 𝑒−𝑥
𝑒𝑥 − 𝑒−𝑥
Hyperbolic
secant of x
𝑠𝑒𝑐ℎ𝑥 =
1
𝑐𝑜𝑠ℎ𝑥
=
2
𝑒𝑥 + 𝑒−𝑥
0 < 𝑠𝑒𝑐ℎ𝑥 ≤ 1
Hyperbolic of
cosecant of x
cscℎ𝑥 =
1
𝑠𝑖𝑛ℎ𝑥
=
2
𝑒𝑥−𝑒−𝑥
72
Exercise 2.11
cosh −𝑥 = 𝑐𝑜𝑠ℎ𝑥
Prove the Following Hyperbolic Functions
sinh −𝑥 = −𝑠𝑖𝑛ℎ𝑥
𝑐𝑜𝑠ℎ𝑥 + 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥
𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥 = 𝑒−𝑥
coth2
𝑥 − 1 = csch2
𝑥
sinh 𝑥 ± 𝑦 = 𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑦 ± 𝑐𝑜𝑠ℎ𝑥𝑠𝑖𝑛ℎ𝑦
cosh 𝑥 ± 𝑦 = 𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠ℎ𝑦 ± 𝑠𝑖𝑛ℎ𝑥𝑠𝑖𝑛ℎ𝑦
tanh 𝑙𝑛𝑥 =
𝑥2 − 1
𝑥2 + 1
1 + 𝑡𝑎𝑛ℎ𝑥
1 − 𝑡𝑎𝑛ℎ𝑥
= 𝑒2𝑥
Assignment
2.1
2.1.1. 𝑦 = 𝑥2
+ 6𝑥 − 8
2.1.2. 𝑦 = 7 + 2𝑥 − 𝑥2
2.1.3. 𝑦 = 2𝑥 + 5
2.1.4. 𝑦 = 2𝑥 + 5
2.1.5. 𝑦 = 2 − 𝑥 + 3
2.1.6. 𝑦 =
3
x+2
2.1.7. 𝑦 =
𝑥−4
2𝑥+3
2.1.8. 𝑦 = −2 − 4𝑥 − 𝑥2
2.1.9. 𝑦 = −𝑠𝑖𝑛2𝑥
2.1.10. 𝑦 =
1
2
1 + 𝑒𝑥
2.1.11. 𝑓 𝑥 =
1
𝑥+2
2.1.12. 𝑓 𝑥 = 5𝑥+1
+ 2
2.1.13. 𝑓 𝑥 = 3 + 𝑙𝑛𝑥
2.1.14. 𝑓 𝑥 = ln 𝑥 − 1
2.1.15. 𝑓 𝑥 = 𝑙𝑜𝑔𝑥 − 1
2.1.16. 𝑓 𝑥 = ln −𝑥
2.1.17. 𝑓 𝑥 = 𝑒𝑥
+ 2
2.1.18. 𝑓 𝑥 = 𝑒−𝑥
− 1
2.1.19. 𝑓 𝑥 = 4 cos 2𝑥 −
𝜋
2
2.1.20. 𝑓 𝑥 = −3sin(𝜋𝑥 + 2)
74
Graph each of the following functions
then from the graph find its the domain
and range.

More Related Content

Similar to Chapter 2 - Types of a Function.pdf

Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic EquationsCipriano De Leon
 
Lesson 2: Final Exam Review (Part 1)
Lesson 2: Final Exam Review (Part 1)Lesson 2: Final Exam Review (Part 1)
Lesson 2: Final Exam Review (Part 1)Kevin Johnson
 
Graph of non-linear.pptx
Graph of non-linear.pptxGraph of non-linear.pptx
Graph of non-linear.pptxNadineThomas4
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Demetrio Ccesa Rayme
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitivesZaakXO
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
 
Week 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxWeek 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxLyaniCebrian1
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptxHappy Ladher
 
Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007Demetrio Ccesa Rayme
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptxAngeloReyes58
 
Deriving the inverse of a function2 (composite functions)
Deriving the inverse of a function2 (composite functions)Deriving the inverse of a function2 (composite functions)
Deriving the inverse of a function2 (composite functions)Alona Hall
 
