Innelastic Light Scattering in Carbon Nanostructures:
From the micro do the nanoscale
Ado JORIO
Departamento de Física
Universidade Federal de Minas Gerais
BRAZIL
27 September 2016
INNELASTIC LIGHT SCATTERING
RAMAN SPECTROSCOPY
Vibrational modes in sp2 carbons...
3
... nanotubes
and graphene
RBM
G band D band
RBM = C/dt
“Toy-model” sp2 carbon
nanostructures
Time line
Graphite Fullerene Nanotube Graphene
1960 1985 1991 2004
Moore et al. Kroto et al. Iijima et al. Novoselov et al.
C – 1s2 2s2 2p2
Graphite amorphization
https://www.sglgroup.com/cms/international/products/
lexicon-of-materials/index.html?letter=C&__locale=en
http://www.che.udel.edu/research_groups/
nanomodeling/research.html
C nanostructures in the market
Carbon blackC fibers
GIC
Amorphous
carbon
Terras Pretas de Índios (TIPs) da Amazonia
Indian black earth in Amazon
B. Glaser et al. Naturwis 88, 31-41 (2001)
B. Glaser et al. Org Geochem. (31),
669-678 (2000)
Highly stable carbon in the soil improve fertility
G and D band imaging of a nano-graphite
Confocal G band and D band imaging
2005 - Experiment performed with
Achim Hartschuh in the
laboratory of Prof. A. J.
Meixner (Tuebingen)
2m
Published in PCCP 9, 1276–1291 (2007)
Near-Field Imaging of a graphene step?
D band optical image
AFM
D band image with
20nm resolution
Umpublished
AFM
AFM Image
J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber, J. Phys. Chem. B 105, 743 (2001)
Single carbon nanotube spectroscopy
“in micro”
RBM (cm-1)
Raman spectrum
Si
AFM Image
A. Jorio et al., PRL 86, 1118 (2001)
Also Duesberg et al., PRL 85, 5436 (2000)
Single nanotube spectroscopy
Marked Sample
Resonant Raman Intensity
with Tunable Laser
A. Jorio et al., Phys. Rev. B 63, 245416 (2001)
Anti-Stokes
Raman
CNT JDOS
RBM spectra changing laser line
Resonance window
LaserEnergy
0.44 0.88 1.32
1/dt (nm-1)
E11
S
E22
S
E11
ME33
SE44
SE22
M
The Kataura plot
Optics addresses (n,m)-dependent physics
SWNT optical
transitions
Single nanotube spectroscopy
Physical Properties of Carbon Nanotubes
Riichiro Saito, G. Dresselhaus, M. S. Dresselhaus
Imperial College Press 1998
RBM 
Raman spectra
AFM Image
A. Jorio et al., Phys. Rev. Letters 86, 1118 (2001)
Single nanotube spectroscopy
Si
Kataura plot
RBM Raman spectra from SWNTs bundles
Araujo et al. PRB 77, 241403(R) (2008)
(Eii, RBM)
(n, m)
E11
S
E22
S
E11
ME33
S
E44
S
E22
M
0.44 1.32
E11
S
E22
S
E11
ME33
SE44
SE22
M
0.88
1/dt (nm-1)
Many laser lines probe the Kataura plot
Araujo et al. PRL 98, 067401 (2007)
Araujo et al. Physica E 42, 1251 (2010)
The density of states and dimensionality
DOS
E
0 Dimensional
The density of states and dimensionality
DOS
E
1 Dimensional
dE
dE
19
Excitons
Characterization of CNT structures
The gray scale gives the G
band frequency or strain
Study of intertube interactions
@ carbon nanotube superloops
Shadmi et al. Nano Lett. 2016, 16, 2152−2158
Araujo et al. Nano Lett. 2012, 12, 4110−4116
Soares and Jorio, J. of Nanotech 2012, ID 512738
Soares et al Nano Letters 10, 5043–5048, 2010
Study of tube-substrate interactions
@ Carbon nanotube serpentines
Bioengineering Applications
Carbon Nanotubes “inside the body”
Biocompatibility assessment of
fibrous nanomaterials in
mammalian embryos
Nanomedicine: Nanotechnology,
Biology, and Medicine 12 (2016) 1151–
1159
Efficient delivery of DNA into
bovine preimplantation embryos
by multiwall carbon nanotubes
Scientific Reports | 6:33588 | DOI:
10.1038/srep33588
Highly efficient siRNA delivery
system into human and murine
cells using single-wall carbon
nanotubes
Nanotechnology 21, 385101 (2010)
Single nanotube spectroscopy
“in nano“
Tip enhanced Raman Spectroscopy
(TERS) of Carbon nanotubes
AFM
TERS
Achim Hartschuh et al.
