SlideShare a Scribd company logo
1 of 94
GENERAL MATHEMATICS
ANGELO S. REYES
SAMUEL CHRISTIAN COLLEGE
UNDERSTANDING
FUNCTIONS
UNDERSTANDING FUNCTIONS
β€’REVISITING FUNCTIONS
β€’EVALUATING FUNCTIONS
β€’PERFORMING OPERATIONS ON FUNCTIONS
β€’COMPOSITION OF FUNCTIONS
β€’SOLVING PROBLEMS INVOLVING FUNCTIONS
Why functions are important in
representing real-life situations?
Essential Questions:
REVISITING
FUNCTIONS
AT THE END OF THE LESSON
β€’I can represent real-life situations using functions,
including piecewise functions.
β€’I can differentiate functions from mere relations
β€’I can be representing rational functions through its (a)
table of values (b) graph (c) equations
β€’I can find the domain and range of rational functions;
and
β€’I can describe and graph different types of functions.
DEFINITION:
RELATIONS βˆ₯ DOMAIN βˆ₯
RANGE βˆ₯ FUNCTION
WHAT IS RELATION, DOMAIN, RANGE?
β€’A π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› is a set of ordered pairs.
β€’The π‘‘π‘œπ‘šπ‘Žπ‘–π‘› of a relation is the set of the first
coordinates.
β€’The π‘Ÿπ‘Žπ‘›π‘”π‘’ is the set of the second coordinates.
β€’ π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘  are often defined by equations with no
domain stated.
β€’If the π‘‘π‘œπ‘šπ‘Žπ‘–π‘› is not stated, we agree that the domain
consists of all real numbers that, when used to
substitute the independent variable, produce real
numbers for the dependent variable.
EXAMPLE:
EXAMPLE:
WHAT IS FUNCTION?
β€’A π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› is a relation that assigns to each member of
the domain exactly one member of the range.
β€’It is a 𝑠𝑒𝑑 π‘œπ‘“ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘–π‘Ÿπ‘  (π‘₯, 𝑦) in which no two
distinct ordered pairs have the same first member.
β€’The set of all permissible values of π‘₯ is called the
π‘‘π‘œπ‘šπ‘Žπ‘–π‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›.
β€’And the set of all resulting values of 𝑦 is called the
π‘Ÿπ‘Žπ‘›π‘”π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›.
WHAT IS FUNCTION?
β€’We can also define a function as a rule that
assigns to each element x in set A exactly one
element, called 𝒇(𝒙), in set B.
β€’We usually represent a function by the equation
π’š = 𝒇(𝒙) where π’š is the dependent variable and
𝒙 is the independent variable.
β€’Take note: that for every input (domain), there
corresponds a unique output (range).
WAYS ON HOW TO
DETERMINE IF A
RELATION IS A FUNCTION
OR NOT
FUNCTIONS DEFINED BY
GRAPH
VERTICAL LINE TEST
VERTICAL LINE TEST
β€’The graph of a function can be intersected by a
vertical line in at most one point, since in a
function; there is a unique value of to each value
of in the domain of the function.
β€’But if the vertical line intersects the graph at more
than one point, the graph is not that of a function
(it is only a relation).
β€’We usually represent a function by the equation
Graph the relation
𝒇 𝒙 = π’™πŸ
+ πŸπ’™ βˆ’ πŸ‘
Using Vertical Line Test
π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕?
Answer:
π‘­π’–π’π’„π’•π’Šπ’π’
Graph the relation
π’™πŸ
+ π’šπŸ
= πŸπŸ”
Using Vertical Line Test
π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕?
Answer:
𝑡𝒐𝒕
Using Vertical Line Test
π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕?
Answer:
𝑡𝒐𝒕
TYPES OF FUNCTION
CONSTANT
FUNCTION
LINEAR
FUNCTION
QUADRATIC
FUNCTION
CUBIC
FUNCTION
ABSOLUTE
FUNCTION
SQUARE ROOT
FUNCTION
EXPONENTIAL
FUNCTION
RATIONAL
FUNCTION
LOGARITHMIC
FUNCTION
INVERSE
FUNCTION
FLOORING
FUNCTION
CEILING
FUNCTION
SIGNUM
FUNCTION
OSCILLATING
FUNCTION
PIECEWISE FUNCTION
PIECEWISE FUNCTION
β€’Is a function defined by two or more formulas on
different parts of its domain.
Example
A merchant sells rice at 45 pesos a kilo. If, however,
a buyer buys more than 150 kilos of rice. The
merchant gives a 10% discount.
β€’If x represents the number of kilos of rice
purchased, express the amount to be paid by f(x).
β€’How much should be paid for 100 kilos of rice?
β€’How much should be paid for 200 kilos of rice?
Step 1: Express the situation, using function
If the number of kilos of purchased rice exceeds 150. That’s
π‘₯ > 150. Then the number of kilos in excess of 150 kilos is
given a 10% discount
If the number of kilos of purchased rice does not exceed
150. That is 0 ≀ π‘₯ ≀ 150 then 𝑓 π‘₯ = 45π‘₯
Step 1: Express the situation, using function
𝑓 π‘₯ =
45π‘₯ 𝑖𝑓 0 ≀ π‘₯ ≀ 150
40.50 + 675π‘₯ 𝑖𝑓 π‘₯ > 150
So, the function that describes the situation is:
Amount of the first 150
kilos of rice 45 150 = 6 750
Amount in excess of 150
kilos
πŸ’πŸ“ 𝟎. πŸ—πŸŽ 𝒙 βˆ’ πŸπŸ“πŸŽ = πŸ’πŸŽ. πŸ“πŸŽ(𝒙 βˆ’ πŸπŸ“πŸŽ)
Total Amount πŸ” πŸ•πŸ“πŸŽ + πŸ’πŸŽ. πŸ“πŸŽ 𝒙 βˆ’ πŸπŸ“πŸŽ = πŸ’πŸŽ. πŸ“πŸŽπ’™ + πŸ”πŸ•πŸ“
Step 2: Find the amount to be paid for 100
kilos of rice.
𝑓 π‘₯ = 45π‘₯
𝑓 100 = 45 100 = 4 500
Find f(100) by substituting x = 100 in the first piece or
chunk of the function because 100 < 150.
So, the amount to be paid for 100 kilos of rice is Php 4,500
Step 2: Find the amount to be paid for 200
kilos of rice.
𝑓 π‘₯ = 40.50π‘₯ + 675
𝑓 200 = 40.50 200 + 675
𝑓 200 = 8 775
Find f(200) by substituting x=200 in the second piece or
chunk of the function because 200>150.
So, the amount to be paid for 200 kilos of rice is Php 8 775.
GRAPHING
PIECEWISE FUNCTION
Graph: 𝒇 𝒙 =
π‘₯ βˆ’ 2 , π‘₯ ≀ βˆ’2
3π‘₯2 βˆ’ 5 , π‘₯ > βˆ’2
The function is described by
two intervals. Take note that
when x=-2, f(x)=x-2 is
defined. That is why the
point (-2,-4) is shaded.
Graph: 𝒇 𝒙 =
π‘₯ βˆ’ 2 , π‘₯ ≀ βˆ’2
3π‘₯2 βˆ’ 5 , π‘₯ > βˆ’2
In 𝑓 π‘₯ = 3π‘₯2
βˆ’ 5 when x=-2
the point (-2,7) is not shaded
because it is not defined.
Clearly, by vertical line test,
the piecewise is indeed a
function.
EVALUATING
FUNCTION
Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the
following: 𝑓 5 π‘Žπ‘›π‘‘ 𝑓 0
𝑓 π‘₯ = 4π‘₯2
βˆ’ 5π‘₯ + 3
𝑓 5 = 4 5 2
βˆ’ 5 5 + 3
𝑓 5 = 100 βˆ’ 25 + 3
𝑓 5 = 78
𝑓 π‘₯ = 4π‘₯2
βˆ’ 5π‘₯ + 3
𝑓 0 = 4 0 2
βˆ’ 5 0 + 3
𝑓 0 = 0 βˆ’ 0 + 3
𝑓 0 = 3
Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the
following: 𝑓
1
4
π‘Žπ‘›π‘‘ 𝑓
2
2
𝑓 π‘₯ = 4π‘₯2
βˆ’ 5π‘₯ + 3
𝑓
1
4
= 4
1
4
2
βˆ’ 5
1
4
+ 3
𝑓
1
4
=
1
4
βˆ’
5
4
+ 3
𝑓
1
4
= 2
𝑓 π‘₯ = 4π‘₯2
βˆ’ 5π‘₯ + 3
𝑓
2
2
= 4
2
2
2
βˆ’ 5
2
2
+ 3
𝑓
2
2
= 4
1
2
βˆ’
5 2
4
+ 3
𝑓
2
2
= βˆ’
5 2
4
+ 5
Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the
following: 𝑓(π‘₯ + 1)
𝑓 π‘₯ = 4π‘₯2
βˆ’ 5π‘₯ + 3
𝑓 π‘₯ + 1 = 4 π‘₯ + 1 2
βˆ’ 5 π‘₯ + 1 + 3
𝑓 π‘₯ + 1 = 4 π‘₯2
+ 2π‘₯ + 1 βˆ’ 5π‘₯ βˆ’ 5 + 3
𝑓 π‘₯ + 1 = 4π‘₯2
+ 8π‘₯ + 4 βˆ’ 5 βˆ’ 5π‘₯ βˆ’ 2
𝑓 π‘₯ + 1 = 4π‘₯2
+ 3π‘₯ βˆ’ 3
Example: If 𝑓 π‘₯ = 3π‘₯ + 2 evaluate the
following:
𝑓 π‘₯+β„Ž βˆ’π‘“(π‘₯)
β„Ž
𝑓 π‘₯ = 3π‘₯ + 2
𝑓 π‘₯ + β„Ž = 3 π‘₯ + β„Ž + 2
𝑓 π‘₯ + β„Ž = 3π‘₯ + 3β„Ž + 2
𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ + 3β„Ž + 2 βˆ’ 3π‘₯ + 2
𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ + 3β„Ž + 2 βˆ’ 3π‘₯ βˆ’ 2
𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ βˆ’ 3π‘₯ + 3β„Ž + 2 βˆ’ 2
𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3β„Ž
𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯
β„Ž
=
3β„Ž
β„Ž
= 3
EVALUATING
PIECEWISE FUNCTION
Example: Given the piecewise below
Find the following: β„Ž βˆ’10 , β„Ž
1
2
, β„Ž(6)
Find: β„Ž(βˆ’10)
Step 1: Determine the piece that should be used.
Since -10 belongs to the interval x < -5. therefore,
we shall use the third piece of function
Step 2: Find h(-10) using the 3rd piece of the function
β„Ž π‘₯ = 2 π‘₯ + 4 2
+ 10
β„Ž βˆ’10 = 2 βˆ’10 + 4 2
+ 10
β„Ž βˆ’10 = 2 36 + 10
β„Ž βˆ’10 = 82
Find: β„Ž
1
2
Step 1: Determine the piece that should be used.
Since 1/2 belongs to the interval βˆ’5 ≀ π‘₯ < 6.
therefore, we shall use the second piece of
function
Step 2: Find h(1/2) using the 2nd piece of the function
β„Ž π‘₯ =
3
2π‘₯
β„Ž
1
2
=
3
2
1
2
β„Ž
1
2
= 3
Find: β„Ž(6)
Step 1: Determine the piece that should be used.
Since x = 6 belongs to the interval π‘₯ β‰₯ 6. therefore,
we shall use the first piece of function
Step 2: Find h(6) using the 1st piece of the function
β„Ž π‘₯ = π‘₯3
+ 2π‘₯
β„Ž 6 = 6 3
+ 2(6)
β„Ž 6 = 216 + 12
β„Ž 6 = 228
PERFORMING
OPERATIONS ON FUNCTION
SUM, DIFFERENCE, PRODUCT, AND
QUOTIENT OF FUNCTIONS
Given two functions 𝑓(π‘₯) and 𝑔(π‘₯), we define the
following.
β€’Sum: 𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔(π‘₯)
β€’Difference: 𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔(π‘₯)
β€’Product: 𝑓 βˆ— 𝑔 π‘₯ = 𝑓 π‘₯ βˆ— 𝑔(π‘₯)
β€’Quotient:
𝑓
𝑔
π‘₯ =
𝑓 π‘₯
𝑔 π‘₯
, 𝑔(π‘₯) β‰  0
Example: If 𝑓 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 and
𝑔 π‘₯ = π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 find the
following:
𝑓 + 𝑔 π‘₯ π‘Žπ‘›π‘‘ (𝑓 βˆ’ 𝑔)(π‘₯)
Find: (𝑓 + 𝑔)(π‘₯)
Step 1: Apply the definition for adding functions.
𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔 π‘₯
𝑓 + 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 + (π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1)
Step 2: Group similar terms and make sure that the terms
are arranged in descending order:
𝑓 + 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 + π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1
𝑓 + 𝑔 π‘₯ = π‘₯3
+ 6π‘₯2
βˆ’ π‘₯2
+ βˆ’12π‘₯ + 8π‘₯ + (βˆ’19 βˆ’ 1)
Find: (𝑓 + 𝑔)(π‘₯)
Step 3: Combined similar terms
𝑓 + 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 + π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1
𝑓 + 𝑔 π‘₯ = π‘₯3
+ 6π‘₯2
βˆ’ π‘₯2
+ βˆ’12π‘₯ + 8π‘₯ + βˆ’19 βˆ’ 1
𝑓 + 𝑔 π‘₯ = π’™πŸ‘
+ πŸ“π’™πŸ
βˆ’ πŸ’π’™ βˆ’ 𝟐𝟎
Find: (𝑓 βˆ’ 𝑔)(π‘₯)
Step 1: Apply the definition for subtracting functions.
𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔 π‘₯
𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 βˆ’ (π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1)
Step 2: Group similar terms and make sure that the terms
are arranged in descending order:
𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1
𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3
+ π‘₯2
βˆ’ 8π‘₯ + 1
𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π‘₯3
+ 6π‘₯2
+ π‘₯2
+ βˆ’12π‘₯ βˆ’ 8π‘₯ + (βˆ’19 + 1)
Find: (𝑓 + 𝑔)(π‘₯)
Step 3: Combined similar terms
𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3
βˆ’ π‘₯2
+ 8π‘₯ βˆ’ 1
𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2
βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3
+ π‘₯2
βˆ’ 8π‘₯ + 1
𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π‘₯3
+ 6π‘₯2
+ π‘₯2
+ βˆ’12π‘₯ βˆ’ 8π‘₯ + βˆ’19 + 1
𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π’™πŸ‘
+ πŸ•π’™πŸ
βˆ’ πŸπŸŽπ’™ βˆ’ πŸπŸ–
Example: If 𝑓 π‘₯ =
3
π‘₯2βˆ’1
and 𝑔 π‘₯ =
π‘₯
π‘₯βˆ’1
find 𝑓 + 𝑔 π‘₯ .
Find: (𝑓 + 𝑔)(π‘₯)
Step 1: Apply the definition for adding functions.
𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔 π‘₯
𝑓 + 𝑔 π‘₯ =
3
π‘₯2 βˆ’ 1
+
π‘₯
π‘₯ βˆ’ 1
Step 2: Find the LCD of π‘₯2
βˆ’ 1 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1, the 𝐿𝐢𝐷 𝑖𝑠
π‘₯ + 1 π‘₯ βˆ’ 1
𝑓 + 𝑔 π‘₯ =
3
π‘₯2 βˆ’ 1
+
π‘₯
π‘₯ βˆ’ 1
𝑓 + 𝑔 π‘₯ =
3 + π‘₯(π‘₯ + 1)
(π‘₯ + 1)(π‘₯ βˆ’ 1)
Find: (𝑓 + 𝑔)(π‘₯)
Step 3: Simplify the expression:
𝑓 + 𝑔 π‘₯ =
3
π‘₯2 βˆ’ 1
+
π‘₯
π‘₯ βˆ’ 1
𝑓 + 𝑔 π‘₯ =
3 + π‘₯(π‘₯ + 1)
(π‘₯ + 1)(π‘₯ βˆ’ 1)
𝑓 + 𝑔 π‘₯ =
π’™πŸ
+ 𝒙 + πŸ‘
(𝒙 + 𝟏)(𝒙 βˆ’ 𝟏)
Example: If 𝑓 π‘₯ =
π‘₯βˆ’3
π‘₯+4
and 𝑔 π‘₯ =
π‘₯+1
π‘₯+4
find
𝑓 βˆ’ 𝑔 π‘₯ .
Find: (𝑓 βˆ’ 𝑔)(π‘₯)
Step 1: Apply the definition for subtracting functions.
𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔 π‘₯
𝑓 βˆ’ 𝑔 π‘₯ =
π‘₯ βˆ’ 3
π‘₯ + 4
βˆ’
π‘₯ + 1
π‘₯ + 4
Step 2: Simplify
𝑓 βˆ’ 𝑔 π‘₯ =
π‘₯ βˆ’ 3
π‘₯ + 4
βˆ’
π‘₯ + 1
π‘₯ + 4
𝑓 βˆ’ 𝑔 π‘₯ =
π‘₯ βˆ’ 3 βˆ’ (π‘₯ + 1)
π‘₯ + 4
=
π‘₯ βˆ’ 3 βˆ’ π‘₯ βˆ’ 1
π‘₯ + 4
=
βˆ’πŸ’
𝒙 + πŸ’
Example:
If 𝑓 π‘₯ = π‘₯3 βˆ’ 27, 𝑔 π‘₯ = π‘₯2 + 3π‘₯ + 9
and β„Ž π‘₯ = 4π‘₯ βˆ’ 1. .
Find the following: (𝑓 βˆ— β„Ž)(π‘₯),
𝑓
𝑔
(π‘₯),
𝑓
β„Ž
(π‘₯)
Find: (𝑓 βˆ— β„Ž)(π‘₯)
Step 1: Apply the definition for multiplying functions.
𝑓 βˆ— β„Ž π‘₯ = 𝑓 π‘₯ βˆ— β„Ž π‘₯
𝑓 βˆ— β„Ž π‘₯ = π‘₯3
βˆ’ 27 (4π‘₯ βˆ’ 1)
Step 2: Find the product of polynomials using the
distributive law.
𝑓 βˆ— β„Ž π‘₯ = π‘₯3
βˆ’ 27 4π‘₯ βˆ’ 1
𝑓 βˆ— β„Ž π‘₯ = πŸ’π’™πŸ’
βˆ’ π’™πŸ‘
βˆ’ πŸπŸŽπŸ–π’™ + πŸπŸ•
Find:
𝑓
𝑔
(π‘₯)
Step 1:
Apply the definition
for dividing functions.
𝑓
𝑔
π‘₯ =
𝑓 π‘₯
𝑔 π‘₯
Step 2: Factor the numerator
𝑓
𝑔
π‘₯ =
π‘₯3
βˆ’ 27
π‘₯2 + 3π‘₯ + 9
𝑓
𝑔
π‘₯ =
π‘₯3
βˆ’ 27
π‘₯2 + 3π‘₯ + 9
𝑓
𝑔
π‘₯ =
(π‘₯ βˆ’ 3)(π‘₯2
+ 3π‘₯ + 9)
π‘₯2 + 3π‘₯ + 9
Step 3: Cancel the common
factors and simplify
𝑓
𝑔
π‘₯ =
(π‘₯ βˆ’ 3)(π‘₯2
+ 3π‘₯ + 9)
π‘₯2 + 3π‘₯ + 9
𝑓
𝑔
π‘₯ = 𝒙 βˆ’ πŸ‘
Find:
𝑓
β„Ž
(π‘₯)
Step 1:
Apply the definition
for dividing functions.
𝑓
β„Ž
π‘₯ =
𝑓 π‘₯
𝑔 π‘₯
Step 2: Since there are no
common factors in the
numerator and the
denominator, this is
already the simplest
form
𝑓
β„Ž
π‘₯ =
4π‘₯ βˆ’ 1
π‘₯3 βˆ’ 27
𝑓
β„Ž
π‘₯ =
πŸ’π’™ βˆ’ 𝟏
π’™πŸ‘ βˆ’ πŸπŸ•
Example:
If 𝑓 π‘₯ =
π‘₯2βˆ’3π‘₯βˆ’28
π‘₯2βˆ’8π‘₯+16
, 𝑔 π‘₯ =
π‘₯2βˆ’5π‘₯+4
π‘₯2βˆ’49
.
Find the following: 𝑓 βˆ— 𝑔 (π‘₯) and
𝑓
𝑔
(π‘₯)
Find: (𝑓 βˆ— 𝑔)(π‘₯)
Step 1: Apply the definition for multiplying functions.
𝑓 βˆ— 𝑔 π‘₯ = 𝑓 π‘₯ βˆ— 𝑔 π‘₯
𝑓 βˆ— 𝑔 π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
βˆ—
π‘₯2
βˆ’ 5π‘₯ + 4
π‘₯2 βˆ’ 49
Step 2: Factor the numerator and denominator of both
rational function.
𝑓 βˆ— 𝑔 π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
βˆ—
π‘₯2
βˆ’ 5π‘₯ + 4
π‘₯2 βˆ’ 49
𝑓 βˆ— 𝑔 π‘₯ =
(π‘₯ βˆ’ 7)(π‘₯ + 4)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4)
βˆ—
(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 4)
(π‘₯ βˆ’ 7)(π‘₯ + 7)
Find: (𝑓 βˆ— 𝑔)(π‘₯)
Step 3: Cancel common factors and simplify.
𝑓 βˆ— 𝑔 π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
βˆ—
π‘₯2
βˆ’ 5π‘₯ + 4
π‘₯2 βˆ’ 49
𝑓 βˆ— 𝑔 π‘₯ =
