SlideShare a Scribd company logo
1 of 59
MA 3151 - Matrices and Calculus
UNIT I
MATRICES
CAYLEY HAMILTON THEOREM
Every square matrix satisfies its own characteristic
equation
William Rowan Hamilton
Arthur Cayley
Application of Cayley Hamilton
Theorem
i) To find the inverse of a matrix A
ii)To find higher power of a matrix A
Verify Cayley Hamilton theorem for 𝐴 =
1 2 βˆ’2
βˆ’1 3 0
0 βˆ’2 1
and hence find π΄βˆ’1.
Solution:
The characteristic equation is πœ†3
βˆ’ 𝑆1πœ†2
+ 𝑆2πœ† βˆ’ 𝑆3 = 0.
π‘ΊπŸ = Trace of A= πŸ“
𝑆2 = Sum of minors of leading diagonal elements
=
3 0
βˆ’2 1
+
1 βˆ’2
0 1
+
1 2
βˆ’1 3
= 3 + 1 + 5 = 9
𝑆3 =
1 2 βˆ’2
βˆ’1 3 0
0 βˆ’2 1
= 1
The characteristic equation is πœ†3 βˆ’ 5πœ†2 + 9πœ† βˆ’ 1 = 0.
Solving Non Linear Equations
To verify Cayley Hamilton theorem:
To prove 𝐴3 βˆ’ 5𝐴2 + 9𝐴 βˆ’ 𝐼 = 0.
𝐴2
=
βˆ’1 12 βˆ’4
βˆ’4 7 2
2 βˆ’8 1
𝐴3
=
βˆ’13 42 βˆ’2
βˆ’11 9 10
10 βˆ’22 βˆ’3
𝐴3
βˆ’ 5𝐴2
+ 9𝐴 βˆ’ 𝐼 =
βˆ’13 42 βˆ’2
βˆ’11 9 10
10 βˆ’22 βˆ’3
βˆ’ 5
βˆ’1 12 βˆ’4
βˆ’4 7 2
2 βˆ’8 1
+ 9
1 2 βˆ’2
βˆ’1 3 0
0 βˆ’2 1
βˆ’
1 0 0
0 1 0
0 0 1
=
0 0 0
0 0 0
0 0 0
To find π‘¨βˆ’πŸ
:
π΄βˆ’1
= 𝐴2
βˆ’ 5𝐴 + 9𝐼
=
βˆ’1 12 βˆ’4
βˆ’4 7 2
2 βˆ’8 1
βˆ’ 5
1 2 βˆ’2
βˆ’1 3 0
0 βˆ’2 1
+ 9
1 0 0
0 1 0
0 0 1
π΄βˆ’1 =
3 2 6
1 1 2
2 2 5
Example:2
Reduce the quadratic form 2π‘₯1
2
+ 6π‘₯2
2
+ 2π‘₯3
2
+ 8π‘₯1π‘₯3 to a canonical form by
orthogonal transformation. Also find its rank, signature, index and signature.
Solution:
The matrix of the given quadratic form is
𝐴 =
2 0 4
0 6 0
4 0 2
The characteristic equation is πœ†3
βˆ’ 𝑆1πœ†2
+ 𝑆2πœ† βˆ’ 𝑆3 = 0.
𝑆1 = 10, 𝑆2 = 12, 𝑆3 = βˆ’72.
The characteristic equation is πœ†3
βˆ’ 10πœ†2
+ 12πœ† + 72 = 0.
Eigen values are πœ† = βˆ’2,6,6.
To find Eigen vectors:
Eigen vector corresponding to πœ† = βˆ’2 is 𝑋1 =
βˆ’1
0
1
Eigen vector corresponding to πœ† = 6 is 𝑋2 =
0
1
0
Eigen vector corresponding to πœ† = 6 is 𝑋3 =
1
0
1
Normalized Matrix N=
βˆ’
1
2
0
1
2
0 1 0
1
2
0
1
2
; NT =
βˆ’
1
2
0
1
2
0 1 0
1
2
0
1
2
Clearly N is orthogonal.
𝑁𝑇𝐴𝑁 = 𝐷 =
βˆ’2 0 0
0 6 0
0 0 6
To reduce to canonical form:
Let 𝑋 = π‘π‘Œ be an orthogonal transformation where π‘Œ =
𝑦1
𝑦2
𝑦3
This will make the Quadratic form to Canonical form
βˆ’2𝑦1
2
+ 6𝑦2
2
+ 6𝑦3
2
.
Rank π‘Ÿ = 3.
Index= Number of Positive eigen values 𝑝 = 2.
Signature = 2𝑝 βˆ’ π‘Ÿ = 1.
Since the eigen values are both positive and negative.
Nature = Indefinite
UNIT-II
DIFFERENTIAL CALCULUS
Maxima and Minima
Photography memory
𝑓 π‘₯ = 2π‘₯3
+ 5π‘₯2
βˆ’ 4π‘₯
Can you find the maxima and minima with in 2 minutes?
Can you find the intervals on which increasing/decreasing?
Can you find the intervals of concavity?
Find the maximum and minimum values of 2π‘₯3 + 5π‘₯2 βˆ’ 4π‘₯.
Solution:
Given: 𝑓 π‘₯ = 2π‘₯3
+ 5π‘₯2
βˆ’ 4π‘₯
𝑓′
π‘₯ = 6π‘₯2
+ 10π‘₯ βˆ’ 4
To find critical point:
𝑓′
π‘₯ = 0
6π‘₯2
+ 10π‘₯ βˆ’ 4 = 0
3π‘₯2
+ 5π‘₯ βˆ’ 2 = 0
β‡’ π‘₯ = βˆ’2,
1
3
are critical points.