Phys. Rev. Lett. 90, 095503 (2003)
Local G' (2D) emission at the defect location
Localized light emission
Red-shifted G´ (2D) at
the defect site:
n-type doping
I. O. Maciel et al. Nat. Materials 7, 878 (2008)
OPTICAL MICROSCOPY
THE PINHOLE CAMERA PARADIGM
OPTICAL MICROSCOPY
THE PINHOLE CAMERA PARADIGM
Tip Enhanced Raman Spectroscopy
special resolution beyond the diffraction limit
Conventional microscope “Near-field” microscope
Abbé, Arch. Mikrosk., Anat.,(1873).
Wessel, JOSA B, (1985).
Novotny et al., Ultramicroscopy, (1998).
TIP UP AND TIP DOWN
IN CARBONO NANOTUBES
Jorio & Cancado
PCCP 14, 15246 (2012)Cancado et al. PRL 103, 186101 (2009)
TERS VS. AFM – CHEMICAL SELECTIVITY
TOPOGRAPHY TERS
Oil
Objective
60x
NA 1.4
XY STAGE
Gold Tip
Raman
Spectro
meter
Dichroic mirror
Laser
Source
Sample
Tunning fork
Gold tip
• “Home-built”
We can do AFM, STM… and optical
spectroscopy (Raman, Rayleigh,
photoluminecence…) in situ.
• Our best resolution is 10nm
The system
The system
• “Home-built”
We can do AFM, STM… and optical
spectroscopy (Raman, Rayleigh,
photoluminecence…) in situ.
31
NUMERICAL APERTURE
OPTICAL MICROSCOPY
RESOLVING POWER DEPENDS ON
THE INCIDENCE ANGLE AND NUMERICAL APERTURE
NUMERICAL APERTURE
OPTICAL MICROSCOPY
1086420
10
8
6
4
2
0
X[µm]
Y[µm]
PL FROM NYON BLUE
Oil
Objective
60x
NA 1.4
XY STAGE
Gold Tip
Sample
Tunning fork
Radially polarized mode
35
TERS SYSTEM
ESQUEMA DO FILTRO
NOTCH (Z),
CENTRADO NA
FREQUÊNCIA DE 32,
7 KHZ
ESTÁGIOS DE
AMPLIFICAÇÃO
PI 1105968-0
BR 1020120333040
BR 1020120269732
lhos 93
MEV de uma nanoponteira estruturada por desbaste de íons
Tip fabrication and control
BR1020150103522 BR1020150312032 14.12.2015 BR1020150312032
DISPOSITIVO METÁLICO PARA MICROSCOPIA POR
VARREDURA POR SONDA E MÉTODO DE
FABRICAÇÃO DO MESMO
07.05.2015 BR1020150103522
DISPOSITIVO METÁLICO PARA MICROSCOPIA E
ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO E
MÉTODO DE FABRICAÇÃO DO MESMO
27.12.2012 BR 1020120333040
DISPOSITIVO MACIÇO COM EXTREMIDADE
UNIDIMENSIONAL PARA MICROSCOPIA E
ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
22.10.2012 BR 1020120269732
DISPOSITIVO MACIÇO ENCAPADO COM NANOCONE
DE CARBONO PARA MICROSCOPIA E
ESPECTROSCOPIA POR VARREDURA DE SONDA
29.12.2011 PI 1105972-9
DISPOSITIVO DE FIBRA ÓPTICA COM ELEMENTO
UNIDIMENSIONAL PARA MICROSCOPIA E
ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
29.12.2011 PI 1107185-0
DISPOSITIVO VAZADO COM EXTREMIDADE
UNIDIMENSIONAL PARA MICROSCOPIA E
ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
29.12.2011 PI 1105968-0
DISPOSITIVO MACIÇO COM EXTREMIDADE