De la grafica a la funcion
De la grafica a la funcionDe la grafica a la funcion
De la grafica a la funcionAna Faraco
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
 
Conic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACHConic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACHMr Math
 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfKyleBrianSLumanglas
 

Similar to Chapter 2 - Types of a Function.pdf (20)

Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
 
Lesson 2: Final Exam Review (Part 1)
Lesson 2: Final Exam Review (Part 1)Lesson 2: Final Exam Review (Part 1)
Lesson 2: Final Exam Review (Part 1)
 
Graph of non-linear.pptx
Graph of non-linear.pptxGraph of non-linear.pptx
Graph of non-linear.pptx
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
 
Gcse Maths Resources
Gcse Maths ResourcesGcse Maths Resources
Gcse Maths Resources
 
Week 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxWeek 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptx
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
 
Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007Semana 27 funciones exponenciales álgebra uni ccesa007
Semana 27 funciones exponenciales álgebra uni ccesa007
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
 
Deriving the inverse of a function2 (composite functions)
Deriving the inverse of a function2 (composite functions)Deriving the inverse of a function2 (composite functions)
Deriving the inverse of a function2 (composite functions)
 
De la grafica a la funcion
De la grafica a la funcionDe la grafica a la funcion
De la grafica a la funcion
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
Functions.pdf
Functions.pdfFunctions.pdf
Functions.pdf
 
Conic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACHConic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACH
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdf
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

