SlideShare a Scribd company logo
Resisted Motion
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                      (Newton’s 3rd Law)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
                              NOTE: greatest height still occurs
                                    when v = 0
Case 3 (downwards motion)
Case 3 (downwards motion)
Case 3 (downwards motion)




      m
       x
Case 3 (downwards motion)




      m
       x    mg
Case 3 (downwards motion)

            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R                        R
                             xg
                             
                                     m
      m
       x    mg
Case 3 (downwards motion)
                                      m  mg  R
                                       x
            R                                  R
                                       xg
                                       
                                               m
      m
       x    mg
                            NOTE: terminal velocity occurs
                                  when   0
                                        x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2

                    x  0, v  u
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x                                m   mg  kv 2
                                           x
                                                     k 2
               mg kv 2                        g  v
                                           x
                                                     m
                    x  0, v  u
dv  mg  kv 2
v 
 dx     m
dv  mg  kv 2
v 
 dx     m
 dx    mv
    
 dv  mg  kv 2
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
           u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
        m
        2k
           logmg  kv 2 u0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2 
     log             
     2k     mg 
     m    ku 2 
     log1    
     2k   mg 
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2             the greatest height
     log             
     2k       mg                      m      ku 2 
                                      is log1         metres
     m      ku 2                      2k     mg 
     log1       
     2k     mg 
k 2
   g  v
x
          m
k 2
    g  v
 x
           m
dv  mg  kv 2
    
dt         m
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
         u
       m      dv
       k  mg  v 2
   
         0
            k
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
    m      dv
    k  mg  v 2
   
      0
         k
                              u
    m k         1   k 
           tan    mg v 
                           
    k  mg                 0
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                         
       kg                        
     m     1   k 
       tan   mg u 
                     
     kg             
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                                                 m      1   k 
       kg                          it takes     tan    mg u  seconds
                                                                   
                                                  kg              
     m     1   k 
       tan   mg u 
                                       to reach the greatest height.
     kg             
(ii) A body of mass 5kg is dropped from a height at which the
     gravitational acceleration is g.
     Assuming that air resistance is proportional to speed v, the
     constant of proportion being 1 , find;
                                    8
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.

             1
               v
             8
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
                                             40log40 g  v 0
                                                                   v


                                             40log40 g  v   log40 g 
                                                     40 g 
                                             40 log          
                                                     40 g  v 
t       40 g 
    log          
40       40 g  v 
t       40 g 
        log          
    40       40 g  v 
               t
 40 g
         e   40
40 g  v
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g             t
                
40 g  v  40 ge 40
                              t
                         
      v  40 g  40 ge       40


                     
                       t
      v  40 g 1  e 40 
                        
                        
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity occurs when   0
                                 x
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                         OR
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                  OR
                          
                                                                  
                                                                    t
b) the terminal velocity                   lim v  lim 40 g 1  e 40 
                                                                     
                                           t     t 
   terminal velocity1 occurs when   0
                                  x                                  
         i.e.0  g  v                            40 g
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                     OR
                          
                                                                     
                                                                       t
b) the terminal velocity                      lim v  lim 40 g 1  e 40 
                                                                        
                                              t     t 
   terminal velocity1 occurs when   0
                                  x                                     
         i.e.0  g  v                               40 g
                     40
             v  40 g                     terminal velocity is 40 g m/s
c) The distance it has fallen after time t
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                        t
                             
                                   t
                                       
          x  40 g t  40e       40
                                       
                                      0
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40

                               0
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40                            Exercise 8C;
                               0                       2, 4, 5, 6, 8, 10, 13, 16
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g

More Related Content

Viewers also liked

오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あbanera3
 
X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)Nigel Simmons
 
Xóa xăm bằng laser
Xóa xăm bằng laserXóa xăm bằng laser
Xóa xăm bằng laserThang Van
 
라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 박 양도
 
Xamarin - why not ?
Xamarin -  why not ?Xamarin -  why not ?
Xamarin - why not ?Dan Ardelean
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirezRogerRamirez9
 

Viewers also liked (14)

XADAT.NL
XADAT.NLXADAT.NL
XADAT.NL
 
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
오피사이트 『 Bamcafe2.net』건대오피,오룡오피,매니져실사,평촌오피,인천오피あ
 
X38 Fact Sheet
X38 Fact SheetX38 Fact Sheet
X38 Fact Sheet
 
X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)X2 t06 07 miscellaneous dynamics questions (2012)
X2 t06 07 miscellaneous dynamics questions (2012)
 