UNIDIMENSIONAL PARA MICROSCOPIA E
ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
Tungsten wire
0.1mm
diameter
LARGE SCALE PRODUCTION OF PIRAMID TIPS
15.05.2015 BR1020150112335
MÉTODO E EQUIPAMENTO DE POSICIONAMENTO AUTOMÁTICO PARA MICROSCOPIA POR
VARREDURA DE SONDA E ESPECTROSCOPIA ÓPTICA IN SITU
A. Cano Marques et al. Scientific Reports |5:10408 | DOI: 10.1038/srep10408
Carbon nanocone@gold nanotip
A. Cano Marques et al. Scientific Reports | 5:10408 | DOI: 10.1038/srep10408
Carbon
nanocone@gold
nanotip
Gold nanotip with plasmonic confinement
Vasconcelos et al. ACSNano 9(6) 6297 (2015)
Schematics SEM EELS
Gold nanotip with plasmonic confinement
Vasconcelos et al. ACSNano 9(6) 6297 (2015)
TIP UP TIP DOWNTIP
Symmetry dependence for coherent near-field Raman
Maximiano et al. PRB 85, 235434 (2012); Cancado et al. PRX 4, 031054 (2014)
Calculation for spatially coherent near-field Raman
D
G
G’ (2D)
Tip approach curves
Distance (nm) Distance (nm)
Distance
Beams et al. PRL 113, 186101 (2014); Cancado et al. PRX 4, 031054 (2014)
Phonon coherence length
lC = 30nm
1 10 100 1000
0
20
40
60
80
100
120
La
(nm)
A
G
(cm
-1
)
1.96 eV
2.33 eV
2.71 eV
Phonon coherence length (lC) and crystallite size (La)
1000 1200 1400 1600 1800
2800°C
2600°C
2400°C
2300°C
2200°C
2000°C
1800°C
1600°C
1400°C
1200°C
Intensity(arb.units)
Raman shift (cm-1
)
3.8 nm
4.6 nm
10 nm
17 nm
30 nm
58 nm
140 nm
217 nm
526 nm
2300 nm
J. Ribeiro Soares et al.
Carbon 95 646-652 (2015)
The G band width
STM
D G
La
lC = 30nm
Structurally
damaged
area
ActivatedActivated
areaarea
Structurally
damaged
area
http://www.globalccsinstitute.com/publications/global-status-beccs-projects-2010/online/27026 (2010)
Carbon release in the atmosphere
With and without CCS
With CCS
(carbon capture storage)
M. W. I. Schmidt et al., NATURE 478, 49 (2011)
Data from surface
horizons of 20 long-
term field experiments
(up to 23 years) in
temperate climate,
using 13C labeling to
trace the residence
time of bulk SOM and
of individual molecular
compounds
The persistence of soil organic matter
Tropical soils (google images)
Terras Pretas de Índios (TIPs) da Amazonia
Indian black earth in Amazon
B. Glaser et al. Naturwis 88, 31-41 (2001)
B. Glaser et al. Org Geochem. (31), 669-678 (2000)
Highly stable carbon in the soil improve fertility
Researchers are trying to reproduce this soil in laboratory
TPI form Balbina
Presidente Figueiredo, AM
Lat. 1º 54’ sul
Long. 59º 28’ O
altitude 60 m.
The role of carbon on
soil cation exchange capacity
Liang et al. Soil Sci. Am. J. 70, September-October (2006).