Chapter 2 - Types of a Function.pdf

  • 1. Types of a Function Chapter 2 This Photo by Unknown Author is licensed under CC BY
  • 4. • A polynomial of degree 1 is of the form 𝑓 𝑥 = 𝑚𝑥 + 𝑏 and so it is a linear function. • A polynomial of degree 2 is of the form 𝒇 𝒙 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 and is called a quadratic function. • The parabola opens upward if 𝑎 > 0 and downward if 𝑎 < 0 . • A polynomial of degree 3 is of the form 𝒇 𝒙 = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 and is called a cubic function. 4 slope Y-intercept
  • 6. Example 2.1 6 Sketch 𝑓 𝑥 = 𝑥2 + 6𝑥 + 10 Completing the square, we write the equation of the graph as y = 𝑥2 + 6𝑥 + 10 = 𝑥 + 3 2 + 1 This means we obtain the desired graph by starting with the parabola and shifting 3 units to the left and then 1 unit upward. Base Graph
  • 8. Sketch the Following Functions in Steps 8 𝑓 𝑥 = 𝑥 − 1 − 2 𝑓 𝑥 = 2 − 1 − 𝑥 𝑓 𝑥 = − −𝑥 Example 2.2
  • 9. Example 2.2.a 9 Sketch 𝑓 𝑥 = 𝑥 − 1 − 2
  • 10. Example 2.2.b 10 Sketch 𝑓 𝑥 = 2 − 1 − 𝑥
  • 11. Example 2.2.c 11 Sketch 𝑓 𝑥 = − −𝑥
  • 12. Some Special Radical Functions 12
  • 13. Sketch the Following Functions in Steps Example 2.3 𝑓 𝑥 = 1 𝑥 − 1 + 3 𝑓 𝑥 = 1 (𝑥 − 1)2 + 4 𝑓 𝑥 = 1 2(1 − 𝑥)3 + 5
  • 14. Example 2.3.a 14 Graph 𝑓 𝑥 = 1 𝑥−1 + 3
  • 15. Example 2.3.b 15 Graph 𝑓 𝑥 = 1 (𝑥−1)2 + 4
  • 16. Example 2.3.c 16 Graph 𝑓 𝑥 = 1 2(1−𝑥)3 + 5 Challenging Problem
  • 17. Absolute Value Functions 17 𝑎 = 𝑎 𝑖𝑓 𝑎 ≥ 0 𝑎 = −𝑎 𝑖𝑓 𝑎 < 0 (Remember that if a is negative, then "a is positive.) 𝑥 = ቊ −𝑥, 𝑥 < 0 𝑥, 𝑥 ≥ 0
  • 18. Example 2.4 18 Sketch the Following Functions in Steps 𝑓 𝑥 = 𝑥 − 2 + 1 𝑓 𝑥 = 𝑥2 − 1
  • 19. Example 2.4.a 19 Graph 𝑓 𝑥 = 𝑥2 − 1 in steps We first graph the parabola 𝑓 𝑥 = 𝑥2 − 1 by shifting the parabola 𝑦 = 𝑥2 downward 1 unit. We see that the graph lies below the x-axis when − 1 < 𝑥 < 1, so we reflect that part of the graph about the x-axis to obtain the graph of 𝑓 𝑥 = 𝑥2 − 1
  • 20. Example 2.4.b 20 Graph 𝑓 𝑥 = 𝑥 − 2 + 1 in steps
  • 21. Try to sketch in steps and then find domain & Range 𝑦 = (𝑥 + 1)2 𝑦 = 𝑥2 𝑦 = 𝑥2 + 3 𝑦 = (𝑥 + 1)2 +3 𝑦 = 𝑥2 + 2𝑥 + 1 𝑦 = 𝑥2 − 4𝑥 + 7 𝑦 = 2𝑥2 − 8𝑥 + 14 𝑦 = 2 𝑥 − 3 𝑦 = 2𝑥 − 3 𝑥 − 1 𝑦 = 𝑥 − 1 − 1 𝑦 = 3 𝑥 − 1 − 1 𝑦 = 1 − 𝑥2 𝑦 = 12 − 4𝑥 − 𝑥2 − 2 𝑦 = 2𝑥 − 3 𝑥 − 1 𝑦 = 𝑥 − 1 − 1
