SlideShare a Scribd company logo
Miscellaneous Dynamics
         Questions
e.g. (i) (1992) – variable angular velocity
                            The diagram shows a model train T that is
                            moving around a circular track, centre O
                            and radius a metres.
                            The train is travelling at a constant speed of
                            u m/s. The point N is in the same plane as
                            the track and is x metres from the nearest
                            point on the track. The line NO produced
                            meets the track at S.
Let TNS   and TOS   as in the diagram
dθ
a) Express      in terms of a and u
             dt
dθ
a) Express      in terms of a and u   l  a
             dt
dθ
a) Express      in terms of a and u    l  a
             dt                       dl     d
                                         a
                                      dt     dt
dθ
a) Express      in terms of a and u     l  a
             dt                        dl     d
                                          a
                                       dt     dt
                                              d
                                        ua
                                               dt
                                      d u
                                          
                                      dt a
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO    
       NTO    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                        (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
                                           a sin      a  x  sin 
                          a sin      a  x  sin   0
differentiate with respect to t
              d  d   a  x  cos  d  0
a cos                           
              dt dt                     dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
                                   d            u cos   
                                      
                                   dt a cos     a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt
   when NT is a tangent;
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
     90
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90
     
  dt a cos 90  a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos       0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90                                  d
                                                            0
  dt a cos 90  a  x  cos                             dt
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
             
  when  
             2
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T



      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
          2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T

          5a        a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
                             1
                     cos     
N
           2a
                    O    2        5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                             1
                     cos     
N
           2a
                    O    2        5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                             1
                     cos     
                                                   u 
                                                       1
N
           2a
                    O    2        5                 
                                                     5
                                                1   2a  2 
                                             a    
                                                5         5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                             1
                     cos     
                                                   u 
                                                       1
N
           2a
                    O    2        5                 
                                                     5
                                                1   2a  2 
                                              a    
                                                5         5
                                               u
                                            
                                              5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                              1
                      cos     
                                                    u 
                                                        1
N
            2a
                     O    2        5                 
                                                      5
    when   0                                   1   2a  2 
                                               a    
                                                 5         5
                                                u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                              1
                      cos     
                                                    u 
                                                        1
N
            2a
                     O    2        5                 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                              1
                      cos     
                                                    u 
                                                        1
N
            2a
                     O    2        5                 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                              1
                      cos     
                                                    u 
                                                        1
N
            2a
                     O    2        5                 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
          5 u
        
          3 5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
              
   when  
                                                             
              2
                    T                                 u cos    
                               2           d              2    
                      cos                   
                                5          dt              
        5a          a                            a cos     2a cos 
                                                      2     
                            
                      cos    
                                     1
                               
                                                       u 
                                                           1
N
         2a
                    O     2         5                   
                                                         5
  when   0                                        1   2a  2 
                                                 a    
  d         u cos 0                                5         5
     
   dt a cos 0  2a cos 0                          u
         u                                     
                                                 5a
        3a                                                     3
                         Thus the angular velocity when   is times
        5 u                                                   2 5
       
        3 5a             the angular velocity when   0
(ii) (2000)          A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                          ds
                     position of P. Let s denote the arc length AP, v       ,
                                                                          dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
    ds
 v
     dt
    d
 l
    dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v
      dt
     d
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt                    dv v
                              
                            d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
      dt                     
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
                                              1 dv d  1 2 
      dt                                       v 
                                            l d dv  2 
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
                                              1 dv d  1 2 
      dt                                       v 
                                            l d dv  2 
     d                    d dt
  l                                          1 d 1 2 
      dt                   dv v                    v 
                                            l d  2 
                           d l
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T

            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                   s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
                                          1 d 1 2 
                                                v    g sin 
                                          l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
     d 1 2 
        v    gl sin 
    d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
           v    g sin 
   l d  2 
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                when   0, v  V
   1 d 1 2 
           v    g sin                      V 2  2 gl  c
   l d  2 
                                                c  V 2  2 gl
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                     m   mg sin 
                                                            s
                 
              mg                                              g sin 
                                                           s
                              mg sin 
                                                1 d 1 2 
                                                      v    g sin 
                                                l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                    when   0, v  V
   1 d 1 2 
           v    g sin                         V 2  2 gl  c
   l d  2 
                                                    c  V 2  2 gl
     d 1 2 
         v    gl sin                     v 2  2 gl cos  V 2  2 gl
    d  2 
     1 2                                      V 2  v 2  2 gl  2 gl cos
        v  gl cos  c
      2                                       V 2  v 2  2 gl 1  cos 
        v 2  2 gl cos  c
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos              m  T  mg cos
                                  x
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l                                     1.911radians
     mg cos  m g  2 g cos 
    3mg cos   mg
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
               1 2
  T  mg cos  mv
               l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
(iii) (2003)
     A particle of mass m is thrown from the top, O, of a very tall building
     with an initial velocity u at an angle of  to the horizontal. The
     particle experiences the effect of gravity, and a resistance
     proportional to its velocity in both directions.
                         The equations of motion in the horizontal and
                         vertical directions are given respectively by
                                    kx and    ky  g
                                 x               y      
                          where k is a constant and the acceleration due
                          to gravity is g.
                               (You are NOT required to show these)
a) Derive the result x  ue  kt cos 
                     