DS: Dona Stella
ACU: Acutuba
LG: Lago Grande
HAT: Hatahara
The nanocrystallite size have
special dimensions
2 to 8 nanometers
Stable
Inert
Unstable
Reactive
Jorio et al. Soil & Tillage Research 122 (2012) 61–66
Comparison of grain size between
different types of biochar
Jorio et al.
Soil & Tillage Research (2012)
G  La
-1
G band Raman FWHM
Acknowledgements
UFMG
Luiz Gustavo Cançado
Cassiano Rabelo
Douglas S. Ribeiro
Mateus G. da Silva
João Luiz E. Campos
Marcela Pagano
Sugandha Pandei
Jenaina Ribeiro-Soares
Rodolfo Maximiano
Indhira Maciel
Jaqueline S. Ribeiro
Paulo T. Araujo
INMETRO
Carlos Alberto Achete
Marcia Lucchese
Braulio Archanjo
Thiago Vasconcelos
Erlon Ferreira Soares
UFRJ
Rodrogo Barbosa Capaz
ETH Zurich
Lukas Novotny
Mark Kasperczik
Univ. Basel
Patrick Maletinsky
Univ. Manchester
Aravind Vijayaraghavan
NIST
Ryan Beams
FINEPFINEP
INPA
Newton Falcão
Aalto
J. Riikonen
Weitzman Inst
Ernesto Joselevich
UNICAMP
Pedro A.S. Autreto
R. Paupitz
Douglas S. Galvão
U. Munich
Achim Hartschuh
CNRS
Alain Penicaud

Innelastic Light Scattering in Carbon Nanostructures: from the micro to the nanoscale.

  • 1.
    Innelastic Light Scatteringin Carbon Nanostructures: From the micro do the nanoscale Ado JORIO Departamento de Física Universidade Federal de Minas Gerais BRAZIL 27 September 2016
  • 2.
  • 3.
    Vibrational modes insp2 carbons... 3 ... nanotubes and graphene RBM G band D band RBM = C/dt
  • 4.
    “Toy-model” sp2 carbon nanostructures Timeline Graphite Fullerene Nanotube Graphene 1960 1985 1991 2004 Moore et al. Kroto et al. Iijima et al. Novoselov et al. C – 1s2 2s2 2p2
  • 5.
  • 6.
    C nanostructures inthe market Carbon blackC fibers GIC Amorphous carbon
  • 7.
    Terras Pretas deÍndios (TIPs) da Amazonia Indian black earth in Amazon B. Glaser et al. Naturwis 88, 31-41 (2001) B. Glaser et al. Org Geochem. (31), 669-678 (2000) Highly stable carbon in the soil improve fertility
  • 8.
    G and Dband imaging of a nano-graphite Confocal G band and D band imaging 2005 - Experiment performed with Achim Hartschuh in the laboratory of Prof. A. J. Meixner (Tuebingen) 2m Published in PCCP 9, 1276–1291 (2007)
  • 9.
    Near-Field Imaging ofa graphene step? D band optical image AFM D band image with 20nm resolution Umpublished AFM
  • 10.
    AFM Image J. H.Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber, J. Phys. Chem. B 105, 743 (2001) Single carbon nanotube spectroscopy “in micro”
  • 11.
    RBM (cm-1) Raman spectrum Si AFMImage A. Jorio et al., PRL 86, 1118 (2001) Also Duesberg et al., PRL 85, 5436 (2000) Single nanotube spectroscopy
  • 12.
    Marked Sample Resonant RamanIntensity with Tunable Laser A. Jorio et al., Phys. Rev. B 63, 245416 (2001) Anti-Stokes Raman CNT JDOS RBM spectra changing laser line Resonance window LaserEnergy
  • 13.
    0.44 0.88 1.32 1/dt(nm-1) E11 S E22 S E11 ME33 SE44 SE22 M The Kataura plot Optics addresses (n,m)-dependent physics SWNT optical transitions Single nanotube spectroscopy Physical Properties of Carbon Nanotubes Riichiro Saito, G. Dresselhaus, M. S. Dresselhaus Imperial College Press 1998 RBM 
  • 14.