  • 23. • An important property of the sine and cosine functions is that they are periodic functions and have period 2𝜋. • The period of tangent is 𝜋. • The remaining three trigonometric functions (cosecant, secant, and cotangent) are the reciprocals of the sine, cosine, and tangent functions; therefore, they have the same period. 23 Notice that for both the sine and cosine functions the domain is and the range is the closed interval . Thus, for all values of , we have −1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 − 1 ≤ 𝑐𝑜𝑠𝑥 ≤ 1 or, in terms of absolute values, 𝑠𝑖𝑛𝑥 ≤ 1 𝑐𝑜𝑠𝑥 ≤ 1
  • 24. Example 2.5 Sketch the Following Functions 𝑓(𝑥) = 1 + 4𝑐𝑜𝑠3𝑥 𝑓 𝑥 = 𝑠𝑖𝑛2𝑥 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥 𝑓(𝑥) = 1 4 𝑡𝑎𝑛 𝑥 − 𝜋 4
  • 25. Example 2.5.a 25 Sketch the Graph 𝑓 𝑥 = 𝑠𝑖𝑛2𝑥 We obtain the graph of 𝑓 𝑥 from that of 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 by compressing horizontally by a factor of 2. Thus, whereas the period of 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 is 2𝜋, the period of 𝑓 𝑥 = 𝑠𝑖𝑛2𝑥 is 2𝜋 2 = π .
  • 26. Example 2.5.b 26 Sketch the Graph 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥 To obtain the graph of 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥, we again start with 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 . We reflect about the x-axis to get the graph of 𝑓 𝑥 = −𝑠𝑖𝑛𝑥 and then we shift 1 unit upward to get 𝑓 𝑥 = 1 − 𝑠𝑖𝑛𝑥.
  • 27. Example 2.5.c 27 Sketch The graph 𝑓(𝑥) = 1 4 𝑡𝑎𝑛 𝑥 − 𝜋 4
  • 28. Example 2.5.d Sketch The Graph 𝑓(𝑥) = 1 + 4𝑐𝑜𝑠3𝑥
  • 30. Basic Trigonometric Identities 30 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 𝑡𝑎𝑛2 𝜃 + 1 = 𝑠𝑒𝑐2 𝜃 1 + 𝑐𝑜𝑡2 𝜃 = 𝑐𝑠𝑐2 𝜃 sin −𝜃 = −𝑠𝑖𝑛𝜃 cos −𝜃 = 𝑐𝑜𝑠𝜃 cos 𝐴 + 𝐵 = 𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 − 𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 sin 𝐴 + 𝐵 = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠2 𝜃 − 𝑠𝑖𝑛2 𝜃 = 2𝑐𝑜𝑠2 𝜃 − 1 𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑐𝑜𝑠2 𝜃 = 1 + 𝑐𝑜𝑠2𝜃 2 𝑠𝑖𝑛2 𝜃 = 1 − 𝑐𝑜𝑠2𝜃 2