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt         x
              
         1       dx
    t 
         k u cos x
                  
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                             1  x   
   dx                                   t   log         
         kx
                                             k    u cos  
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                     1  x   
   dx                                           t   log         
         kx
                                                     k    u cos  
   dt          x
               
          1       dx                                       x 
    t                                     kt  log              
          k u cos x                                       u cos  
          1                                 x
                                            
    t   log x u cos                           e  kt
                      x
                      
                   
          k                              u cos 
          1
    t   log x  logu cos  
                                              x  ue  kt cos 
                                                
          k
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t     log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t     log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
   dy
         ky  g
            
   dt
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                         1  x        
   dx                                             t   log                
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                      e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
            k
a) Derive the result x  ue  kt cos 
                                                          1  x        
   dx                                             t   log                 
         kx                                             k         u cos  
   dt             x
                  
          1           dx                                      x   
    t                                        kt  log                
          k u cos x                                           u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t       log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                        
   dt         y                                        ky  g 
                                                                
                      dy                  kt  log                     
     t                                               ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                        e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
                                                     y  ku sin   g e  kt  g 
                                                           1
            k                                        
                                                           k
c) Find the value of t when the particle reaches its maximum height
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                             
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                              
       1
  t   logky  g u sin 
                      0
              
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
       1
  t   logky  g u sin 
                       0
               
       k
       1
  t   log g   logku sin   g 
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
        1
  t   logky  g u sin 
                       0
               
        k
        1
  t   log g   logku sin   g 
        k
      1  ku sin   g 
   t  log                 
      k           g        
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
    x  ue  kt cos 
    
   dx
       ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0

   dx
         ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0
                                                              t

                                 x  lim u cos   e 
   dx                                                1  kt 
         ue cos 
              kt
                                                  k
   dt                                 t                   0
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                               t

                                 x  lim u cos   e 
   dx                                                 1  kt 
         ue cos 
              kt
                                                    k
   dt                                 t                    0
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                               t

                                 x  lim u cos   e 
   dx                                                 1  kt 
         ue cos 
              kt
                                                    k
   dt                                 t                    0
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
                                      u cos 
                                 x
                                          k
Exercise 9E; 1 to 4, 7

Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

More Related Content

Viewers also liked

X464 Usermanual
X464 UsermanualX464 Usermanual
X464 Usermanual
SchoolVision Inc.
 
Xamarin user group san diego - mvvm cross
Xamarin user group san diego - mvvm crossXamarin user group san diego - mvvm cross
Xamarin user group san diego - mvvm cross
Seamgen
 
xarxas1
xarxas1xarxas1
xarxas1Nerea
 
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, WindowsXamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
Subodh Pushpak
 
XAIVIER%2cRESUME16
XAIVIER%2cRESUME16XAIVIER%2cRESUME16
XAIVIER%2cRESUME16
Xaivier Smith
 
Xakr01 14-myjurnal.ru
Xakr01 14-myjurnal.ruXakr01 14-myjurnal.ru
Xakr01 14-myjurnal.ru
Vasya Pupkin
 
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossaEnergiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
Finnish Bioeconomy Cluster FIBIC Oy
 
X38 Fact Sheet
X38 Fact SheetX38 Fact Sheet
X38 Fact Sheet
nasapaladin
 

Viewers also liked (8)

X464 Usermanual
X464 UsermanualX464 Usermanual
X464 Usermanual
 
Xamarin user group san diego - mvvm cross
Xamarin user group san diego - mvvm crossXamarin user group san diego - mvvm cross
Xamarin user group san diego - mvvm cross
 
xarxas1
xarxas1xarxas1
xarxas1
 
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, WindowsXamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
Xamarin day8 - Xamarin forms. Common code / controls on iOS, Android, Windows
 
XAIVIER%2cRESUME16
XAIVIER%2cRESUME16XAIVIER%2cRESUME16
XAIVIER%2cRESUME16
 
Xakr01 14-myjurnal.ru
Xakr01 14-myjurnal.ruXakr01 14-myjurnal.ru
Xakr01 14-myjurnal.ru
 
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossaEnergiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
Energiapuun rooli metsänkasvatusketjun tuotoksessa ja tuotossa
 
X38 Fact Sheet
X38 Fact SheetX38 Fact Sheet
X38 Fact Sheet
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 

Recently uploaded (20)

The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 

X2 t06 07 miscellaneous dynamics questions (2012)