(π‘₯ βˆ’ 7)(π‘₯ + 4)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4)
βˆ—
(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 4)
(π‘₯ βˆ’ 7)(π‘₯ + 7)
𝑓 βˆ— 𝑔 π‘₯ =
(𝒙 + πŸ’)(𝒙 βˆ’ 𝟏)
(𝒙 βˆ’ πŸ’)(𝒙 + πŸ•)
Find:
𝑓
𝑔
(π‘₯)
Step 1: Apply the definition for dividing functions.
𝑓
𝑔
π‘₯ =
𝑓 π‘₯
𝑔 π‘₯
β†’
Step 2: Apply the rule in dividing rational expressions.
𝑓
𝑔
π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
βˆ—
π‘₯2
βˆ’ 49
π‘₯2 βˆ’ 5π‘₯ + 4
𝑓
𝑔
π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
Γ·
π‘₯2
βˆ’ 5π‘₯ + 4
π‘₯2 βˆ’ 49
𝑓
𝑔
π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
Γ·
π‘₯2
βˆ’ 5π‘₯ + 4
π‘₯2 βˆ’ 49
Find: (𝑓 βˆ— 𝑔)(π‘₯)
Step 3: Factor the numerator and denominator of both
rational functions.
𝑓
𝑔
π‘₯ =
(π‘₯ βˆ’ 7)(π‘₯ + 4)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4)
βˆ—
(π‘₯ βˆ’ 7)(π‘₯ + 7)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 1)
𝑓
𝑔
π‘₯ =
π‘₯2
βˆ’ 3π‘₯ βˆ’ 28
π‘₯2 βˆ’ 8π‘₯ + 16
βˆ—
π‘₯2
βˆ’ 49
π‘₯2 βˆ’ 5π‘₯ + 4
Find: (𝑓 βˆ— 𝑔)(π‘₯)
Step 4: There are no common factors to cancel. So we just
simplify
𝑓
𝑔
π‘₯ =
(π‘₯ βˆ’ 7)(π‘₯ + 4)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4)
βˆ—
(π‘₯ βˆ’ 7)(π‘₯ + 7)
(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 1)
𝑓
𝑔
π‘₯ =
𝒙 βˆ’ πŸ• 𝟐
(𝒙 + πŸ•)(𝒙 + πŸ’)
𝒙 βˆ’ πŸ’ πŸ‘(𝒙 βˆ’ 𝟏)
COMPOSITION
OF FUNCTION
Definition of Composition of Function
and the domain of (𝑓 ∘ 𝑔)(π‘₯) is the set of all numbers x in
the domain of 𝑔(π‘₯), such that 𝑔(π‘₯) is the domain of 𝑓(π‘₯).
Given two function 𝑓(π‘₯) and 𝑔(π‘₯), the composition of
function is denoted by (𝑓 ∘ 𝑔)(π‘₯) is defined by:
𝒇 ∘ π’ˆ 𝒙 = 𝒇(π’ˆ(𝒙))
Similarly, we define (𝑔 ∘ 𝑓)(π‘₯) as follows:
π’ˆ ∘ 𝒇 𝒙 = π’ˆ(𝒇(𝒙))
Example:
If 𝑓 π‘₯ = π‘₯2 βˆ’ 6 and 𝑔 π‘₯ = 3π‘₯ + 2.
Find the following:
(𝑓 ∘ 𝑔)(π‘₯), (𝑔 ∘ 𝑓)(π‘₯), (𝑔 ∘ 𝑔)(π‘₯), (𝑓 ∘ 𝑓)(π‘₯)
Find:(𝑓 ∘ 𝑔)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑓 ∘ 𝑔 π‘₯ = 𝑓 𝑔 π‘₯ β†’ (𝑓 ∘ 𝑔)(π‘₯) = 𝑓(3π‘₯ + 2)
Step 2: Apply the definition of 𝑓
𝑓 ∘ 𝑔 π‘₯ = 𝑓 3π‘₯ + 2 β†’ 𝑓 ∘ 𝑔 π‘₯ = 3π‘₯ + 2 2
βˆ’ 6
Step 3: Simplify the results.
𝑓 ∘ 𝑔 π‘₯ = 3π‘₯ + 2 2
βˆ’ 6
𝑓 ∘ 𝑔 π‘₯ = 9π‘₯2
+ 12π‘₯ + 4 βˆ’ 6
𝑓 ∘ 𝑔 π‘₯ = πŸ—π’™πŸ
+ πŸπŸπ’™ βˆ’ 𝟐
Find:(𝑔 ∘ 𝑓)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑔 ∘ 𝑓 π‘₯ = 𝑔 𝑓 π‘₯ β†’ (𝑔 ∘ 𝑓)(π‘₯) = 𝑔(π‘₯2
βˆ’ 6)
Step 2: Apply the definition of 𝑓
𝑔 ∘ 𝑓 π‘₯ = 𝑔 π‘₯2
βˆ’ 6 β†’ 𝑔 ∘ 𝑓 π‘₯ = 3 π‘₯2
βˆ’ 6 + 2
Step 3: Simplify the results.
𝑔 ∘ 𝑓 π‘₯ = 3π‘₯2
βˆ’ 18 + 2
𝑔 ∘ 𝑓 π‘₯ = πŸ‘π’™πŸ
βˆ’ πŸπŸ”
𝑔 ∘ 𝑓 π‘₯ = 3 π‘₯2
βˆ’ 6 + 2
Find:(𝑔 ∘ 𝑔)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑔 ∘ 𝑔 π‘₯ = 𝑔 𝑔 π‘₯ β†’ (𝑔 ∘ 𝑔)(π‘₯) = 𝑔(3π‘₯ + 2)
Step 2: Apply the definition of 𝑓
𝑔 ∘ 𝑔 π‘₯ = 𝑔 3π‘₯ + 2 β†’ 𝑔 ∘ 𝑔 π‘₯ = 3 3π‘₯ + 2 + 2
Step 3: Simplify the results.
𝑔 ∘ 𝑔 π‘₯ = 9π‘₯ + 6 + 2
𝑔 ∘ 𝑔 π‘₯ = πŸ‘π’™πŸ
+ πŸ–
𝑔 ∘ 𝑔 π‘₯ = 3 3π‘₯ + 2 + 2
Find:(𝑓 ∘ 𝑓)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑓 ∘ 𝑓 π‘₯ = 𝑓 𝑓 π‘₯ β†’ (𝑓 ∘ 𝑓)(π‘₯) = 𝑓(π‘₯2
βˆ’ 6)
Step 2: Apply the definition of 𝑓
𝑓 ∘ 𝑓 π‘₯ = 𝑓 π‘₯2
βˆ’ 6 β†’ 𝑓 ∘ 𝑓 π‘₯ = π‘₯2
βˆ’ 6 2
βˆ’ 6
Step 3: Simplify the results.
𝑔 ∘ 𝑓 π‘₯ = π‘₯4
βˆ’ 12π‘₯2
+ 36 βˆ’ 6
𝑔 ∘ 𝑓 π‘₯ = π’™πŸ’
βˆ’ πŸπŸπ’™πŸ
+ πŸ‘πŸŽ
𝑓 ∘ 𝑓 π‘₯ = π‘₯2
βˆ’ 6 2
βˆ’ 6
Example:
Given the following functions 𝑓 π‘₯ = π‘₯3,
𝑔 π‘₯ =
π‘₯+2
3π‘₯βˆ’1
,and β„Ž π‘₯ = 6π‘₯ βˆ’ 7
Find the following:
𝑓 ∘ 𝑓 π‘₯ π‘Žπ‘›π‘‘ (𝑓 ∘ 𝑓)(2) , 𝑔 ∘ β„Ž π‘₯ π‘Žπ‘›π‘‘ (𝑔 ∘ β„Ž)(βˆ’1)
Find:(𝑓 ∘ 𝑓)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑓 ∘ 𝑓 π‘₯ = 𝑓 𝑓 π‘₯ β†’ (𝑓 ∘ 𝑓)(π‘₯) = 𝑓(π‘₯3
)
Step 2: Apply the definition of 𝑓
𝑓 ∘ 𝑓 π‘₯ = 𝑓 π‘₯3
β†’ 𝑓 ∘ 𝑓 π‘₯ = π‘₯3 3
Step 3: Simplify the results.
𝑔 ∘ 𝑓 π‘₯ = π’™πŸ—
𝑓 ∘ 𝑓 π‘₯ = π‘₯3 3
𝑔 ∘ 𝑓 2 = (𝟐)πŸ—
= πŸ“πŸπŸ
Find:(𝑔 ∘ β„Ž)(π‘₯)
Step 1: Apply the definition of composition of functions
𝑔 ∘ β„Ž π‘₯ = 𝑔 β„Ž π‘₯ β†’ (𝑔 ∘ β„Ž)(π‘₯) = 𝑔 6π‘₯ + 7
Step 2: Apply the
definition of 𝑓
𝑔 ∘ β„Ž π‘₯ = 𝑔 6π‘₯ + 7
𝑔 ∘ β„Ž π‘₯ =
6π‘₯ βˆ’ 7 + 2
3 6π‘₯ βˆ’ 7 βˆ’ 1
Step 3: Simplify the results.
𝑔 ∘ β„Ž π‘₯ =
6π‘₯ βˆ’ 7 + 2
3 6π‘₯ βˆ’ 7 βˆ’ 1
𝑔 ∘ β„Ž π‘₯ =
πŸ”π’™ βˆ’ πŸ“
πŸπŸ–π’™ βˆ’ 𝟐𝟐
𝑔 ∘ β„Ž βˆ’1 =
6(βˆ’1) βˆ’ 5
18(βˆ’1) βˆ’ 22
= βˆ’
𝟏𝟏
πŸ’
SOLVING PROBLEMS
INVOLVING FUNCTION
The following steps will be helpful in
solving problems involving functions.
β€’ Read and comprehend the problem carefully.
β€’ Identify the function to be used (linear, quadratic,
cubic, etc.) in representing the given problem.
β€’ Write the function that describes the problem.
β€’ Use the function to solve the problem.
β€’ Use the function to solve the problem.
β€’ Check the answer.
EXAMPLE: A Science major student earned
6 units after enrolling for a semester. Then,
he took an academic leave for one year.
After his leave, he enrolled again, ever
more desirous this time to finish all the 150
units that he needs. In how many
semesters does he need to enroll if he takes
9 units of Science subjects every semester?
Step:1
Represent the given and unknown
quantities in the problem.
Let:
𝑦 = total number of units to be taken in x
semesters.
π‘₯ = number of semesters.
Step:2
Determine the function or
equation that relates the
quantities or variables in the
problem. The problem can be
described best by a linear
function which relates the
number of semesters (x) to the
total number of units (y).
The function that describes the
relationship between x and y is:
𝑦 = 9π‘₯ + 16
Step:3
Solve the problem. We want to know
the number of semesters that the
student needs to take in order to
finish all 150 units.
𝑦 = 150
The student needs 16 semesters to
complete the program.
150 = 9π‘₯ + 6
150 βˆ’ 6 = 9π‘₯
144 = 9π‘₯
π‘₯ = 16
EXAMPLE: The area of a rectangle is
420 π‘π‘š2. The length of the rectangle is
one less than thrice its width. What are
the dimensions of the given rectangle?
Step:1
Represent the given and unknown
quantities in the problem. Express
the width and the length of the
rectangle in terms of one variable.
Let:
𝑦 = area of the rectangle
π‘₯ = width
3π‘₯ βˆ’ 1 = Length
Step:2
Use function to relate the quantities
or variables in the problem.
The area of the rectangle is given by:
𝐴 = 𝑙𝑀; where 𝑙 = length and
𝑀 = width
Using the representation in Step 1,
we have:
𝑦 = π‘₯ 3π‘₯ βˆ’ 1
𝑦 = 3π‘₯2 βˆ’ π‘₯
The function that describes the
relationship is 𝑦 = 3π‘₯2 βˆ’ π‘₯
Step:3
Solve the problem.
The area of rectangle is 𝑦 = 420
Substitute the value in 𝑦 = 3π‘₯2 βˆ’ π‘₯
3π‘₯2
βˆ’ π‘₯ βˆ’ 420 = 0 Find the length and the width by substituting
the value of x in the representation found in
Step 1. Reject the negative value of x because
the measurement of width cannot be negative.
3π‘₯ + 35 π‘₯ βˆ’ 12 = 0
420 = 3π‘₯2 βˆ’ π‘₯
3π‘₯ + 35 = 0
If π‘₯ = 12, then:
width = π‘₯ = 12
Length = 3π‘₯ βˆ’ 1 = 3 12 βˆ’ 1 = 35
Thus the dimensions of the given rectangle
is 12 and 35.
3π‘₯ = βˆ’35
𝒙 = βˆ’
πŸ‘πŸ“
πŸ‘
π‘₯ βˆ’ 12 = 0
𝒙 = 𝟏𝟐
Step:4