  • 31. 31 tan2 𝜃 + 1 = sec2 𝑥 We start with the identity 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 Dividing both sides of this equation by 𝑐𝑜𝑠2 𝜃, we obtain 𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 + 1 = 1 𝑐𝑜𝑠2𝜃 Since 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 = 𝑡𝑎𝑛𝜃 and 1 𝑐𝑜𝑠𝜃 = 𝑠𝑒𝑐𝜃, we conclude that tan2 𝜃 + 1 = sec2 𝑥
  • 32. Exponential Functions 32 𝑒𝑥+𝑦 = 𝑒𝑥 𝑒𝑦 𝑒𝑥−𝑦 = 𝑒𝑥 𝑒𝑦 (𝑒𝑥 )𝑦 = 𝑒𝑥𝑦 (𝑎𝑏)𝑥 = 𝑎𝑥 𝑏𝑦 𝑒−𝑥 = 1 𝑒𝑥
  • 33. Example 2.6 33 𝑓 𝑥 = 𝑒𝑥+1 33 𝑓 𝑥 = 3 − 2𝑥 Sketch the Following Graph in Steps 𝑓 𝑥 = 1 2 𝑒−𝑥 − 1 𝑓 𝑥 = −(3𝑥 + 2) 𝑓 𝑥 = 2𝑥 + 1 𝑓 𝑥 = −3−𝑥
  • 34. Example 2.6.a 34 Sketch the Graph 𝑓 𝑥 = 3 − 2𝑥 First, we reflect the graph of 𝑦 = 2𝑥 about the x-axis to get the graph of 𝑦 = − 2𝑥 Base graph Then, we shift the graph of 𝑦 = −2𝑥 upward 3 units to obtain the graph of 𝑦 = 3 − 2𝑥 The Domain is ℝ The Range is (-∞,3)
  • 35. Example 2.6.b 35 Sketch the Graph 𝑓 𝑥 = 1 2 𝑒−𝑥 − 1 Base graph First, we reflect the graph of 𝑦 = 𝑒𝑥 about the y-axis to get the graph of 𝑦 = 𝑒−𝑥 . (Notice that the graph crosses the y-axis with a slope of -1) Then, Then we compress the graph vertically by a factor of 2 to obtain the graph of 𝑦 = 1 2 𝑒−𝑥 Finally, we shift the graph downward one unit to get 𝑓 𝑥 = 1 2 𝑒−𝑥 − 1 The Domain is ℝ The Range is (-1, ∞)
  • 36. Example 2.6.c 36 Sketch the Graph 𝑓 x = e𝑥+1 36
  • 37. Example 2.6.d 37 Sketch the Graph 𝑓 x = −(3𝑥 + 2) 37
  • 38. Example 2.6.e 38 Sketch the Graph 𝑓 x = 2𝑥 + 1 38
  • 39. Example 2.6.f 39 Sketch the Graph 𝑓 x = −3−𝑥 39
  • 40. Logarithmic Functions 40 log𝑎(𝑎𝑥) = 𝑥 𝑥 = ℝ ln 𝑒𝑥 = 𝑥 𝑙𝑛𝑥 = 𝑦 ⇔ 𝑒𝑦 = 𝑥 log𝑎(𝑥𝑟) = rlog𝑎 𝑥 log𝑎(𝑥𝑦) = log𝑎 𝑥 + log𝑎 𝑦 log𝑎 𝑥 𝑦 = log𝑎 𝑥 − log𝑎 𝑦 𝑎log𝑎 𝑥 = 𝑥 𝑥 > 0 log𝑎(𝑥) = 𝑙𝑛𝑥 𝑙𝑛𝑎 for any positive numbers 𝑙𝑛𝑒 = 1 𝑒𝑙𝑛𝑥 = 𝑥 𝑥 > 0
  • 41. Example 2.7 41 Simplify the Following Expressions 41 𝑒ln(7.2) 𝑙𝑛 sin2 𝑥 tan4 𝑥 𝑥2 + 1 2 𝑙𝑛 4 𝑥2 + 1 𝑥2 − 1 𝑙𝑛𝑒(2 ln 𝑥) ln[ln 𝑒𝑒 ] 2ln( 𝑒) 𝑒x−ln(𝑥) 𝑒ln(𝑥2+𝑦2) 𝑒 ln 𝑥 −ln 𝑦 𝑒−ln(𝑥2) ln 𝑒𝑒𝑥 𝑙𝑛 𝑥3 + 1 4sin2 𝑥 3 𝑥 ln(𝑠𝑖𝑛𝜃) − ln 𝑠𝑖𝑛𝜃 5 ln(3𝑥2 − 9𝑥) + ln 1 3𝑥 ln(𝑠𝑒𝑐𝜃) + ln(𝑐𝑜𝑠𝜃) 3𝑙𝑛 3 𝑡2 − 1 − ln(𝑡 + 1) 𝑒5−3𝑥 = 10