Проект X2C
Проект X2CПроект X2C
Проект X2C
 
Xóa xăm bằng laser
Xóa xăm bằng laserXóa xăm bằng laser
Xóa xăm bằng laser
 
44060601
4406060144060601
44060601
 
Xarxa turística
Xarxa turísticaXarxa turística
Xarxa turística
 
Xandros os
Xandros osXandros os
Xandros os
 
Xarxes PR3
Xarxes PR3Xarxes PR3
Xarxes PR3
 
X3 Base Training Certificate
X3 Base Training CertificateX3 Base Training Certificate
X3 Base Training Certificate
 
라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v 라이브바카라"reel77‘com"온라인카지노x6v
라이브바카라"reel77‘com"온라인카지노x6v
 
Xamarin - why not ?
Xamarin -  why not ?Xamarin -  why not ?
Xamarin - why not ?
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirez
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...Nguyen Thanh Tu Collection
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxDenish Jangid
 
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxslides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxCapitolTechU
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxricssacare
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfjoachimlavalley1
 
Forest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDFForest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDFVivekanand Anglo Vedic Academy
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringDenish Jangid
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportAvinash Rai
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfbu07226
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resourcesaileywriter
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chipsGeoBlogs
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxJenilouCasareno
 
Advances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfAdvances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfDr. M. Kumaresan Hort.
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersPedroFerreira53928
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfYibeltalNibretu
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
 

Recently uploaded (20)

GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
 
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxslides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
Mattingly "AI & Prompt Design: Limitations and Solutions with LLMs"
 
Forest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDFForest and Wildlife Resources Class 10 Free Study Material PDF
Forest and Wildlife Resources Class 10 Free Study Material PDF
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
Advances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdfAdvances in production technology of Grapes.pdf
Advances in production technology of Grapes.pdf
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 

X2 T07 02 resisted motion

  • 2. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion.
  • 3. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law)
  • 4. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 5. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 6. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x
  • 7. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x R
  • 8. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R
  • 9. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m
  • 10. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 11. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 12. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x
  • 13. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg
  • 14. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg R
  • 15. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m x mg R
  • 16. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R
  • 17. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R NOTE: greatest height still occurs when v = 0
  • 18. Case 3 (downwards motion)
  • 19. Case 3 (downwards motion)
  • 20. Case 3 (downwards motion) m x
  • 21. Case 3 (downwards motion) m x mg
  • 22. Case 3 (downwards motion) R m x mg
  • 23. Case 3 (downwards motion) m  mg  R x R m x mg
  • 24. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg
  • 25. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x
  • 26. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 27. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 28. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x
  • 29. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg
  • 30. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2
  • 31. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2 x  0, v  u
  • 32. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x m   mg  kv 2 x k 2 mg kv 2    g  v x m x  0, v  u
  • 33. dv  mg  kv 2 v  dx m
  • 34. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2
  • 35. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0
  • 36. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0
  • 37. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   log  2k  mg  m  ku 2   log1   2k  mg 
  • 38. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   the greatest height  log  2k  mg  m  ku 2  is log1   metres m  ku 2  2k  mg   log1   2k  mg 
  • 39. k 2    g  v x m
  • 40. k 2    g  v x m dv  mg  kv 2  dt m
  • 41. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k
  • 42. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0
  • 43. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  kg     m 1  k   tan   mg u   kg  
  • 44. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  m 1  k  kg      it takes tan   mg u  seconds  kg   m 1  k   tan   mg u   to reach the greatest height. kg  
  • 45. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8
  • 46. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 47. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 48. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x
  • 49. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x 5g
  • 50. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 1 v 8 5 x 5g
  • 51. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 5 x 5g
  • 52. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40
  • 53. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v
  • 54. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v  40log40 g  v 0 v  40log40 g  v   log40 g   40 g   40 log   40 g  v 
  • 55. t  40 g   log  40  40 g  v 
  • 56. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v
  • 57. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g
  • 58. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40     
  • 59. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity
  • 60. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity occurs when   0 x
  • 61. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 62. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR   b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 63. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g
  • 64. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g  terminal velocity is 40 g m/s
  • 65. c) The distance it has fallen after time t
  • 66. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt  
  • 67. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0 
  • 68. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e 40   0
  • 69. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40  0   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g
  • 70. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40 Exercise 8C;  0 2, 4, 5, 6, 8, 10, 13, 16   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g