To find local maxima and minima:
𝑓 βˆ’2 = 2 βˆ’2 3
+ 5 βˆ’2 2
βˆ’ 4 βˆ’2 = βˆ’16 + 20 + 8 = 12
𝑓
1
3
= 2
1
3
3
+ 5
1
3
2
βˆ’ 4
1
3
=
2
27
+
5
9
βˆ’
4
3
=
2 + 15 βˆ’ 36
27
= βˆ’
19
27
β‡’ 𝒇 𝒙 has maximum value 𝟏𝟐 at 𝒙 = βˆ’πŸ.
β‡’ 𝒇 𝒙 has minimum value βˆ’
πŸπŸ—
πŸπŸ•
at 𝒙 =
𝟏
πŸ‘
.
Continuous functions
For what values of constant 𝒂 and 𝒃 is
𝒇 𝒙 =
βˆ’πŸ
𝒂𝒙 βˆ’ 𝒃
πŸ‘
𝒙 ≀ βˆ’πŸ
βˆ’πŸ < 𝒙 < 𝟏
𝒙 β‰₯ 𝟏
is continuous at every 𝒙? .
Solution:
Since 𝑓(π‘₯) is continuous at π‘₯ = βˆ’1.
β‡’ π‘Ž + 𝑏 = 2…(1)
Since 𝑓(π‘₯) is continuous at π‘₯ = 1.
β‡’ π‘Ž βˆ’ 𝑏 = 3
β‡’ π‘Ž =
5
2
; 𝑏 = βˆ’
1
2
Solving Linear equations
Differentiation rules (sum, product, quotient, chain
rules) - Implicit differentiation - Logarithmic
differentiation
Other topics
UNIT III
FUNCTIONS OF SEVERAL
VARIABLES
Euler’s theorem on Homogeneous function
If 𝑒 is a homogeneous function of degree 𝑛 in π‘₯ and 𝑦, then π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 𝑛𝑒.
1. If 𝑒 = sinβˆ’1 π‘₯3βˆ’π‘¦3
π‘₯+𝑦
prove that π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 2 tan 𝑒
2. If 𝑒 = log
π‘₯4+𝑦4
π‘₯+𝑦
, show that π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 3.
Total derivatives
1. If 𝑔 π‘₯, 𝑦 = 𝛹(𝑒, 𝑣) where 𝑒 = π‘₯2
βˆ’ 𝑦2
and 𝑣 = 2π‘₯𝑦, Prove that
πœ•2𝑔
πœ•π‘₯2 +
πœ•2𝑔
πœ•π‘¦2 = 4 π‘₯2 + 𝑦2 [
πœ•2𝛹
πœ•π‘’2 +
πœ•2𝛹
πœ•π‘£2 ].
2. Given the transformations 𝑒 = 𝑒π‘₯
cos 𝑦 and 𝑣 = 𝑒π‘₯
sin 𝑦 and that βˆ… is a
function of 𝑒 and 𝑣 and also of π‘₯ and 𝑦, prove that
πœ•2βˆ…
πœ•π‘₯2 +
πœ•2βˆ…
πœ•π‘¦2 = 𝑒2 + 𝑣2 [
πœ•2βˆ…
πœ•π‘’2 +
πœ•2βˆ…
πœ•π‘£2].
3.If 𝐹 = 𝑓 π‘₯, 𝑦 , π‘₯ = 𝑒𝑒 sin 𝑣 , 𝑦 = 𝑒𝑒 cos 𝑣
Show that
πœ•2𝐹
πœ•π‘’2 +
πœ•2𝐹
πœ•π‘£2 = (π‘₯2 + 𝑦2) (
πœ•2𝐹
πœ•π‘₯2 +
πœ•2𝐹
πœ•π‘¦2) = e2u[
πœ•2𝐹
πœ•π‘₯2 +
πœ•2𝐹
πœ•π‘¦2]
(or)
πœ•2𝐹
πœ•π‘₯2 +
πœ•2𝐹
πœ•π‘¦2 = π‘’βˆ’2𝑒 [
πœ•2𝐹
πœ•π‘’2 +
πœ•2𝐹
πœ•π‘£2]
4. If 𝑧 = 𝑓(π‘₯, 𝑦) where π‘₯ = π‘Ÿ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ , Show that
πœ•π‘§
πœ•π‘₯
2
+
πœ•π‘§
πœ•π‘¦
2
=
πœ•π‘§
πœ•π‘Ÿ
2
+
1
π‘Ÿ2
πœ•π‘§
πœ•πœƒ
2
Jacobian Matrix
If 𝑒 =
𝑦2
2π‘₯
, 𝑣 =
π‘₯2+𝑦2
2π‘₯
, find
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
.
Solution:
𝑒 =
𝑦2
2π‘₯
𝑣 =
π‘₯2+𝑦2
2π‘₯
πœ•π‘’
πœ•π‘₯
= βˆ’
𝑦2
2π‘₯2
πœ•π‘£
πœ•π‘₯
=
π‘₯2βˆ’π‘¦2
2π‘₯2
πœ•π‘’
πœ•π‘¦
=
𝑦
π‘₯
πœ•π‘£
πœ•π‘¦
=
𝑦
π‘₯
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
=
πœ•π‘’
πœ•π‘₯
πœ•π‘’
πœ•π‘¦
πœ•π‘£
πœ•π‘₯
πœ•π‘£
πœ•π‘¦
=
βˆ’
𝑦2
2π‘₯2
𝑦
π‘₯
π‘₯2βˆ’π‘¦2
2π‘₯2
𝑦
π‘₯
= βˆ’
𝑦
2π‘₯
Example 1
Example 2
If 𝑒 =
𝑦𝑧
π‘₯
, 𝑣 =
𝑧π‘₯
𝑦
, 𝑀 =
π‘₯𝑦
𝑧
, show that
πœ•(𝑒,𝑣,𝑀)
πœ•(π‘₯,𝑦,𝑧)
= 4.