More Related Content

What's hot

One-to-one Functions.pptx
One-to-one Functions.pptxOne-to-one Functions.pptx
One-to-one Functions.pptxDianeKrisBaniaga1
Β 
Operation of functions and Composite function.pptx
Operation of functions and Composite function.pptxOperation of functions and Composite function.pptx
Operation of functions and Composite function.pptxSerGeo5
Β 
mathematical functions
mathematical functions mathematical functions
mathematical functions Anshul gour
Β 
Piecewise function lesson 3
Piecewise function lesson 3Piecewise function lesson 3
Piecewise function lesson 3aksetter
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJessica Garcia
Β 
General Mathematics - Representation and Types of Functions
General Mathematics - Representation and Types of FunctionsGeneral Mathematics - Representation and Types of Functions
General Mathematics - Representation and Types of FunctionsJuan Miguel Palero
Β 
One to-one function (MATH 11)
One to-one function (MATH 11)One to-one function (MATH 11)
One to-one function (MATH 11)majoydrew
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJerica Morgan
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functionsPLeach
Β 
Domain and range_ppt (1)
Domain and range_ppt (1)Domain and range_ppt (1)
Domain and range_ppt (1)Bernard Mendoza
Β 
8.4 logarithmic functions
8.4 logarithmic functions8.4 logarithmic functions
8.4 logarithmic functionshisema01
Β 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
Β 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functionsitutor
Β 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionMatthew Leingang
Β 
Lesson 1 INTRODUCTION TO FUNCTIONS
Lesson 1   INTRODUCTION TO FUNCTIONSLesson 1   INTRODUCTION TO FUNCTIONS
Lesson 1 INTRODUCTION TO FUNCTIONSLouiseLyn
Β 
Evaluating functions
Evaluating functionsEvaluating functions
Evaluating functionsEFREN ARCHIDE
Β 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functionsCharliez Jane Soriano
Β 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rulesjulienorman80065
Β 
Logarithm
LogarithmLogarithm
Logarithmitutor
Β 

What's hot (20)

One-to-one Functions.pptx
One-to-one Functions.pptxOne-to-one Functions.pptx
One-to-one Functions.pptx
Β 
Operation of functions and Composite function.pptx
Operation of functions and Composite function.pptxOperation of functions and Composite function.pptx
Operation of functions and Composite function.pptx
Β 
mathematical functions
mathematical functions mathematical functions
mathematical functions
Β 
Piecewise function lesson 3
Piecewise function lesson 3Piecewise function lesson 3
Piecewise function lesson 3
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Β 
General Mathematics - Representation and Types of Functions
General Mathematics - Representation and Types of FunctionsGeneral Mathematics - Representation and Types of Functions
General Mathematics - Representation and Types of Functions
Β 
One to-one function (MATH 11)
One to-one function (MATH 11)One to-one function (MATH 11)
One to-one function (MATH 11)
Β 
Chapter i
Chapter iChapter i
Chapter i
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Β 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Β 
Domain and range_ppt (1)
Domain and range_ppt (1)Domain and range_ppt (1)
Domain and range_ppt (1)
Β 
8.4 logarithmic functions
8.4 logarithmic functions8.4 logarithmic functions
8.4 logarithmic functions
Β 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
Β 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functions
Β 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
Β 
Lesson 1 INTRODUCTION TO FUNCTIONS
Lesson 1   INTRODUCTION TO FUNCTIONSLesson 1   INTRODUCTION TO FUNCTIONS
Lesson 1 INTRODUCTION TO FUNCTIONS
Β 
Evaluating functions
Evaluating functionsEvaluating functions
Evaluating functions
Β 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
Β 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rules
Β 
Logarithm
LogarithmLogarithm
Logarithm
Β 