  • 1. Miscellaneous Dynamics Questions e.g. (i) (1992) – variable angular velocity The diagram shows a model train T that is moving around a circular track, centre O and radius a metres. The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S. Let TNS   and TOS   as in the diagram
  • 2. dθ a) Express in terms of a and u dt
  • 3. dθ a) Express in terms of a and u l  a dt
  • 4. dθ a) Express in terms of a and u l  a dt dl d a dt dt
  • 5. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a
  • 6. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos   
  • 7. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN )
  • 8. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     NTO    
  • 9. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin    
  • 10. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin     a sin      a  x  sin  a sin      a  x  sin   0
  • 11. differentiate with respect to t  d  d   a  x  cos  d  0 a cos       dt dt  dt
  • 12. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt
  • 13. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a
  • 14. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos 
  • 15. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt when NT is a tangent;
  • 16. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T N O
  • 17. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; N O
  • 18. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O
  • 19. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90
  • 20. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90  dt a cos 90  a  x  cos 
  • 21. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90 d   0 dt a cos 90  a  x  cos  dt
  • 22. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5
  • 23. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2
  • 24. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T  N O
  • 25. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O
  • 26. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O 2a
  • 27. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 5a a  N O 2a
  • 28. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a  N O 2a
  • 29. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a     1  cos  N 2a O 2  5
  • 30. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  N 2a O 2  5
  • 31. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5  1   2a  2  a      5  5
  • 32. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5  1   2a  2  a      5  5 u  5a
  • 33. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5 when   0  1   2a  2  a      5  5 u  5a
  • 34. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u  5a
  • 35. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a
  • 36. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2      1  cos  u  1 N 2a O 2  5     5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a 5 u   3 5a
  • 37. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1    u  1 N 2a O 2  5     5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a  3 Thus the angular velocity when   is times 5 u 2 5   3 5a the angular velocity when   0
  • 38. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
  • 39. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2 
  • 40. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l
  • 41. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l ds v dt d l dt
  • 42. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dt d l dt
  • 43. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt
  • 44. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt dv v   d l
  • 45. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d dt   d d dt l dt dv v   d l
  • 46. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d 1 dv d  1 2  dt     v    l d dv  2  d d dt l dt dv v   d l
  • 47. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d 1 dv d  1 2  dt     v    l d dv  2  d d dt l 1 d 1 2  dt dv v   v    l d  2  d l
  • 48. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 49. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 50. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T
  • 51. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T mg
  • 52. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg
  • 53. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg mg sin 
  • 54. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s  mg mg sin 
  • 55. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg mg sin 
  • 56. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin 
  • 57. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2 
  • 58. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos 
  • 59. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2 
  • 60. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2 
  • 61. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 62. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 63. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  v 2  2 gl cos  V 2  2 gl d  2  1 2 V 2  v 2  2 gl  2 gl cos v  gl cos  c 2 V 2  v 2  2 gl 1  cos  v 2  2 gl cos  c
  • 64. 1 2 d) Explain why T-mg cos θ  mv l
  • 65. 1 2 d) Explain why T-mg cos θ  mv l
  • 66. 1 2 d) Explain why T-mg cos θ  mv l T
  • 67. 1 2 d) Explain why T-mg cos θ  mv l T mg cos
  • 68. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m x
  • 69. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x
  • 70. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force.
  • 71. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l
  • 72. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0
  • 73. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l
  • 74. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l
  • 75. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos 
  • 76. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos  3mg cos   mg
  • 77. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l  mg cos  m g  2 g cos  3mg cos   mg
  • 78. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l   1.911radians  mg cos  m g  2 g cos  3mg cos   mg
  • 79. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.
  • 80. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude;
  • 81. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l
  • 82. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l
  • 83. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 84. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 85. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 86. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 87. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 88. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 89. (iii) (2003) A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of  to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions. The equations of motion in the horizontal and vertical directions are given respectively by    kx and    ky  g x  y  where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these)
  • 90. a) Derive the result x  ue  kt cos  
  • 91. a) Derive the result x  ue  kt cos   dx    kx  dt
  • 92. a) Derive the result x  ue  kt cos   dx    kx  dt x  1 dx t  k u cos x 
  • 93. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k
  • 94. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 95. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 96. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx   x  t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k
  • 97. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition
  • 98. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt
  • 99. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g 
  • 100. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 101. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 102. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  1 t   logky  g u sin  y   k
  • 103. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g k
  • 104. a) Derive the result x  ue  kt cos   1  x   dx t   log    kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g   dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g y  ku sin   g e  kt  g  1 k  k
  • 105. c) Find the value of t when the particle reaches its maximum height
  • 106. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0 
  • 107. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k
  • 108. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k
  • 109. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g 
  • 110. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle?
  • 111. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle? x  ue  kt cos   dx  ue  kt cos  dt
  • 112. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 dx  ue  kt cos  dt
  • 113. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t x  lim u cos   e  dx 1  kt   ue cos   kt  k dt t   0
  • 114. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t x  lim u cos   e  dx 1  kt   ue cos   kt  k dt t   0 u cos  x  lim  e kt  1 t  k
  • 115. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t x  lim u cos   e  dx 1  kt   ue cos   kt  k dt t   0 u cos  x  lim  e kt  1 t  k u cos  x k
  • 116. Exercise 9E; 1 to 4, 7 Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25