    Raman spectra AFM Image A.Jorio et al., Phys. Rev. Letters 86, 1118 (2001) Single nanotube spectroscopy Si Kataura plot
  • 15.
    RBM Raman spectrafrom SWNTs bundles Araujo et al. PRB 77, 241403(R) (2008)
  • 16.
    (Eii, RBM) (n, m) E11 S E22 S E11 ME33 S E44 S E22 M 0.441.32 E11 S E22 S E11 ME33 SE44 SE22 M 0.88 1/dt (nm-1) Many laser lines probe the Kataura plot Araujo et al. PRL 98, 067401 (2007) Araujo et al. Physica E 42, 1251 (2010)
  • 17.
    The density ofstates and dimensionality DOS E 0 Dimensional
  • 18.
    The density ofstates and dimensionality DOS E 1 Dimensional dE dE
  • 19.
  • 20.
    Characterization of CNTstructures The gray scale gives the G band frequency or strain Study of intertube interactions @ carbon nanotube superloops Shadmi et al. Nano Lett. 2016, 16, 2152−2158 Araujo et al. Nano Lett. 2012, 12, 4110−4116 Soares and Jorio, J. of Nanotech 2012, ID 512738 Soares et al Nano Letters 10, 5043–5048, 2010 Study of tube-substrate interactions @ Carbon nanotube serpentines
  • 21.
    Bioengineering Applications Carbon Nanotubes“inside the body” Biocompatibility assessment of fibrous nanomaterials in mammalian embryos Nanomedicine: Nanotechnology, Biology, and Medicine 12 (2016) 1151– 1159 Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes Scientific Reports | 6:33588 | DOI: 10.1038/srep33588 Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes Nanotechnology 21, 385101 (2010)
  • 22.
    Single nanotube spectroscopy “innano“ Tip enhanced Raman Spectroscopy (TERS) of Carbon nanotubes AFM TERS Achim Hartschuh et al. Phys. Rev. Lett. 90, 095503 (2003)
  • 23.
    Local G' (2D)emission at the defect location Localized light emission Red-shifted G´ (2D) at the defect site: n-type doping I. O. Maciel et al. Nat. Materials 7, 878 (2008)
  • 24.
  • 25.
  • 26.
    Tip Enhanced RamanSpectroscopy special resolution beyond the diffraction limit Conventional microscope “Near-field” microscope Abbé, Arch. Mikrosk., Anat.,(1873). Wessel, JOSA B, (1985). Novotny et al., Ultramicroscopy, (1998).
  • 27.
    TIP UP ANDTIP DOWN IN CARBONO NANOTUBES Jorio & Cancado PCCP 14, 15246 (2012)Cancado et al. PRL 103, 186101 (2009)
  • 28.
    TERS VS. AFM– CHEMICAL SELECTIVITY TOPOGRAPHY TERS
  • 29.
    Oil Objective 60x NA 1.4 XY STAGE GoldTip Raman Spectro meter Dichroic mirror Laser Source Sample Tunning fork Gold tip • “Home-built” We can do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ. • Our best resolution is 10nm The system
  • 30.
    The system • “Home-built” Wecan do AFM, STM… and optical spectroscopy (Raman, Rayleigh, photoluminecence…) in situ.
  • 31.
  • 32.
    NUMERICAL APERTURE OPTICAL MICROSCOPY RESOLVINGPOWER DEPENDS ON THE INCIDENCE ANGLE AND NUMERICAL APERTURE
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
    ESQUEMA DO FILTRO NOTCH(Z), CENTRADO NA FREQUÊNCIA DE 32, 7 KHZ
  • 38.
  • 40.