Similar to Understanding Functions

Composite Functions.pptx
Composite Functions.pptxComposite Functions.pptx
Composite Functions.pptxNadineThomas4
Β 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
Β 
1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functionsMelchor Cachuela
Β 
1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functionsMelchor Cachuela
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
Β 
L4 Addition and Subtraction of Functions.pdf
L4 Addition and Subtraction of Functions.pdfL4 Addition and Subtraction of Functions.pdf
L4 Addition and Subtraction of Functions.pdfSweetPie14
Β 
Ch 5-integration-part-1
Ch 5-integration-part-1Ch 5-integration-part-1
Ch 5-integration-part-1GpmMaths
Β 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptxMeryAnnMAlday
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsgcutbill
Β 
Rational-Function-W3-4.pptx
Rational-Function-W3-4.pptxRational-Function-W3-4.pptx
Rational-Function-W3-4.pptxMYRABACSAFRA2
Β 
Integral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxIntegral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxJhennyRosePahed1
Β 
Chapter 1 - What is a Function.pdf
Chapter 1 - What is a Function.pdfChapter 1 - What is a Function.pdf
Chapter 1 - What is a Function.pdfManarKareem1
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
Β 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfKyleBrianSLumanglas
Β 
Week 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxWeek 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxLyaniCebrian1
Β 

Similar to Understanding Functions (20)

01 FUNCTIONS.pptx
01 FUNCTIONS.pptx01 FUNCTIONS.pptx
01 FUNCTIONS.pptx
Β 
Composite Functions.pptx
Composite Functions.pptxComposite Functions.pptx
Composite Functions.pptx
Β 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
Β 
FUNCTIONS L.1.pdf
FUNCTIONS L.1.pdfFUNCTIONS L.1.pdf
FUNCTIONS L.1.pdf
Β 
1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions
Β 
1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions1 lesson 6 introduction to radical functions
1 lesson 6 introduction to radical functions
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
L4 Addition and Subtraction of Functions.pdf
L4 Addition and Subtraction of Functions.pdfL4 Addition and Subtraction of Functions.pdf
L4 Addition and Subtraction of Functions.pdf
Β 
Ch 5-integration-part-1
Ch 5-integration-part-1Ch 5-integration-part-1
Ch 5-integration-part-1
Β 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptx
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
Β 
Gcse Maths Resources
Gcse Maths ResourcesGcse Maths Resources
Gcse Maths Resources
Β 
General Math.pptx
General Math.pptxGeneral Math.pptx
General Math.pptx
Β 
Rational-Function-W3-4.pptx
Rational-Function-W3-4.pptxRational-Function-W3-4.pptx
Rational-Function-W3-4.pptx
Β 
Integral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptxIntegral and Differential CalculusI.pptx
Integral and Differential CalculusI.pptx
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Chapter 1 - What is a Function.pdf
Chapter 1 - What is a Function.pdfChapter 1 - What is a Function.pdf
Chapter 1 - What is a Function.pdf
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
Β 
Advanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdfAdvanced-Differentiation-Rules.pdf
Advanced-Differentiation-Rules.pdf
Β 
Week 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptxWeek 9-Quadratic Function.pptx
Week 9-Quadratic Function.pptx
Β 

Recently uploaded

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 

Recently uploaded (20)

9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Β 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 