  • 42. Example 2.8 42 Solve the Equation 𝑒5−3𝑥 = 10 42 𝑙𝑛𝑒5−3𝑥 = 𝑙𝑛10 5 − 3𝑥 = 𝑙𝑛10 3𝑥 = 5 − 𝑙𝑛10 𝑥 = 1 3 5 − 𝑙𝑛10 We take natural logarithms of both sides of the equation Apply ln 𝑒𝑥 = 𝑥
  • 45. 𝑒 ln 𝑥 −ln 𝑦 𝑒 ln 𝑥 −ln 𝑦 = ൝ 𝑒𝑙𝑛𝑥−𝑙𝑛𝑦 𝑥 ≥ 𝑦 𝑒𝑙𝑛𝑦−𝑙𝑛𝑥 𝑥 < 𝑦 = ቐ ൗ 𝑥 𝑦 𝑥 ≥ 𝑦 ൗ 𝑦 𝑥 𝑥 < 𝑦 45 Example 2.8
  • 48. 2ln( 𝑒) 2 ln 𝑒 1 2 = 𝑙𝑛𝑒 = 1 48 Example 2.8
  • 50. 𝑙𝑛𝑒(2 ln 𝑥) ln 𝑒𝑙𝑛𝑥2 = 𝑙𝑛𝑥2 = 2𝑙𝑛𝑥 50 Example 2.8
  • 51. 𝑙𝑛 4 𝑥2 + 1 𝑥2 − 1 𝑙𝑛 4 𝑥2 + 1 𝑥2 − 1 = 1 4 𝑙𝑛 𝑥2 + 1 𝑥2 − 1 = 1 4 [ln 𝑥2 + 1 − ln(𝑥2 − 1) 51 Example 2.8
  • 52. 𝑙𝑛 sin2 𝑥 tan4 𝑥 𝑥2 + 1 2 ln sin2 𝑥 + ln tan4 𝑥 − ln 𝑥2 + 1 2 = 2 ln 𝑠𝑖𝑛𝑥 + 4 ln 𝑡𝑎𝑛𝑥 − 2ln(𝑥2 + 1) 52 Example 2.8
  • 53. 𝑙𝑛 𝑥3 + 1 4 sin2 𝑥 3 𝑥 𝑙𝑛 𝑥3 + 1 4 sin2 𝑥 3 𝑥 = 4 ln 𝑥3 + 1 + 2 ln 𝑠𝑖𝑛𝑥 − 𝑙𝑛𝑥 3 53 Example 2.8
  • 54. ln(𝑠𝑖𝑛𝜃) − ln 𝑠𝑖𝑛𝜃 5 ln(𝑠𝑖𝑛𝜃) − ln 𝑠𝑖𝑛𝜃 5 = ln 𝑠𝑖𝑛𝜃 − ln 𝑠𝑖𝑛𝜃 − −𝑙𝑛5 = 𝑙𝑛5 54 Example 2.8
  • 55. ln(3𝑥2 − 9𝑥) + ln 1 3𝑥 = 𝑙𝑛3𝑥 𝑥 − 3 + 𝑙𝑛 1 3𝑥 = 𝑙𝑛 3𝑥 + 𝑙𝑛 𝑥 − 3 − 𝑙𝑛 3𝑥 = 𝑙𝑛(𝑥 − 3) 55 Example 2.8
  • 56. ln(𝑠𝑒𝑐𝜃) + ln(𝑐𝑜𝑠𝜃) ln 𝑐𝑜𝑠𝜃 −1 + ln 𝑐𝑜𝑠𝜃 = 0 56 Example 2.8
  • 57. 3𝑙𝑛 3 𝑡2 − 1 − ln(𝑡 + 1) ln 𝑡2 − 1 − ln 𝑡 + 1 = ln 𝑡 − 1 𝑡 + 1 − ln 𝑡 + 1 = ln(𝑡 − 1) 57 Example 2.8
  • 59. Example 2.9 59 Sketch the Following Functions 59 𝑦 = ln 𝑥 − 2 − 1 𝑓 𝑥 = ln(𝑥 + 2) 𝑓 𝑥 = 𝑙𝑛𝑥 + 2 𝑓 𝑥 = 1 + ln(−𝑥) 𝑓 𝑥 = 𝑙𝑛 𝑥 𝑓 𝑥 = 2 − log(2 − 𝑥)
  • 60. Example 2.9 60 Sketch the Graph 𝑦 = ln 𝑥 − 2 − 1 60 We start with the graph of 𝑦 = 𝑙𝑛𝑥 Using the transformations, we shift it 2 units to the right to get the graph of 𝑦 = ln(𝑥 − 2) Then we shift it 1 unit downward to get the graph of 𝑦 = 𝑥 − 2 − 1
  • 61. Example 2.9 61 Sketch the Graph 𝑓 𝑥 = ln(𝑥 + 2) 61
  • 62. 62 Sketch the Graph 𝑓 𝑥 = 𝑙𝑛𝑥 + 2 62 Example 2.9
  • 63. 63 Sketch the Graph 𝑓 𝑥 = 1 + ln(−𝑥) 63 Example 2.9
  • 64. 64 Sketch the Graph 𝑓 𝑥 = 𝑙𝑛 𝑥 64 Example 2.9
  • 65. 65 Sketch the Graph 𝑓 𝑥 = 2 − log(2 − 𝑥) 65 Example 2.9
  • 66. Hyperbolic Functions Hyperbolic Sine of x 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥 − 𝑒−𝑥 2 𝑠𝑖𝑛ℎ0 = 0 Hyperbolic Cosine of x 𝑐𝑜𝑠ℎ𝑥 = 𝑒𝑥 + 𝑒−𝑥 2 𝑐𝑜𝑠ℎ0 = 1 Hyperbolic of Tangent of x 𝑡𝑎𝑛ℎ𝑥 = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 = 𝑒𝑥 − 𝑒−𝑥 𝑒𝑥 + 𝑒−𝑥 −1 < 𝑡𝑎𝑛ℎ𝑥 < 1 66