Taylor’s series
𝑓 π‘₯, 𝑦
= 𝑓 π‘Ž, 𝑏 +
1
1!
β„Ž + π‘˜π‘“π‘¦ π‘Ž, 𝑏 +
1
1!
β„Žπ‘“π‘₯ π‘Ž, 𝑏 + π‘˜π‘“π‘¦ π‘Ž, 𝑏
+
1
2!
β„Ž2
𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2β„Žπ‘˜π‘“π‘₯𝑦 π‘Ž, 𝑏 + π‘˜2
𝑓𝑦𝑦 π‘Ž, 𝑏
+
1
3!
β„Ž3
𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3β„Ž2
π‘˜π‘“π‘₯π‘₯𝑦 π‘Ž, 𝑏 𝑓π‘₯ π‘Ž, 𝑏 + 3β„Žπ‘˜2
𝑓π‘₯𝑦𝑦 π‘Ž, 𝑏 + π‘˜3
𝑓𝑦𝑦𝑦 π‘Ž, 𝑏
Use Taylor’s series formula to expand the function defined by
𝑓 π‘₯, 𝑦 = π‘₯3 + 𝑦3 + π‘₯𝑦2 in powers of π‘₯ βˆ’ 1 and 𝑦 βˆ’ 2 .
Example
Lagrange Multipliers
Suppose, we require to find the maximum and minimum values of 𝑓(π‘₯, 𝑦, 𝑧) where
π‘₯, 𝑦, 𝑧 are subject to the constraint equation
𝑔 π‘₯, 𝑦, 𝑧 = 0.
We define a function
𝐹 π‘₯, 𝑦, 𝑧 = 𝑓 π‘₯, 𝑦, 𝑧 + πœ† 𝑔 π‘₯, 𝑦, 𝑧 …(1)
Where πœ† is called Lagrange Multiplier
The necessary condition for a maximum or minimum are
πœ•πΉ
πœ•π‘₯
= 0 … 2
πœ•πΉ
πœ•π‘¦
= 0 … (3) and
πœ•πΉ
πœ•π‘§
= 0 … (4)
Example:
2. Find the dimension of a rectangular box, without top of maximum capacity and
surface area 432 square meters.
3. Find the volume of the greatest rectangular parallelopiped
inscribed in the ellipsoid whose equation is
π‘₯2
π‘Ž2 +
𝑦2
𝑏2 +
𝑧2
𝑐2 = 1 .
4. Find the shortest and the longest distances from the point (1,2, βˆ’1) to
the sphere π‘₯2
+ 𝑦2
+ 𝑧2
= 24, using method of Lagrange multipliers.
1. A rectangular box open at the top, is to have a volume of 32𝑐𝑐. Find the
dimensions of the box, that requires the least material for its construction.
UNIT IV
Integral Calculus
1. Substitution rule
2. Integration by parts
3. Integration of rational functions
4. Improper integrals
Important topics
UNIT V
Multiple integrals
Double Integral
Change of cartesian co-ordinates to polar co
ordinates
1. By changing to polar co ordinates, find the value of the integral 0
2π‘Ž
0
2π‘Žπ‘₯βˆ’π‘₯2
π‘₯2
+ 𝑦2
𝑑𝑦𝑑π‘₯.
Solution:
Given: I= π‘₯=0
π‘₯=2π‘Ž
𝑦=0
𝑦= 2π‘Žπ‘₯βˆ’π‘₯2
π‘₯2
+ 𝑦2
𝑑𝑦𝑑π‘₯
π‘₯ varies from π‘₯ = 0 to π‘₯ = 2π‘Ž.
𝑦 varies from 𝑦 = 0 to 𝑦 = 2π‘Žπ‘₯ βˆ’ π‘₯2
β‡’ 𝑦2 = 2π‘Žπ‘₯ βˆ’ π‘₯2
π‘₯2 + 𝑦2 βˆ’ 2π‘Žπ‘₯ = 0
π‘₯2
βˆ’ 2π‘Žπ‘₯ + π‘Ž2
βˆ’ π‘Ž2
+ 𝑦2
= 0
β‡’ π‘₯ βˆ’ π‘Ž 2 + 𝑦2 = π‘Ž2
π‘₯ βˆ’ π‘Ž 2
+ 𝑦2
= π‘Ž2
𝑦 = 0
π‘₯ = 2π‘Ž
𝑦 = 2π‘Žπ‘₯ βˆ’ π‘₯2
π‘₯ = 0
πœƒ = 0
πœƒ =
πœ‹
2
π‘Ÿ = 0
π‘Ÿ = 2π‘Ž cos πœƒ
∴ I = 0
πœ‹
2
π‘Ÿ=0
π‘Ÿ=2π‘Ž cos πœƒ
π‘Ÿ2 (π‘Ÿ π‘‘π‘Ÿπ‘‘πœƒ)
=
0
πœ‹
2
π‘Ÿ=0
π‘Ÿ=2π‘Ž cos πœƒ
π‘Ÿ3 π‘‘π‘Ÿπ‘‘πœƒ
=
0
πœ‹
2 π‘Ÿ4
4 0
2 acos πœƒ
π‘‘πœƒ
=
1
4 0
πœ‹
2
(2 π‘Ž cos πœƒ)4
π‘‘πœƒ
= 4 a4
0
πœ‹
2(cos πœƒ)4
π‘‘πœƒ
= 4 a4
0
πœ‹
2(cos4 πœƒ) π‘‘πœƒ
= 4 a4 3
4
.
