SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical Pendulum
  A




      
      P
The Conical Pendulum
  A
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                 T= tension in the string
                          T         (always away from object)
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h

                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg     angular velocity of pendulum
 O        r   P
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x
         r
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x                                           m  0
                                                y
         r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                              T          (always away from object)
      h                                   string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                         m  0
                                                 y
            r
                    mv 2
horizontal forces 
                     r
The Conical Pendulum
       A              Force Diagram
                                       T= tension in the string
                              T           (always away from object)
      h                                    string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                           m  0
                                                   y
            r
                    mv 2
horizontal forces                     vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin 
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin  2
           mv
 T sin  
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos
   T sin  2
 T sin  
           mv       mr 2              mg
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos       T cos  mg  0
   T sin  2
 T sin  
           mv       mr 2              mg                    T cos  mg
            r
T sin  mv 2 1
           
T cos   r    mg
T sin  mv 2 1
            
T cos     r   mg
          v2
  tan  
          rg
T sin  mv 2 1
            
T cos     r   mg
          v2         r 2 
  tan                  
          rg         g 
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g
                   h 2
                      v
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g           g 
                   h 2               
                      v            2 
T sin  mv 2 1
                           
               T cos     r   mg
                         v2         r 2 
                 tan                  
                         rg         g 
                         r
But in AOP      tan  
                         h
                   v2 r
                  
                   rg h
                      r2g           g 
                    h 2               
                       v            2 
Implications
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T



                                mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                             T
                      h


                              r
                                  mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces 
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos

   T sin   mr 2                      mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos T cos  mg  0

   T sin   mr 2                      mg          T cos  mg
1
 tan   mr 2 
                    mg
         r 2
       
          g
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min
                    mg
                                  120
         r 2                         rad/s
                                  60
          g
                                 2rad/s
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min
       r 2 r
                                180
        g     h                       rad/s
                                   60
          h 2
               g                 3rad/s
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                        m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min              g
                                               h
   
       r 2 r
                                 180
                                                    3 2
        g     h                       rad/s          g
                                   60                        m
               g                 3rad/s           9    2
          h 2
                
1
 tan   mr 2              when   60rev/min     h
                                                            g
                    mg
                                       120
                                                          2 2
         r 2                              rad/s          g
                                       60                         m
          g
                                      2rad/s            4   2


              r
  But tan  
              h               when   90rev/min               g
                                                     h
   
       r 2 r
                                      180
                                                          3 2
        g     h                            rad/s           g
                                        60                         m
               g                      3rad/s            9    2
          h 2
                

                                        g  g m
                     rise in height   2
                                        4 9 2 
                                                 
                                     0.14m
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
 Note: whenever a particle makes contact with a surface there will be
 a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T

        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                  N
        
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                 
        T                                                   
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                  
        T                                                   
                  N
                                                     
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                   
        T c                                                 
                   N
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                         c
        T c                   sin 
                          N                                 
                   N
                           c  N sin 
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                
                   N
                            c  N sin 
                                                 
                        the vertical component        
              mg
                        of N isN sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                   
                  N
                            c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin     N sin 
T cos   N cos   mr 2                   mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin    N sin 
                                                 T sin   N sin   mg  0
T cos   N cos   mr 2                   mg
                                                       T sin   N sin   mg
T sin   N sin   mg
T sin   N sin   mg
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg       T  N  cos   mr 2
                 mg                        mr 2
          TN                      T N 
                sin                       cos 
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                           mr 2
          TN                         T N 
                sin                          cos 
                            r
                         But  cos 
                            l
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                         mr 2
          TN                       T N 
                sin                        cos 
                            r
                         But  cos  T  N  ml 2
                            l
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                     mg                                     mr 2
              TN                                   T N 
                    sin                                    cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T       and T  ml 2
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                     ml 2
                                              sin 
         mg
    T          and T  ml 2
        sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                      ml 2
                                              sin 
         mg                                                g
    T          and T  ml  2
                                                 2

        sin                                           l sin 
                                                             g
                                                 
                                                          l sin 
Exercise 9C; all

More Related Content

What's hot

derivation of Wave equation
derivation of Wave equationderivation of Wave equation
derivation of Wave equationUCP
 
Ap b motion in one dimension
Ap b   motion in one dimensionAp b   motion in one dimension
Ap b motion in one dimensionIntikhab Ansari
 
Chapter 7 Powerpoint
Chapter 7 PowerpointChapter 7 Powerpoint
Chapter 7 PowerpointMrreynon
 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEAmenahGondal1
 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectorsBed Dhakal
 
Phase and phase difference LO3
Phase and phase difference LO3Phase and phase difference LO3
Phase and phase difference LO3Vivian Tsang
 
Physics projectile motion
Physics projectile motionPhysics projectile motion
Physics projectile motionGurucharan Nain
 
Waves in One Dimension
Waves in One DimensionWaves in One Dimension
Waves in One DimensionBruce Coulter
 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanicshue34
 