  • 67. Exercise 2.10 cosh 2𝑙𝑛𝑥 Simplify the Following Expressions sinh 5𝑙𝑛𝑥 cosh(𝑙𝑛3) sinh(𝑙𝑛2) If 𝑠𝑖𝑛ℎ𝑥 = 3 4 , find the values of the remaining five hyperbolic functions.
  • 68. sinh(𝑙𝑛2) Using the definition of sinh function, we write sinh 𝑙𝑛2 = 𝑒𝑙𝑛2 − 𝑒−𝑙𝑛2 2 = 2 − 1 2 2 = 3 4 68
  • 69. sinh 5𝑙𝑛𝑥 Using the definition of sinh function, we write sinh 5𝑙𝑛𝑥 = 𝑒5𝑙𝑛𝑥 − 𝑒−5𝑙𝑛𝑥 2 = 𝑒ln 𝑥5 − 𝑒𝑙𝑛𝑥−5 2 = 𝑥5 − 𝑥−5 2 69
  • 70. cosh(𝑙𝑛3) Using the definition of cosh function, we write cosh 𝑙𝑛3 = 𝑒ln 3 + 𝑒−𝑙𝑛3 2 = 3 + 1 3 2 = 10 6 = 5 3 70
  • 71. If 𝑠𝑖𝑛ℎ𝑥 = 3 4 , find the values of the remaining five hyperbolic functions. Using the identity cosh2 𝑥 − sinh2 𝑥 = 1, we see that cosh2 𝑥 = 1 + 3 4 2 = 25 16 Since 𝑐𝑜𝑠ℎ𝑥 ≥ 1 for all x, we must have cosh 𝑥 = 5 4 . Then, using the definitions for the other hyperbolic functions, we conclude that 𝑡𝑎𝑛ℎ𝑥 = 3 5 , 𝑐𝑠𝑐ℎ𝑥 = 4 3 , 𝑠𝑒𝑐ℎ𝑥 = 4 5 , 𝑐𝑜𝑡ℎ𝑥 = 5 3 . 71
  • 72. Hyperbolic Functions Hyperbolic cotangent of x 𝑐𝑜𝑡ℎ𝑥 = 𝑐𝑜𝑠ℎ𝑥 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥 + 𝑒−𝑥 𝑒𝑥 − 𝑒−𝑥 Hyperbolic secant of x 𝑠𝑒𝑐ℎ𝑥 = 1 𝑐𝑜𝑠ℎ𝑥 = 2 𝑒𝑥 + 𝑒−𝑥 0 < 𝑠𝑒𝑐ℎ𝑥 ≤ 1 Hyperbolic of cosecant of x cscℎ𝑥 = 1 𝑠𝑖𝑛ℎ𝑥 = 2 𝑒𝑥−𝑒−𝑥 72
  • 73. Exercise 2.11 cosh −𝑥 = 𝑐𝑜𝑠ℎ𝑥 Prove the Following Hyperbolic Functions sinh −𝑥 = −𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 + 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥 𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥 = 𝑒−𝑥 coth2 𝑥 − 1 = csch2 𝑥 sinh 𝑥 ± 𝑦 = 𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑦 ± 𝑐𝑜𝑠ℎ𝑥𝑠𝑖𝑛ℎ𝑦 cosh 𝑥 ± 𝑦 = 𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠ℎ𝑦 ± 𝑠𝑖𝑛ℎ𝑥𝑠𝑖𝑛ℎ𝑦 tanh 𝑙𝑛𝑥 = 𝑥2 − 1 𝑥2 + 1 1 + 𝑡𝑎𝑛ℎ𝑥 1 − 𝑡𝑎𝑛ℎ𝑥 = 𝑒2𝑥
  • 74. Assignment 2.1 2.1.1. 𝑦 = 𝑥2 + 6𝑥 − 8 2.1.2. 𝑦 = 7 + 2𝑥 − 𝑥2 2.1.3. 𝑦 = 2𝑥 + 5 2.1.4. 𝑦 = 2𝑥 + 5 2.1.5. 𝑦 = 2 − 𝑥 + 3 2.1.6. 𝑦 = 3 x+2 2.1.7. 𝑦 = 𝑥−4 2𝑥+3 2.1.8. 𝑦 = −2 − 4𝑥 − 𝑥2 2.1.9. 𝑦 = −𝑠𝑖𝑛2𝑥 2.1.10. 𝑦 = 1 2 1 + 𝑒𝑥 2.1.11. 𝑓 𝑥 = 1 𝑥+2 2.1.12. 𝑓 𝑥 = 5𝑥+1 + 2 2.1.13. 𝑓 𝑥 = 3 + 𝑙𝑛𝑥 2.1.14. 𝑓 𝑥 = ln 𝑥 − 1 2.1.15. 𝑓 𝑥 = 𝑙𝑜𝑔𝑥 − 1 2.1.16. 𝑓 𝑥 = ln −𝑥 2.1.17. 𝑓 𝑥 = 𝑒𝑥 + 2 2.1.18. 𝑓 𝑥 = 𝑒−𝑥 − 1 2.1.19. 𝑓 𝑥 = 4 cos 2𝑥 − 𝜋 2 2.1.20. 𝑓 𝑥 = −3sin(𝜋𝑥 + 2) 74 Graph each of the following functions then from the graph find its the domain and range.