1
2
.
πœ‹
2
=
3πœ‹
4
π‘Ž4
Solution
𝑦 = π‘₯ π‘₯ = π‘Ž
𝑦 = 0
𝑦 = π‘Ž
2. Evaluate 0
π‘Ž
𝑦
π‘Ž π‘₯2
π‘₯2+𝑦2
dx dy by changing into polar co-ordinates
r=0
Change of order
of integration
Important to note
1.When you draw vertical line or Horizontal line both the ends have same curve
2.Suppose if you have different curves,split the region at intersection points.
Example:1
Change of the order of 𝐼 = 0
π‘Ž
𝑦
π‘Ž π‘₯
π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦 and then evaluate it.
Solution
Given: 𝐼 = 𝑦=0
𝑦=π‘Ž
π‘₯=𝑦
π‘₯=π‘Ž π‘₯
π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦
π‘₯ varies from π‘₯ = 𝑦 to π‘₯ = π‘Ž.
𝑦 varies from 𝑦 = 0 to 𝑦 = π‘Ž
𝑦 = π‘₯
𝑦 = 0
π‘₯ = 0
π‘₯ = π‘Ž
𝑦 = π‘Ž
𝑦 = π‘₯
𝑦 = 0
π‘₯ = 0
π‘₯ = π‘Ž
𝑦 = π‘Ž
π‘₯ varies from π‘₯ = 0 to π‘₯ = π‘Ž.
𝑦 varies from 𝑦 = 0 to 𝑦 = π‘₯
Change of order of integration
𝐼 = 0
π‘Ž
𝑦
π‘Ž π‘₯
π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦 = π‘₯=0
π‘₯=π‘Ž
𝑦=0
𝑦=π‘₯ π‘₯
π‘₯2+𝑦2 𝑑𝑦 𝑑π‘₯
=
π‘₯=0
π‘₯=π‘Ž
π‘₯
1
π‘₯
tanβˆ’1
𝑦
π‘₯ 𝑦=0
𝑦=π‘₯
𝑑π‘₯
=
0
π‘Ž
[tanβˆ’1
1 βˆ’ tanβˆ’1
0] 𝑑π‘₯
= 0
π‘Ž
[
πœ‹
4
βˆ’ 0] 𝑑π‘₯ =
πœ‹
4
.
Area using double integral
1. Using double integral, find the area bounded by 𝑦 = π‘₯ and 𝑦 = π‘₯2
2. Find the smaller of the area bounded by 𝑦 = 2 βˆ’ π‘₯ and π‘₯2 + 𝑦2 = 4.
3. Find the area of the ellipse
π‘₯2
π‘Ž2 +
𝑦2
𝑏2 = 1.
4. Find the area between the parabolas 𝑦2
= 4π‘Žπ‘₯ and π‘₯2
= 4π‘Žπ‘¦
5. Find the area enclosed by the curves 𝑦 = π‘₯2
and π‘₯ + 𝑦 = 2.
VOLUME INTEGRAL
1. Find the volume of the sphere π‘₯2 + 𝑦2 + 𝑧2 = π‘Ž2 without transformation
(0r)
Evaluate the volume of the positive octant of the sphere of radius a
4
2. Find the volume of the ellipsoid
π‘₯2
π‘Ž2 +
𝑦2
𝑏2 +
𝑧2
𝑐2 = π‘Ž2
without transformation
3. Calculate the volume of the solid bounded by the surface π‘₯ = 0, 𝑦 = 0, 𝑧 = 0 and π‘₯ + 𝑦 + 𝑧 = 1.
4. Evaluate
𝑑π‘₯ 𝑑𝑦 𝑑𝑧
π‘Ž2βˆ’π‘₯2βˆ’π‘¦2βˆ’π‘§2
over the first octant of the sphere π‘₯2
+ 𝑦2
+ 𝑧2
= π‘Ž2
.