Understanding Functions

  • 1. GENERAL MATHEMATICS ANGELO S. REYES SAMUEL CHRISTIAN COLLEGE
  • 3. UNDERSTANDING FUNCTIONS β€’REVISITING FUNCTIONS β€’EVALUATING FUNCTIONS β€’PERFORMING OPERATIONS ON FUNCTIONS β€’COMPOSITION OF FUNCTIONS β€’SOLVING PROBLEMS INVOLVING FUNCTIONS
  • 4.
  • 5.
  • 6.
  • 7. Why functions are important in representing real-life situations? Essential Questions:
  • 9. AT THE END OF THE LESSON β€’I can represent real-life situations using functions, including piecewise functions. β€’I can differentiate functions from mere relations β€’I can be representing rational functions through its (a) table of values (b) graph (c) equations β€’I can find the domain and range of rational functions; and β€’I can describe and graph different types of functions.
  • 10. DEFINITION: RELATIONS βˆ₯ DOMAIN βˆ₯ RANGE βˆ₯ FUNCTION
  • 11. WHAT IS RELATION, DOMAIN, RANGE? β€’A π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› is a set of ordered pairs. β€’The π‘‘π‘œπ‘šπ‘Žπ‘–π‘› of a relation is the set of the first coordinates. β€’The π‘Ÿπ‘Žπ‘›π‘”π‘’ is the set of the second coordinates. β€’ π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘  are often defined by equations with no domain stated. β€’If the π‘‘π‘œπ‘šπ‘Žπ‘–π‘› is not stated, we agree that the domain consists of all real numbers that, when used to substitute the independent variable, produce real numbers for the dependent variable.
  • 14. WHAT IS FUNCTION? β€’A π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› is a relation that assigns to each member of the domain exactly one member of the range. β€’It is a 𝑠𝑒𝑑 π‘œπ‘“ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘–π‘Ÿπ‘  (π‘₯, 𝑦) in which no two distinct ordered pairs have the same first member. β€’The set of all permissible values of π‘₯ is called the π‘‘π‘œπ‘šπ‘Žπ‘–π‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›. β€’And the set of all resulting values of 𝑦 is called the π‘Ÿπ‘Žπ‘›π‘”π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›.
  • 15. WHAT IS FUNCTION? β€’We can also define a function as a rule that assigns to each element x in set A exactly one element, called 𝒇(𝒙), in set B. β€’We usually represent a function by the equation π’š = 𝒇(𝒙) where π’š is the dependent variable and 𝒙 is the independent variable. β€’Take note: that for every input (domain), there corresponds a unique output (range).
  • 16.
  • 17. WAYS ON HOW TO DETERMINE IF A RELATION IS A FUNCTION OR NOT
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 25. VERTICAL LINE TEST β€’The graph of a function can be intersected by a vertical line in at most one point, since in a function; there is a unique value of to each value of in the domain of the function. β€’But if the vertical line intersects the graph at more than one point, the graph is not that of a function (it is only a relation). β€’We usually represent a function by the equation
  • 26. Graph the relation 𝒇 𝒙 = π’™πŸ + πŸπ’™ βˆ’ πŸ‘ Using Vertical Line Test π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕? Answer: π‘­π’–π’π’„π’•π’Šπ’π’
  • 27. Graph the relation π’™πŸ + π’šπŸ = πŸπŸ” Using Vertical Line Test π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕? Answer: 𝑡𝒐𝒕
  • 28. Using Vertical Line Test π‘­π’–π’π’„π’•π’Šπ’π’ 𝒐𝒓 𝑡𝒐𝒕? Answer: 𝑡𝒐𝒕
  • 36. PIECEWISE FUNCTION β€’Is a function defined by two or more formulas on different parts of its domain.
  • 37. Example A merchant sells rice at 45 pesos a kilo. If, however, a buyer buys more than 150 kilos of rice. The merchant gives a 10% discount. β€’If x represents the number of kilos of rice purchased, express the amount to be paid by f(x). β€’How much should be paid for 100 kilos of rice? β€’How much should be paid for 200 kilos of rice?
  • 38. Step 1: Express the situation, using function If the number of kilos of purchased rice exceeds 150. That’s π‘₯ > 150. Then the number of kilos in excess of 150 kilos is given a 10% discount If the number of kilos of purchased rice does not exceed 150. That is 0 ≀ π‘₯ ≀ 150 then 𝑓 π‘₯ = 45π‘₯
  • 39. Step 1: Express the situation, using function 𝑓 π‘₯ = 45π‘₯ 𝑖𝑓 0 ≀ π‘₯ ≀ 150 40.50 + 675π‘₯ 𝑖𝑓 π‘₯ > 150 So, the function that describes the situation is: Amount of the first 150 kilos of rice 45 150 = 6 750 Amount in excess of 150 kilos πŸ’πŸ“ 𝟎. πŸ—πŸŽ 𝒙 βˆ’ πŸπŸ“πŸŽ = πŸ’πŸŽ. πŸ“πŸŽ(𝒙 βˆ’ πŸπŸ“πŸŽ) Total Amount πŸ” πŸ•πŸ“πŸŽ + πŸ’πŸŽ. πŸ“πŸŽ 𝒙 βˆ’ πŸπŸ“πŸŽ = πŸ’πŸŽ. πŸ“πŸŽπ’™ + πŸ”πŸ•πŸ“
  • 40. Step 2: Find the amount to be paid for 100 kilos of rice. 𝑓 π‘₯ = 45π‘₯ 𝑓 100 = 45 100 = 4 500 Find f(100) by substituting x = 100 in the first piece or chunk of the function because 100 < 150. So, the amount to be paid for 100 kilos of rice is Php 4,500
  • 41. Step 2: Find the amount to be paid for 200 kilos of rice. 𝑓 π‘₯ = 40.50π‘₯ + 675 𝑓 200 = 40.50 200 + 675 𝑓 200 = 8 775 Find f(200) by substituting x=200 in the second piece or chunk of the function because 200>150. So, the amount to be paid for 200 kilos of rice is Php 8 775.
  • 43. Graph: 𝒇 𝒙 = π‘₯ βˆ’ 2 , π‘₯ ≀ βˆ’2 3π‘₯2 βˆ’ 5 , π‘₯ > βˆ’2 The function is described by two intervals. Take note that when x=-2, f(x)=x-2 is defined. That is why the point (-2,-4) is shaded.
  • 44. Graph: 𝒇 𝒙 = π‘₯ βˆ’ 2 , π‘₯ ≀ βˆ’2 3π‘₯2 βˆ’ 5 , π‘₯ > βˆ’2 In 𝑓 π‘₯ = 3π‘₯2 βˆ’ 5 when x=-2 the point (-2,7) is not shaded because it is not defined. Clearly, by vertical line test, the piecewise is indeed a function.
  • 46. Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the following: 𝑓 5 π‘Žπ‘›π‘‘ 𝑓 0 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 𝑓 5 = 4 5 2 βˆ’ 5 5 + 3 𝑓 5 = 100 βˆ’ 25 + 3 𝑓 5 = 78 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 𝑓 0 = 4 0 2 βˆ’ 5 0 + 3 𝑓 0 = 0 βˆ’ 0 + 3 𝑓 0 = 3
  • 47. Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the following: 𝑓 1 4 π‘Žπ‘›π‘‘ 𝑓 2 2 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 𝑓 1 4 = 4 1 4 2 βˆ’ 5 1 4 + 3 𝑓 1 4 = 1 4 βˆ’ 5 4 + 3 𝑓 1 4 = 2 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 𝑓 2 2 = 4 2 2 2 βˆ’ 5 2 2 + 3 𝑓 2 2 = 4 1 2 βˆ’ 5 2 4 + 3 𝑓 2 2 = βˆ’ 5 2 4 + 5
  • 48. Example: If 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 evaluate the following: 𝑓(π‘₯ + 1) 𝑓 π‘₯ = 4π‘₯2 βˆ’ 5π‘₯ + 3 𝑓 π‘₯ + 1 = 4 π‘₯ + 1 2 βˆ’ 5 π‘₯ + 1 + 3 𝑓 π‘₯ + 1 = 4 π‘₯2 + 2π‘₯ + 1 βˆ’ 5π‘₯ βˆ’ 5 + 3 𝑓 π‘₯ + 1 = 4π‘₯2 + 8π‘₯ + 4 βˆ’ 5 βˆ’ 5π‘₯ βˆ’ 2 𝑓 π‘₯ + 1 = 4π‘₯2 + 3π‘₯ βˆ’ 3
  • 49. Example: If 𝑓 π‘₯ = 3π‘₯ + 2 evaluate the following: 𝑓 π‘₯+β„Ž βˆ’π‘“(π‘₯) β„Ž 𝑓 π‘₯ = 3π‘₯ + 2 𝑓 π‘₯ + β„Ž = 3 π‘₯ + β„Ž + 2 𝑓 π‘₯ + β„Ž = 3π‘₯ + 3β„Ž + 2 𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ + 3β„Ž + 2 βˆ’ 3π‘₯ + 2 𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ + 3β„Ž + 2 βˆ’ 3π‘₯ βˆ’ 2 𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3π‘₯ βˆ’ 3π‘₯ + 3β„Ž + 2 βˆ’ 2 𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ = 3β„Ž 𝑓 π‘₯ + β„Ž βˆ’ 𝑓 π‘₯ β„Ž = 3β„Ž β„Ž = 3