Ch 03b motion in a plane
Ch 03b motion in a planeCh 03b motion in a plane
Ch 03b motion in a planeRaghav Vasudeva
 

What's hot (20)

Gravitation
GravitationGravitation
Gravitation
 
derivation of Wave equation
derivation of Wave equationderivation of Wave equation
derivation of Wave equation
 
Ap b motion in one dimension
Ap b   motion in one dimensionAp b   motion in one dimension
Ap b motion in one dimension
 
Chapter 7 Powerpoint
Chapter 7 PowerpointChapter 7 Powerpoint
Chapter 7 Powerpoint
 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACE
 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectors
 
Phase and phase difference LO3
Phase and phase difference LO3Phase and phase difference LO3
Phase and phase difference LO3
 
Quantum gravity
Quantum gravityQuantum gravity
Quantum gravity
 
003
003003
003
 
Elastic beams
Elastic beams Elastic beams
Elastic beams
 
Unit 5 rigid body dynamics
Unit 5 rigid body dynamicsUnit 5 rigid body dynamics
Unit 5 rigid body dynamics
 
Physics 9
Physics 9Physics 9
Physics 9
 
01 ray-optics-mm
01 ray-optics-mm01 ray-optics-mm
01 ray-optics-mm
 
Physics projectile motion
Physics projectile motionPhysics projectile motion
Physics projectile motion
 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
 
Waves in One Dimension
Waves in One DimensionWaves in One Dimension
Waves in One Dimension
 
Linear and angular momentum
Linear and angular momentum Linear and angular momentum
Linear and angular momentum
 
12 rotational motion
12 rotational motion12 rotational motion
12 rotational motion
 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
 
Ch 03b motion in a plane
Ch 03b motion in a planeCh 03b motion in a plane
Ch 03b motion in a plane
 

Similar to X2 T07 05 conical pendulum

X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)Nigel Simmons
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)Nigel Simmons
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)Nigel Simmons
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)Nigel Simmons
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curvesNigel Simmons
 
11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theoremsNigel Simmons
 

Similar to X2 T07 05 conical pendulum (8)

X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)
 
Equations
EquationsEquations
Equations
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curves
 
Lesson8
Lesson8Lesson8
Lesson8
 
11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems11X1 T12 08 geometrical theorems
11X1 T12 08 geometrical theorems
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Recently uploaded (20)

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 

X2 T07 05 conical pendulum

  • 3. The Conical Pendulum A  h  O r P
  • 4. The Conical Pendulum A Force Diagram  h  O r P
  • 5. The Conical Pendulum A Force Diagram  h  O r P
  • 6. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  O r P
  • 7. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  mg O r P
  • 8. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg O r P
  • 9. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P
  • 10. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces
  • 11. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x r
  • 12. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r
  • 13. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  r
  • 14. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 15. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 16. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 17. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin 
  • 18. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 mv T sin   r
  • 19. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 20. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 21. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T sin  2 T sin   mv  mr 2 mg r
  • 22. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T cos  mg  0 T sin  2 T sin   mv  mr 2 mg T cos  mg r
  • 23. T sin  mv 2 1   T cos r mg
  • 24. T sin  mv 2 1   T cos r mg v2 tan   rg
  • 25. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g 
  • 26. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h
  • 27. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h
  • 28. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g h 2 v
  • 29. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2 
  • 30. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications
  • 31. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T mg
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  r
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T sin   mr 2 mg
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T cos  mg  0 T sin   mr 2 mg T cos  mg
  • 46. 1  tan   mr 2  mg r 2  g
  • 47. 1  tan   mr 2  mg r 2  g r But tan   h
  • 48. 1  tan   mr 2  mg r 2  g r But tan   h r 2 r   g h g h 2 
  • 49. 1  tan   mr 2  when   60rev/min mg 120 r 2  rad/s  60 g  2rad/s r But tan   h r 2 r   g h g h 2 
  • 50. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h r 2 r   g h g h 2 
  • 51. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min r 2 r   180 g h  rad/s 60 h 2 g  3rad/s 
  • 52. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2 
  • 53. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2   g  g m  rise in height   2  4 9 2    0.14m
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T 
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  mg
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N   
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N    mg
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T c  N    mg
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     mg
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos 
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos  T cos   N cos   mr 2
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T cos   N cos   mr 2 mg
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T sin   N sin   mg  0 T cos   N cos   mr 2 mg T sin   N sin   mg
  • 78. T sin   N sin   mg
  • 79. T sin   N sin   mg T  N  sin   mg mg TN  sin 
  • 80. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg mg TN  sin 
  • 81. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos 
  • 82. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  l
  • 83. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l
  • 84. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g
  • 85. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;
  • 86. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T sin 
  • 87. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T and T  ml 2 sin 
  • 88. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg T and T  ml 2 sin 
  • 89. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg g T and T  ml 2  2 sin  l sin  g  l sin 