https://youtu.be/co1aWiCAHtw?si=qK3cEZPvf-_HoT47
Erode Mahesh Motivational Speech
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx

More Related Content

Similar to MATRICES AND CALCULUS.pptx

Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision cardPuna Ripiye
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision cardPuna Ripiye
Β 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
Β 
Quarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equationsQuarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equationsReynz Anario
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
Β 
Semana 14 ecuacion cuadratica Γ‘lgebra-uni ccesa007
Semana 14   ecuacion cuadratica  Γ‘lgebra-uni ccesa007Semana 14   ecuacion cuadratica  Γ‘lgebra-uni ccesa007
Semana 14 ecuacion cuadratica Γ‘lgebra-uni ccesa007Demetrio Ccesa Rayme
Β 
Integral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxIntegral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxJhennyRosePahed1
Β 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3Nazrin Nazdri
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .happycocoman
Β 
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfMath 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfaflores17
Β 
Lecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfLecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfRupesh383474
Β 
MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11ssuser184df1
Β 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfKyleBrianSLumanglas
Β 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functionsLawrence De Vera
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
Β 
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2ΠœΠ°Ρ€Ρ‚
Β 

Similar to MATRICES AND CALCULUS.pptx (20)

Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Β 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
Β 
Quarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equationsQuarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equations
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Β 
Semana 14 ecuacion cuadratica Γ‘lgebra-uni ccesa007
Semana 14   ecuacion cuadratica  Γ‘lgebra-uni ccesa007Semana 14   ecuacion cuadratica  Γ‘lgebra-uni ccesa007
Semana 14 ecuacion cuadratica Γ‘lgebra-uni ccesa007
Β 
Integral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxIntegral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptx
Β 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
Β 
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfMath 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Β 
Lecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfLecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdf
Β 
MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11
Β 
Factoring.pptx
Factoring.pptxFactoring.pptx
Factoring.pptx
Β 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdf
Β 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functions
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Β 
doc
docdoc
doc
Β 
Lecture 3
Lecture 3Lecture 3
Lecture 3
Β 
Lecture 3
Lecture 3Lecture 3
Lecture 3
Β 
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
Β 

Recently uploaded

Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
Β 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)dollysharma2066
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
Β 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
Β 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
Β 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
Β 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
Β 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 

MATRICES AND CALCULUS.pptx

  • 1.
  • 2. MA 3151 - Matrices and Calculus
  • 4. CAYLEY HAMILTON THEOREM Every square matrix satisfies its own characteristic equation William Rowan Hamilton Arthur Cayley
  • 5. Application of Cayley Hamilton Theorem i) To find the inverse of a matrix A ii)To find higher power of a matrix A
  • 6. Verify Cayley Hamilton theorem for 𝐴 = 1 2 βˆ’2 βˆ’1 3 0 0 βˆ’2 1 and hence find π΄βˆ’1. Solution: The characteristic equation is πœ†3 βˆ’ 𝑆1πœ†2 + 𝑆2πœ† βˆ’ 𝑆3 = 0. π‘ΊπŸ = Trace of A= πŸ“ 𝑆2 = Sum of minors of leading diagonal elements = 3 0 βˆ’2 1 + 1 βˆ’2 0 1 + 1 2 βˆ’1 3 = 3 + 1 + 5 = 9
  • 7. 𝑆3 = 1 2 βˆ’2 βˆ’1 3 0 0 βˆ’2 1 = 1 The characteristic equation is πœ†3 βˆ’ 5πœ†2 + 9πœ† βˆ’ 1 = 0.
  • 8. Solving Non Linear Equations
  • 9. To verify Cayley Hamilton theorem: To prove 𝐴3 βˆ’ 5𝐴2 + 9𝐴 βˆ’ 𝐼 = 0. 𝐴2 = βˆ’1 12 βˆ’4 βˆ’4 7 2 2 βˆ’8 1 𝐴3 = βˆ’13 42 βˆ’2 βˆ’11 9 10 10 βˆ’22 βˆ’3 𝐴3 βˆ’ 5𝐴2 + 9𝐴 βˆ’ 𝐼 = βˆ’13 42 βˆ’2 βˆ’11 9 10 10 βˆ’22 βˆ’3 βˆ’ 5 βˆ’1 12 βˆ’4 βˆ’4 7 2 2 βˆ’8 1 + 9 1 2 βˆ’2 βˆ’1 3 0 0 βˆ’2 1 βˆ’ 1 0 0 0 1 0 0 0 1 = 0 0 0 0 0 0 0 0 0
  • 10. To find π‘¨βˆ’πŸ : π΄βˆ’1 = 𝐴2 βˆ’ 5𝐴 + 9𝐼 = βˆ’1 12 βˆ’4 βˆ’4 7 2 2 βˆ’8 1 βˆ’ 5 1 2 βˆ’2 βˆ’1 3 0 0 βˆ’2 1 + 9 1 0 0 0 1 0 0 0 1 π΄βˆ’1 = 3 2 6 1 1 2 2 2 5
  • 11. Example:2 Reduce the quadratic form 2π‘₯1 2 + 6π‘₯2 2 + 2π‘₯3 2 + 8π‘₯1π‘₯3 to a canonical form by orthogonal transformation. Also find its rank, signature, index and signature. Solution: The matrix of the given quadratic form is 𝐴 = 2 0 4 0 6 0 4 0 2 The characteristic equation is πœ†3 βˆ’ 𝑆1πœ†2 + 𝑆2πœ† βˆ’ 𝑆3 = 0. 𝑆1 = 10, 𝑆2 = 12, 𝑆3 = βˆ’72. The characteristic equation is πœ†3 βˆ’ 10πœ†2 + 12πœ† + 72 = 0. Eigen values are πœ† = βˆ’2,6,6.
  • 12. To find Eigen vectors: Eigen vector corresponding to πœ† = βˆ’2 is 𝑋1 = βˆ’1 0 1 Eigen vector corresponding to πœ† = 6 is 𝑋2 = 0 1 0 Eigen vector corresponding to πœ† = 6 is 𝑋3 = 1 0 1
  • 13. Normalized Matrix N= βˆ’ 1 2 0 1 2 0 1 0 1 2 0 1 2 ; NT = βˆ’ 1 2 0 1 2 0 1 0 1 2 0 1 2 Clearly N is orthogonal. 𝑁𝑇𝐴𝑁 = 𝐷 = βˆ’2 0 0 0 6 0 0 0 6
  • 14. To reduce to canonical form: Let 𝑋 = π‘π‘Œ be an orthogonal transformation where π‘Œ = 𝑦1 𝑦2 𝑦3 This will make the Quadratic form to Canonical form βˆ’2𝑦1 2 + 6𝑦2 2 + 6𝑦3 2 . Rank π‘Ÿ = 3. Index= Number of Positive eigen values 𝑝 = 2. Signature = 2𝑝 βˆ’ π‘Ÿ = 1. Since the eigen values are both positive and negative. Nature = Indefinite
  • 18.