  • 51. Example: Given the piecewise below Find the following: β„Ž βˆ’10 , β„Ž 1 2 , β„Ž(6)
  • 52. Find: β„Ž(βˆ’10) Step 1: Determine the piece that should be used. Since -10 belongs to the interval x < -5. therefore, we shall use the third piece of function Step 2: Find h(-10) using the 3rd piece of the function β„Ž π‘₯ = 2 π‘₯ + 4 2 + 10 β„Ž βˆ’10 = 2 βˆ’10 + 4 2 + 10 β„Ž βˆ’10 = 2 36 + 10 β„Ž βˆ’10 = 82
  • 53. Find: β„Ž 1 2 Step 1: Determine the piece that should be used. Since 1/2 belongs to the interval βˆ’5 ≀ π‘₯ < 6. therefore, we shall use the second piece of function Step 2: Find h(1/2) using the 2nd piece of the function β„Ž π‘₯ = 3 2π‘₯ β„Ž 1 2 = 3 2 1 2 β„Ž 1 2 = 3
  • 54. Find: β„Ž(6) Step 1: Determine the piece that should be used. Since x = 6 belongs to the interval π‘₯ β‰₯ 6. therefore, we shall use the first piece of function Step 2: Find h(6) using the 1st piece of the function β„Ž π‘₯ = π‘₯3 + 2π‘₯ β„Ž 6 = 6 3 + 2(6) β„Ž 6 = 216 + 12 β„Ž 6 = 228
  • 56. SUM, DIFFERENCE, PRODUCT, AND QUOTIENT OF FUNCTIONS Given two functions 𝑓(π‘₯) and 𝑔(π‘₯), we define the following. β€’Sum: 𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔(π‘₯) β€’Difference: 𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔(π‘₯) β€’Product: 𝑓 βˆ— 𝑔 π‘₯ = 𝑓 π‘₯ βˆ— 𝑔(π‘₯) β€’Quotient: 𝑓 𝑔 π‘₯ = 𝑓 π‘₯ 𝑔 π‘₯ , 𝑔(π‘₯) β‰  0
  • 57. Example: If 𝑓 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 and 𝑔 π‘₯ = π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 find the following: 𝑓 + 𝑔 π‘₯ π‘Žπ‘›π‘‘ (𝑓 βˆ’ 𝑔)(π‘₯)
  • 58. Find: (𝑓 + 𝑔)(π‘₯) Step 1: Apply the definition for adding functions. 𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔 π‘₯ 𝑓 + 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 + (π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1) Step 2: Group similar terms and make sure that the terms are arranged in descending order: 𝑓 + 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 + π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 𝑓 + 𝑔 π‘₯ = π‘₯3 + 6π‘₯2 βˆ’ π‘₯2 + βˆ’12π‘₯ + 8π‘₯ + (βˆ’19 βˆ’ 1)
  • 59. Find: (𝑓 + 𝑔)(π‘₯) Step 3: Combined similar terms 𝑓 + 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 + π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 𝑓 + 𝑔 π‘₯ = π‘₯3 + 6π‘₯2 βˆ’ π‘₯2 + βˆ’12π‘₯ + 8π‘₯ + βˆ’19 βˆ’ 1 𝑓 + 𝑔 π‘₯ = π’™πŸ‘ + πŸ“π’™πŸ βˆ’ πŸ’π’™ βˆ’ 𝟐𝟎
  • 60. Find: (𝑓 βˆ’ 𝑔)(π‘₯) Step 1: Apply the definition for subtracting functions. 𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔 π‘₯ 𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 βˆ’ (π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1) Step 2: Group similar terms and make sure that the terms are arranged in descending order: 𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3 + π‘₯2 βˆ’ 8π‘₯ + 1 𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π‘₯3 + 6π‘₯2 + π‘₯2 + βˆ’12π‘₯ βˆ’ 8π‘₯ + (βˆ’19 + 1)
  • 61. Find: (𝑓 + 𝑔)(π‘₯) Step 3: Combined similar terms 𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3 βˆ’ π‘₯2 + 8π‘₯ βˆ’ 1 𝑓 βˆ’ 𝑔 π‘₯ = 6π‘₯2 βˆ’ 12π‘₯ βˆ’ 19 βˆ’ π‘₯3 + π‘₯2 βˆ’ 8π‘₯ + 1 𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π‘₯3 + 6π‘₯2 + π‘₯2 + βˆ’12π‘₯ βˆ’ 8π‘₯ + βˆ’19 + 1 𝑓 βˆ’ 𝑔 π‘₯ = βˆ’π’™πŸ‘ + πŸ•π’™πŸ βˆ’ πŸπŸŽπ’™ βˆ’ πŸπŸ–
  • 62. Example: If 𝑓 π‘₯ = 3 π‘₯2βˆ’1 and 𝑔 π‘₯ = π‘₯ π‘₯βˆ’1 find 𝑓 + 𝑔 π‘₯ .
  • 63. Find: (𝑓 + 𝑔)(π‘₯) Step 1: Apply the definition for adding functions. 𝑓 + 𝑔 π‘₯ = 𝑓 π‘₯ + 𝑔 π‘₯ 𝑓 + 𝑔 π‘₯ = 3 π‘₯2 βˆ’ 1 + π‘₯ π‘₯ βˆ’ 1 Step 2: Find the LCD of π‘₯2 βˆ’ 1 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1, the 𝐿𝐢𝐷 𝑖𝑠 π‘₯ + 1 π‘₯ βˆ’ 1 𝑓 + 𝑔 π‘₯ = 3 π‘₯2 βˆ’ 1 + π‘₯ π‘₯ βˆ’ 1 𝑓 + 𝑔 π‘₯ = 3 + π‘₯(π‘₯ + 1) (π‘₯ + 1)(π‘₯ βˆ’ 1)
  • 64. Find: (𝑓 + 𝑔)(π‘₯) Step 3: Simplify the expression: 𝑓 + 𝑔 π‘₯ = 3 π‘₯2 βˆ’ 1 + π‘₯ π‘₯ βˆ’ 1 𝑓 + 𝑔 π‘₯ = 3 + π‘₯(π‘₯ + 1) (π‘₯ + 1)(π‘₯ βˆ’ 1) 𝑓 + 𝑔 π‘₯ = π’™πŸ + 𝒙 + πŸ‘ (𝒙 + 𝟏)(𝒙 βˆ’ 𝟏)
  • 65. Example: If 𝑓 π‘₯ = π‘₯βˆ’3 π‘₯+4 and 𝑔 π‘₯ = π‘₯+1 π‘₯+4 find 𝑓 βˆ’ 𝑔 π‘₯ .
  • 66. Find: (𝑓 βˆ’ 𝑔)(π‘₯) Step 1: Apply the definition for subtracting functions. 𝑓 βˆ’ 𝑔 π‘₯ = 𝑓 π‘₯ βˆ’ 𝑔 π‘₯ 𝑓 βˆ’ 𝑔 π‘₯ = π‘₯ βˆ’ 3 π‘₯ + 4 βˆ’ π‘₯ + 1 π‘₯ + 4 Step 2: Simplify 𝑓 βˆ’ 𝑔 π‘₯ = π‘₯ βˆ’ 3 π‘₯ + 4 βˆ’ π‘₯ + 1 π‘₯ + 4 𝑓 βˆ’ 𝑔 π‘₯ = π‘₯ βˆ’ 3 βˆ’ (π‘₯ + 1) π‘₯ + 4 = π‘₯ βˆ’ 3 βˆ’ π‘₯ βˆ’ 1 π‘₯ + 4 = βˆ’πŸ’ 𝒙 + πŸ’
  • 67. Example: If 𝑓 π‘₯ = π‘₯3 βˆ’ 27, 𝑔 π‘₯ = π‘₯2 + 3π‘₯ + 9 and β„Ž π‘₯ = 4π‘₯ βˆ’ 1. . Find the following: (𝑓 βˆ— β„Ž)(π‘₯), 𝑓 𝑔 (π‘₯), 𝑓 β„Ž (π‘₯)
  • 68. Find: (𝑓 βˆ— β„Ž)(π‘₯) Step 1: Apply the definition for multiplying functions. 𝑓 βˆ— β„Ž π‘₯ = 𝑓 π‘₯ βˆ— β„Ž π‘₯ 𝑓 βˆ— β„Ž π‘₯ = π‘₯3 βˆ’ 27 (4π‘₯ βˆ’ 1) Step 2: Find the product of polynomials using the distributive law. 𝑓 βˆ— β„Ž π‘₯ = π‘₯3 βˆ’ 27 4π‘₯ βˆ’ 1 𝑓 βˆ— β„Ž π‘₯ = πŸ’π’™πŸ’ βˆ’ π’™πŸ‘ βˆ’ πŸπŸŽπŸ–π’™ + πŸπŸ•
  • 69. Find: 𝑓 𝑔 (π‘₯) Step 1: Apply the definition for dividing functions. 𝑓 𝑔 π‘₯ = 𝑓 π‘₯ 𝑔 π‘₯ Step 2: Factor the numerator 𝑓 𝑔 π‘₯ = π‘₯3 βˆ’ 27 π‘₯2 + 3π‘₯ + 9 𝑓 𝑔 π‘₯ = π‘₯3 βˆ’ 27 π‘₯2 + 3π‘₯ + 9 𝑓 𝑔 π‘₯ = (π‘₯ βˆ’ 3)(π‘₯2 + 3π‘₯ + 9) π‘₯2 + 3π‘₯ + 9 Step 3: Cancel the common factors and simplify 𝑓 𝑔 π‘₯ = (π‘₯ βˆ’ 3)(π‘₯2 + 3π‘₯ + 9) π‘₯2 + 3π‘₯ + 9 𝑓 𝑔 π‘₯ = 𝒙 βˆ’ πŸ‘
  • 70. Find: 𝑓 β„Ž (π‘₯) Step 1: Apply the definition for dividing functions. 𝑓 β„Ž π‘₯ = 𝑓 π‘₯ 𝑔 π‘₯ Step 2: Since there are no common factors in the numerator and the denominator, this is already the simplest form 𝑓 β„Ž π‘₯ = 4π‘₯ βˆ’ 1 π‘₯3 βˆ’ 27 𝑓 β„Ž π‘₯ = πŸ’π’™ βˆ’ 𝟏 π’™πŸ‘ βˆ’ πŸπŸ•
  • 71. Example: If 𝑓 π‘₯ = π‘₯2βˆ’3π‘₯βˆ’28 π‘₯2βˆ’8π‘₯+16 , 𝑔 π‘₯ = π‘₯2βˆ’5π‘₯+4 π‘₯2βˆ’49 . Find the following: 𝑓 βˆ— 𝑔 (π‘₯) and 𝑓 𝑔 (π‘₯)
  • 72. Find: (𝑓 βˆ— 𝑔)(π‘₯) Step 1: Apply the definition for multiplying functions. 𝑓 βˆ— 𝑔 π‘₯ = 𝑓 π‘₯ βˆ— 𝑔 π‘₯ 𝑓 βˆ— 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 βˆ— π‘₯2 βˆ’ 5π‘₯ + 4 π‘₯2 βˆ’ 49 Step 2: Factor the numerator and denominator of both rational function. 𝑓 βˆ— 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 βˆ— π‘₯2 βˆ’ 5π‘₯ + 4 π‘₯2 βˆ’ 49 𝑓 βˆ— 𝑔 π‘₯ = (π‘₯ βˆ’ 7)(π‘₯ + 4) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4) βˆ— (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 4) (π‘₯ βˆ’ 7)(π‘₯ + 7)
  • 73. Find: (𝑓 βˆ— 𝑔)(π‘₯) Step 3: Cancel common factors and simplify. 𝑓 βˆ— 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 βˆ— π‘₯2 βˆ’ 5π‘₯ + 4 π‘₯2 βˆ’ 49 𝑓 βˆ— 𝑔 π‘₯ = (π‘₯ βˆ’ 7)(π‘₯ + 4) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4) βˆ— (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 4) (π‘₯ βˆ’ 7)(π‘₯ + 7) 𝑓 βˆ— 𝑔 π‘₯ = (𝒙 + πŸ’)(𝒙 βˆ’ 𝟏) (𝒙 βˆ’ πŸ’)(𝒙 + πŸ•)
  • 74. Find: 𝑓 𝑔 (π‘₯) Step 1: Apply the definition for dividing functions. 𝑓 𝑔 π‘₯ = 𝑓 π‘₯ 𝑔 π‘₯ β†’ Step 2: Apply the rule in dividing rational expressions. 𝑓 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 βˆ— π‘₯2 βˆ’ 49 π‘₯2 βˆ’ 5π‘₯ + 4 𝑓 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 Γ· π‘₯2 βˆ’ 5π‘₯ + 4 π‘₯2 βˆ’ 49 𝑓 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 Γ· π‘₯2 βˆ’ 5π‘₯ + 4 π‘₯2 βˆ’ 49