  • 19. 𝑓 π‘₯ = 2π‘₯3 + 5π‘₯2 βˆ’ 4π‘₯ Can you find the maxima and minima with in 2 minutes? Can you find the intervals on which increasing/decreasing? Can you find the intervals of concavity?
  • 20. Find the maximum and minimum values of 2π‘₯3 + 5π‘₯2 βˆ’ 4π‘₯. Solution: Given: 𝑓 π‘₯ = 2π‘₯3 + 5π‘₯2 βˆ’ 4π‘₯ 𝑓′ π‘₯ = 6π‘₯2 + 10π‘₯ βˆ’ 4 To find critical point: 𝑓′ π‘₯ = 0 6π‘₯2 + 10π‘₯ βˆ’ 4 = 0 3π‘₯2 + 5π‘₯ βˆ’ 2 = 0 β‡’ π‘₯ = βˆ’2, 1 3 are critical points. To find local maxima and minima: 𝑓 βˆ’2 = 2 βˆ’2 3 + 5 βˆ’2 2 βˆ’ 4 βˆ’2 = βˆ’16 + 20 + 8 = 12 𝑓 1 3 = 2 1 3 3 + 5 1 3 2 βˆ’ 4 1 3 = 2 27 + 5 9 βˆ’ 4 3 = 2 + 15 βˆ’ 36 27 = βˆ’ 19 27 β‡’ 𝒇 𝒙 has maximum value 𝟏𝟐 at 𝒙 = βˆ’πŸ. β‡’ 𝒇 𝒙 has minimum value βˆ’ πŸπŸ— πŸπŸ• at 𝒙 = 𝟏 πŸ‘ .
  • 21. Continuous functions For what values of constant 𝒂 and 𝒃 is 𝒇 𝒙 = βˆ’πŸ 𝒂𝒙 βˆ’ 𝒃 πŸ‘ 𝒙 ≀ βˆ’πŸ βˆ’πŸ < 𝒙 < 𝟏 𝒙 β‰₯ 𝟏 is continuous at every 𝒙? . Solution: Since 𝑓(π‘₯) is continuous at π‘₯ = βˆ’1. β‡’ π‘Ž + 𝑏 = 2…(1) Since 𝑓(π‘₯) is continuous at π‘₯ = 1. β‡’ π‘Ž βˆ’ 𝑏 = 3 β‡’ π‘Ž = 5 2 ; 𝑏 = βˆ’ 1 2
  • 23. Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation Other topics
  • 24. UNIT III FUNCTIONS OF SEVERAL VARIABLES
  • 25. Euler’s theorem on Homogeneous function If 𝑒 is a homogeneous function of degree 𝑛 in π‘₯ and 𝑦, then π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 𝑛𝑒. 1. If 𝑒 = sinβˆ’1 π‘₯3βˆ’π‘¦3 π‘₯+𝑦 prove that π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 2 tan 𝑒 2. If 𝑒 = log π‘₯4+𝑦4 π‘₯+𝑦 , show that π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 3.
  • 26. Total derivatives 1. If 𝑔 π‘₯, 𝑦 = 𝛹(𝑒, 𝑣) where 𝑒 = π‘₯2 βˆ’ 𝑦2 and 𝑣 = 2π‘₯𝑦, Prove that πœ•2𝑔 πœ•π‘₯2 + πœ•2𝑔 πœ•π‘¦2 = 4 π‘₯2 + 𝑦2 [ πœ•2𝛹 πœ•π‘’2 + πœ•2𝛹 πœ•π‘£2 ]. 2. Given the transformations 𝑒 = 𝑒π‘₯ cos 𝑦 and 𝑣 = 𝑒π‘₯ sin 𝑦 and that βˆ… is a function of 𝑒 and 𝑣 and also of π‘₯ and 𝑦, prove that πœ•2βˆ… πœ•π‘₯2 + πœ•2βˆ… πœ•π‘¦2 = 𝑒2 + 𝑣2 [ πœ•2βˆ… πœ•π‘’2 + πœ•2βˆ… πœ•π‘£2].
  • 27. 3.If 𝐹 = 𝑓 π‘₯, 𝑦 , π‘₯ = 𝑒𝑒 sin 𝑣 , 𝑦 = 𝑒𝑒 cos 𝑣 Show that πœ•2𝐹 πœ•π‘’2 + πœ•2𝐹 πœ•π‘£2 = (π‘₯2 + 𝑦2) ( πœ•2𝐹 πœ•π‘₯2 + πœ•2𝐹 πœ•π‘¦2) = e2u[ πœ•2𝐹 πœ•π‘₯2 + πœ•2𝐹 πœ•π‘¦2] (or) πœ•2𝐹 πœ•π‘₯2 + πœ•2𝐹 πœ•π‘¦2 = π‘’βˆ’2𝑒 [ πœ•2𝐹 πœ•π‘’2 + πœ•2𝐹 πœ•π‘£2] 4. If 𝑧 = 𝑓(π‘₯, 𝑦) where π‘₯ = π‘Ÿ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ , Show that πœ•π‘§ πœ•π‘₯ 2 + πœ•π‘§ πœ•π‘¦ 2 = πœ•π‘§ πœ•π‘Ÿ 2 + 1 π‘Ÿ2 πœ•π‘§ πœ•πœƒ 2
  • 29.
  • 30. If 𝑒 = 𝑦2 2π‘₯ , 𝑣 = π‘₯2+𝑦2 2π‘₯ , find πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 . Solution: 𝑒 = 𝑦2 2π‘₯ 𝑣 = π‘₯2+𝑦2 2π‘₯ πœ•π‘’ πœ•π‘₯ = βˆ’ 𝑦2 2π‘₯2 πœ•π‘£ πœ•π‘₯ = π‘₯2βˆ’π‘¦2 2π‘₯2 πœ•π‘’ πœ•π‘¦ = 𝑦 π‘₯ πœ•π‘£ πœ•π‘¦ = 𝑦 π‘₯ πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 = πœ•π‘’ πœ•π‘₯ πœ•π‘’ πœ•π‘¦ πœ•π‘£ πœ•π‘₯ πœ•π‘£ πœ•π‘¦ = βˆ’ 𝑦2 2π‘₯2 𝑦 π‘₯ π‘₯2βˆ’π‘¦2 2π‘₯2 𝑦 π‘₯ = βˆ’ 𝑦 2π‘₯ Example 1
  • 31. Example 2 If 𝑒 = 𝑦𝑧 π‘₯ , 𝑣 = 𝑧π‘₯ 𝑦 , 𝑀 = π‘₯𝑦 𝑧 , show that πœ•(𝑒,𝑣,𝑀) πœ•(π‘₯,𝑦,𝑧) = 4.
  • 32. Taylor’s series 𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + 1 1! β„Ž + π‘˜π‘“π‘¦ π‘Ž, 𝑏 + 1 1! β„Žπ‘“π‘₯ π‘Ž, 𝑏 + π‘˜π‘“π‘¦ π‘Ž, 𝑏 + 1 2! β„Ž2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2β„Žπ‘˜π‘“π‘₯𝑦 π‘Ž, 𝑏 + π‘˜2 𝑓𝑦𝑦 π‘Ž, 𝑏 + 1 3! β„Ž3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3β„Ž2 π‘˜π‘“π‘₯π‘₯𝑦 π‘Ž, 𝑏 𝑓π‘₯ π‘Ž, 𝑏 + 3β„Žπ‘˜2 𝑓π‘₯𝑦𝑦 π‘Ž, 𝑏 + π‘˜3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏
  • 33. Use Taylor’s series formula to expand the function defined by 𝑓 π‘₯, 𝑦 = π‘₯3 + 𝑦3 + π‘₯𝑦2 in powers of π‘₯ βˆ’ 1 and 𝑦 βˆ’ 2 . Example
  • 34. Lagrange Multipliers Suppose, we require to find the maximum and minimum values of 𝑓(π‘₯, 𝑦, 𝑧) where π‘₯, 𝑦, 𝑧 are subject to the constraint equation 𝑔 π‘₯, 𝑦, 𝑧 = 0. We define a function 𝐹 π‘₯, 𝑦, 𝑧 = 𝑓 π‘₯, 𝑦, 𝑧 + πœ† 𝑔 π‘₯, 𝑦, 𝑧 …(1) Where πœ† is called Lagrange Multiplier The necessary condition for a maximum or minimum are πœ•πΉ πœ•π‘₯ = 0 … 2 πœ•πΉ πœ•π‘¦ = 0 … (3) and πœ•πΉ πœ•π‘§ = 0 … (4)
  • 35. Example: 2. Find the dimension of a rectangular box, without top of maximum capacity and surface area 432 square meters. 3. Find the volume of the greatest rectangular parallelopiped inscribed in the ellipsoid whose equation is π‘₯2 π‘Ž2 + 𝑦2 𝑏2 + 𝑧2 𝑐2 = 1 . 4. Find the shortest and the longest distances from the point (1,2, βˆ’1) to the sphere π‘₯2 + 𝑦2 + 𝑧2 = 24, using method of Lagrange multipliers. 1. A rectangular box open at the top, is to have a volume of 32𝑐𝑐. Find the dimensions of the box, that requires the least material for its construction.