  • 75. Find: (𝑓 βˆ— 𝑔)(π‘₯) Step 3: Factor the numerator and denominator of both rational functions. 𝑓 𝑔 π‘₯ = (π‘₯ βˆ’ 7)(π‘₯ + 4) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4) βˆ— (π‘₯ βˆ’ 7)(π‘₯ + 7) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 1) 𝑓 𝑔 π‘₯ = π‘₯2 βˆ’ 3π‘₯ βˆ’ 28 π‘₯2 βˆ’ 8π‘₯ + 16 βˆ— π‘₯2 βˆ’ 49 π‘₯2 βˆ’ 5π‘₯ + 4
  • 76. Find: (𝑓 βˆ— 𝑔)(π‘₯) Step 4: There are no common factors to cancel. So we just simplify 𝑓 𝑔 π‘₯ = (π‘₯ βˆ’ 7)(π‘₯ + 4) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 4) βˆ— (π‘₯ βˆ’ 7)(π‘₯ + 7) (π‘₯ βˆ’ 4)(π‘₯ βˆ’ 1) 𝑓 𝑔 π‘₯ = 𝒙 βˆ’ πŸ• 𝟐 (𝒙 + πŸ•)(𝒙 + πŸ’) 𝒙 βˆ’ πŸ’ πŸ‘(𝒙 βˆ’ 𝟏)
  • 78. Definition of Composition of Function and the domain of (𝑓 ∘ 𝑔)(π‘₯) is the set of all numbers x in the domain of 𝑔(π‘₯), such that 𝑔(π‘₯) is the domain of 𝑓(π‘₯). Given two function 𝑓(π‘₯) and 𝑔(π‘₯), the composition of function is denoted by (𝑓 ∘ 𝑔)(π‘₯) is defined by: 𝒇 ∘ π’ˆ 𝒙 = 𝒇(π’ˆ(𝒙)) Similarly, we define (𝑔 ∘ 𝑓)(π‘₯) as follows: π’ˆ ∘ 𝒇 𝒙 = π’ˆ(𝒇(𝒙))
  • 79. Example: If 𝑓 π‘₯ = π‘₯2 βˆ’ 6 and 𝑔 π‘₯ = 3π‘₯ + 2. Find the following: (𝑓 ∘ 𝑔)(π‘₯), (𝑔 ∘ 𝑓)(π‘₯), (𝑔 ∘ 𝑔)(π‘₯), (𝑓 ∘ 𝑓)(π‘₯)
  • 80. Find:(𝑓 ∘ 𝑔)(π‘₯) Step 1: Apply the definition of composition of functions 𝑓 ∘ 𝑔 π‘₯ = 𝑓 𝑔 π‘₯ β†’ (𝑓 ∘ 𝑔)(π‘₯) = 𝑓(3π‘₯ + 2) Step 2: Apply the definition of 𝑓 𝑓 ∘ 𝑔 π‘₯ = 𝑓 3π‘₯ + 2 β†’ 𝑓 ∘ 𝑔 π‘₯ = 3π‘₯ + 2 2 βˆ’ 6 Step 3: Simplify the results. 𝑓 ∘ 𝑔 π‘₯ = 3π‘₯ + 2 2 βˆ’ 6 𝑓 ∘ 𝑔 π‘₯ = 9π‘₯2 + 12π‘₯ + 4 βˆ’ 6 𝑓 ∘ 𝑔 π‘₯ = πŸ—π’™πŸ + πŸπŸπ’™ βˆ’ 𝟐
  • 81. Find:(𝑔 ∘ 𝑓)(π‘₯) Step 1: Apply the definition of composition of functions 𝑔 ∘ 𝑓 π‘₯ = 𝑔 𝑓 π‘₯ β†’ (𝑔 ∘ 𝑓)(π‘₯) = 𝑔(π‘₯2 βˆ’ 6) Step 2: Apply the definition of 𝑓 𝑔 ∘ 𝑓 π‘₯ = 𝑔 π‘₯2 βˆ’ 6 β†’ 𝑔 ∘ 𝑓 π‘₯ = 3 π‘₯2 βˆ’ 6 + 2 Step 3: Simplify the results. 𝑔 ∘ 𝑓 π‘₯ = 3π‘₯2 βˆ’ 18 + 2 𝑔 ∘ 𝑓 π‘₯ = πŸ‘π’™πŸ βˆ’ πŸπŸ” 𝑔 ∘ 𝑓 π‘₯ = 3 π‘₯2 βˆ’ 6 + 2
  • 82. Find:(𝑔 ∘ 𝑔)(π‘₯) Step 1: Apply the definition of composition of functions 𝑔 ∘ 𝑔 π‘₯ = 𝑔 𝑔 π‘₯ β†’ (𝑔 ∘ 𝑔)(π‘₯) = 𝑔(3π‘₯ + 2) Step 2: Apply the definition of 𝑓 𝑔 ∘ 𝑔 π‘₯ = 𝑔 3π‘₯ + 2 β†’ 𝑔 ∘ 𝑔 π‘₯ = 3 3π‘₯ + 2 + 2 Step 3: Simplify the results. 𝑔 ∘ 𝑔 π‘₯ = 9π‘₯ + 6 + 2 𝑔 ∘ 𝑔 π‘₯ = πŸ‘π’™πŸ + πŸ– 𝑔 ∘ 𝑔 π‘₯ = 3 3π‘₯ + 2 + 2
  • 83. Find:(𝑓 ∘ 𝑓)(π‘₯) Step 1: Apply the definition of composition of functions 𝑓 ∘ 𝑓 π‘₯ = 𝑓 𝑓 π‘₯ β†’ (𝑓 ∘ 𝑓)(π‘₯) = 𝑓(π‘₯2 βˆ’ 6) Step 2: Apply the definition of 𝑓 𝑓 ∘ 𝑓 π‘₯ = 𝑓 π‘₯2 βˆ’ 6 β†’ 𝑓 ∘ 𝑓 π‘₯ = π‘₯2 βˆ’ 6 2 βˆ’ 6 Step 3: Simplify the results. 𝑔 ∘ 𝑓 π‘₯ = π‘₯4 βˆ’ 12π‘₯2 + 36 βˆ’ 6 𝑔 ∘ 𝑓 π‘₯ = π’™πŸ’ βˆ’ πŸπŸπ’™πŸ + πŸ‘πŸŽ 𝑓 ∘ 𝑓 π‘₯ = π‘₯2 βˆ’ 6 2 βˆ’ 6
  • 84. Example: Given the following functions 𝑓 π‘₯ = π‘₯3, 𝑔 π‘₯ = π‘₯+2 3π‘₯βˆ’1 ,and β„Ž π‘₯ = 6π‘₯ βˆ’ 7 Find the following: 𝑓 ∘ 𝑓 π‘₯ π‘Žπ‘›π‘‘ (𝑓 ∘ 𝑓)(2) , 𝑔 ∘ β„Ž π‘₯ π‘Žπ‘›π‘‘ (𝑔 ∘ β„Ž)(βˆ’1)
  • 85. Find:(𝑓 ∘ 𝑓)(π‘₯) Step 1: Apply the definition of composition of functions 𝑓 ∘ 𝑓 π‘₯ = 𝑓 𝑓 π‘₯ β†’ (𝑓 ∘ 𝑓)(π‘₯) = 𝑓(π‘₯3 ) Step 2: Apply the definition of 𝑓 𝑓 ∘ 𝑓 π‘₯ = 𝑓 π‘₯3 β†’ 𝑓 ∘ 𝑓 π‘₯ = π‘₯3 3 Step 3: Simplify the results. 𝑔 ∘ 𝑓 π‘₯ = π’™πŸ— 𝑓 ∘ 𝑓 π‘₯ = π‘₯3 3 𝑔 ∘ 𝑓 2 = (𝟐)πŸ— = πŸ“πŸπŸ
  • 86. Find:(𝑔 ∘ β„Ž)(π‘₯) Step 1: Apply the definition of composition of functions 𝑔 ∘ β„Ž π‘₯ = 𝑔 β„Ž π‘₯ β†’ (𝑔 ∘ β„Ž)(π‘₯) = 𝑔 6π‘₯ + 7 Step 2: Apply the definition of 𝑓 𝑔 ∘ β„Ž π‘₯ = 𝑔 6π‘₯ + 7 𝑔 ∘ β„Ž π‘₯ = 6π‘₯ βˆ’ 7 + 2 3 6π‘₯ βˆ’ 7 βˆ’ 1 Step 3: Simplify the results. 𝑔 ∘ β„Ž π‘₯ = 6π‘₯ βˆ’ 7 + 2 3 6π‘₯ βˆ’ 7 βˆ’ 1 𝑔 ∘ β„Ž π‘₯ = πŸ”π’™ βˆ’ πŸ“ πŸπŸ–π’™ βˆ’ 𝟐𝟐 𝑔 ∘ β„Ž βˆ’1 = 6(βˆ’1) βˆ’ 5 18(βˆ’1) βˆ’ 22 = βˆ’ 𝟏𝟏 πŸ’
  • 88. The following steps will be helpful in solving problems involving functions. β€’ Read and comprehend the problem carefully. β€’ Identify the function to be used (linear, quadratic, cubic, etc.) in representing the given problem. β€’ Write the function that describes the problem. β€’ Use the function to solve the problem. β€’ Use the function to solve the problem. β€’ Check the answer.
  • 89. EXAMPLE: A Science major student earned 6 units after enrolling for a semester. Then, he took an academic leave for one year. After his leave, he enrolled again, ever more desirous this time to finish all the 150 units that he needs. In how many semesters does he need to enroll if he takes 9 units of Science subjects every semester?
  • 90. Step:1 Represent the given and unknown quantities in the problem. Let: 𝑦 = total number of units to be taken in x semesters. π‘₯ = number of semesters. Step:2 Determine the function or equation that relates the quantities or variables in the problem. The problem can be described best by a linear function which relates the number of semesters (x) to the total number of units (y). The function that describes the relationship between x and y is: 𝑦 = 9π‘₯ + 16
  • 91. Step:3 Solve the problem. We want to know the number of semesters that the student needs to take in order to finish all 150 units. 𝑦 = 150 The student needs 16 semesters to complete the program. 150 = 9π‘₯ + 6 150 βˆ’ 6 = 9π‘₯ 144 = 9π‘₯ π‘₯ = 16
  • 92. EXAMPLE: The area of a rectangle is 420 π‘π‘š2. The length of the rectangle is one less than thrice its width. What are the dimensions of the given rectangle?
  • 93. Step:1 Represent the given and unknown quantities in the problem. Express the width and the length of the rectangle in terms of one variable. Let: 𝑦 = area of the rectangle π‘₯ = width 3π‘₯ βˆ’ 1 = Length Step:2 Use function to relate the quantities or variables in the problem. The area of the rectangle is given by: 𝐴 = 𝑙𝑀; where 𝑙 = length and 𝑀 = width Using the representation in Step 1, we have: 𝑦 = π‘₯ 3π‘₯ βˆ’ 1 𝑦 = 3π‘₯2 βˆ’ π‘₯ The function that describes the relationship is 𝑦 = 3π‘₯2 βˆ’ π‘₯
  • 94. Step:3 Solve the problem. The area of rectangle is 𝑦 = 420 Substitute the value in 𝑦 = 3π‘₯2 βˆ’ π‘₯ 3π‘₯2 βˆ’ π‘₯ βˆ’ 420 = 0 Find the length and the width by substituting the value of x in the representation found in Step 1. Reject the negative value of x because the measurement of width cannot be negative. 3π‘₯ + 35 π‘₯ βˆ’ 12 = 0 420 = 3π‘₯2 βˆ’ π‘₯ 3π‘₯ + 35 = 0 If π‘₯ = 12, then: width = π‘₯ = 12 Length = 3π‘₯ βˆ’ 1 = 3 12 βˆ’ 1 = 35 Thus the dimensions of the given rectangle is 12 and 35. 3π‘₯ = βˆ’35 𝒙 = βˆ’ πŸ‘πŸ“ πŸ‘ π‘₯ βˆ’ 12 = 0 𝒙 = 𝟏𝟐 Step:4

Editor's Notes

  1. Observe that the function consist of two parts: the first part is a line, while the second part is a parabola. Graph them in Cartesian plane. First, graph the line f(x)=x-2 for all x<= -2. Then graph the parabola f(x)=3x^2 -5 for all x>2.
  2. Observe that the function consist of two parts: the first part is a line, while the second part is a parabola. Graph them in Cartesian plane. First, graph the line f(x)=x-2 for all x<= -2. Then graph the parabola f(x)=3x^2 -5 for all x>2.