  • 37. 1. Substitution rule 2. Integration by parts 3. Integration of rational functions 4. Improper integrals Important topics
  • 39. Double Integral Change of cartesian co-ordinates to polar co ordinates
  • 40. 1. By changing to polar co ordinates, find the value of the integral 0 2π‘Ž 0 2π‘Žπ‘₯βˆ’π‘₯2 π‘₯2 + 𝑦2 𝑑𝑦𝑑π‘₯. Solution: Given: I= π‘₯=0 π‘₯=2π‘Ž 𝑦=0 𝑦= 2π‘Žπ‘₯βˆ’π‘₯2 π‘₯2 + 𝑦2 𝑑𝑦𝑑π‘₯ π‘₯ varies from π‘₯ = 0 to π‘₯ = 2π‘Ž. 𝑦 varies from 𝑦 = 0 to 𝑦 = 2π‘Žπ‘₯ βˆ’ π‘₯2 β‡’ 𝑦2 = 2π‘Žπ‘₯ βˆ’ π‘₯2 π‘₯2 + 𝑦2 βˆ’ 2π‘Žπ‘₯ = 0 π‘₯2 βˆ’ 2π‘Žπ‘₯ + π‘Ž2 βˆ’ π‘Ž2 + 𝑦2 = 0 β‡’ π‘₯ βˆ’ π‘Ž 2 + 𝑦2 = π‘Ž2
  • 41. π‘₯ βˆ’ π‘Ž 2 + 𝑦2 = π‘Ž2 𝑦 = 0 π‘₯ = 2π‘Ž 𝑦 = 2π‘Žπ‘₯ βˆ’ π‘₯2 π‘₯ = 0
  • 42. πœƒ = 0 πœƒ = πœ‹ 2 π‘Ÿ = 0 π‘Ÿ = 2π‘Ž cos πœƒ
  • 43. ∴ I = 0 πœ‹ 2 π‘Ÿ=0 π‘Ÿ=2π‘Ž cos πœƒ π‘Ÿ2 (π‘Ÿ π‘‘π‘Ÿπ‘‘πœƒ) = 0 πœ‹ 2 π‘Ÿ=0 π‘Ÿ=2π‘Ž cos πœƒ π‘Ÿ3 π‘‘π‘Ÿπ‘‘πœƒ = 0 πœ‹ 2 π‘Ÿ4 4 0 2 acos πœƒ π‘‘πœƒ = 1 4 0 πœ‹ 2 (2 π‘Ž cos πœƒ)4 π‘‘πœƒ = 4 a4 0 πœ‹ 2(cos πœƒ)4 π‘‘πœƒ
  • 44. = 4 a4 0 πœ‹ 2(cos4 πœƒ) π‘‘πœƒ = 4 a4 3 4 . 1 2 . πœ‹ 2 = 3πœ‹ 4 π‘Ž4
  • 45. Solution 𝑦 = π‘₯ π‘₯ = π‘Ž 𝑦 = 0 𝑦 = π‘Ž 2. Evaluate 0 π‘Ž 𝑦 π‘Ž π‘₯2 π‘₯2+𝑦2 dx dy by changing into polar co-ordinates
  • 46. r=0
  • 47. Change of order of integration
  • 48. Important to note 1.When you draw vertical line or Horizontal line both the ends have same curve 2.Suppose if you have different curves,split the region at intersection points.
  • 49. Example:1 Change of the order of 𝐼 = 0 π‘Ž 𝑦 π‘Ž π‘₯ π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦 and then evaluate it. Solution Given: 𝐼 = 𝑦=0 𝑦=π‘Ž π‘₯=𝑦 π‘₯=π‘Ž π‘₯ π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦 π‘₯ varies from π‘₯ = 𝑦 to π‘₯ = π‘Ž. 𝑦 varies from 𝑦 = 0 to 𝑦 = π‘Ž 𝑦 = π‘₯ 𝑦 = 0 π‘₯ = 0 π‘₯ = π‘Ž 𝑦 = π‘Ž
  • 50.
  • 51. 𝑦 = π‘₯ 𝑦 = 0 π‘₯ = 0 π‘₯ = π‘Ž 𝑦 = π‘Ž π‘₯ varies from π‘₯ = 0 to π‘₯ = π‘Ž. 𝑦 varies from 𝑦 = 0 to 𝑦 = π‘₯ Change of order of integration 𝐼 = 0 π‘Ž 𝑦 π‘Ž π‘₯ π‘₯2+𝑦2 𝑑π‘₯ 𝑑𝑦 = π‘₯=0 π‘₯=π‘Ž 𝑦=0 𝑦=π‘₯ π‘₯ π‘₯2+𝑦2 𝑑𝑦 𝑑π‘₯ = π‘₯=0 π‘₯=π‘Ž π‘₯ 1 π‘₯ tanβˆ’1 𝑦 π‘₯ 𝑦=0 𝑦=π‘₯ 𝑑π‘₯ = 0 π‘Ž [tanβˆ’1 1 βˆ’ tanβˆ’1 0] 𝑑π‘₯ = 0 π‘Ž [ πœ‹ 4 βˆ’ 0] 𝑑π‘₯ = πœ‹ 4 .
  • 52. Area using double integral 1. Using double integral, find the area bounded by 𝑦 = π‘₯ and 𝑦 = π‘₯2 2. Find the smaller of the area bounded by 𝑦 = 2 βˆ’ π‘₯ and π‘₯2 + 𝑦2 = 4. 3. Find the area of the ellipse π‘₯2 π‘Ž2 + 𝑦2 𝑏2 = 1. 4. Find the area between the parabolas 𝑦2 = 4π‘Žπ‘₯ and π‘₯2 = 4π‘Žπ‘¦ 5. Find the area enclosed by the curves 𝑦 = π‘₯2 and π‘₯ + 𝑦 = 2.
  • 53. VOLUME INTEGRAL 1. Find the volume of the sphere π‘₯2 + 𝑦2 + 𝑧2 = π‘Ž2 without transformation (0r) Evaluate the volume of the positive octant of the sphere of radius a
  • 54. 4 2. Find the volume of the ellipsoid π‘₯2 π‘Ž2 + 𝑦2 𝑏2 + 𝑧2 𝑐2 = π‘Ž2 without transformation 3. Calculate the volume of the solid bounded by the surface π‘₯ = 0, 𝑦 = 0, 𝑧 = 0 and π‘₯ + 𝑦 + 𝑧 = 1. 4. Evaluate 𝑑π‘₯ 𝑑𝑦 𝑑𝑧 π‘Ž2βˆ’π‘₯2βˆ’π‘¦2βˆ’π‘§2 over the first octant of the sphere π‘₯2 + 𝑦2 + 𝑧2 = π‘Ž2 .
  • 56.