    PI 1105968-0 BR 1020120333040 BR1020120269732 lhos 93 MEV de uma nanoponteira estruturada por desbaste de íons Tip fabrication and control BR1020150103522 BR1020150312032 14.12.2015 BR1020150312032 DISPOSITIVO METÁLICO PARA MICROSCOPIA POR VARREDURA POR SONDA E MÉTODO DE FABRICAÇÃO DO MESMO 07.05.2015 BR1020150103522 DISPOSITIVO METÁLICO PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO E MÉTODO DE FABRICAÇÃO DO MESMO 27.12.2012 BR 1020120333040 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 22.10.2012 BR 1020120269732 DISPOSITIVO MACIÇO ENCAPADO COM NANOCONE DE CARBONO PARA MICROSCOPIA E ESPECTROSCOPIA POR VARREDURA DE SONDA 29.12.2011 PI 1105972-9 DISPOSITIVO DE FIBRA ÓPTICA COM ELEMENTO UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1107185-0 DISPOSITIVO VAZADO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO 29.12.2011 PI 1105968-0 DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO
  • 41.
    Tungsten wire 0.1mm diameter LARGE SCALEPRODUCTION OF PIRAMID TIPS 15.05.2015 BR1020150112335 MÉTODO E EQUIPAMENTO DE POSICIONAMENTO AUTOMÁTICO PARA MICROSCOPIA POR VARREDURA DE SONDA E ESPECTROSCOPIA ÓPTICA IN SITU
  • 42.
    A. Cano Marqueset al. Scientific Reports |5:10408 | DOI: 10.1038/srep10408 Carbon nanocone@gold nanotip
  • 43.
    A. Cano Marqueset al. Scientific Reports | 5:10408 | DOI: 10.1038/srep10408 Carbon nanocone@gold nanotip
  • 44.
    Gold nanotip withplasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015) Schematics SEM EELS
  • 45.
    Gold nanotip withplasmonic confinement Vasconcelos et al. ACSNano 9(6) 6297 (2015) TIP UP TIP DOWNTIP
  • 46.
    Symmetry dependence forcoherent near-field Raman Maximiano et al. PRB 85, 235434 (2012); Cancado et al. PRX 4, 031054 (2014)
  • 47.
    Calculation for spatiallycoherent near-field Raman D G G’ (2D) Tip approach curves Distance (nm) Distance (nm) Distance Beams et al. PRL 113, 186101 (2014); Cancado et al. PRX 4, 031054 (2014) Phonon coherence length lC = 30nm
  • 48.
    1 10 1001000 0 20 40 60 80 100 120 La (nm) A G (cm -1 ) 1.96 eV 2.33 eV 2.71 eV Phonon coherence length (lC) and crystallite size (La) 1000 1200 1400 1600 1800 2800°C 2600°C 2400°C 2300°C 2200°C 2000°C 1800°C 1600°C 1400°C 1200°C Intensity(arb.units) Raman shift (cm-1 ) 3.8 nm 4.6 nm 10 nm 17 nm 30 nm 58 nm 140 nm 217 nm 526 nm 2300 nm J. Ribeiro Soares et al. Carbon 95 646-652 (2015) The G band width STM D G La lC = 30nm
  • 49.
  • 50.
  • 51.
  • 52.
    M. W. I.Schmidt et al., NATURE 478, 49 (2011) Data from surface horizons of 20 long- term field experiments (up to 23 years) in temperate climate, using 13C labeling to trace the residence time of bulk SOM and of individual molecular compounds The persistence of soil organic matter
  • 53.
  • 54.
    Terras Pretas deÍndios (TIPs) da Amazonia Indian black earth in Amazon B. Glaser et al. Naturwis 88, 31-41 (2001) B. Glaser et al. Org Geochem. (31), 669-678 (2000) Highly stable carbon in the soil improve fertility Researchers are trying to reproduce this soil in laboratory TPI form Balbina Presidente Figueiredo, AM Lat. 1º 54’ sul Long. 59º 28’ O altitude 60 m.
  • 55.
    The role ofcarbon on soil cation exchange capacity Liang et al. Soil Sci. Am. J. 70, September-October (2006). DS: Dona Stella ACU: Acutuba LG: Lago Grande HAT: Hatahara
  • 56.
    The nanocrystallite sizehave special dimensions 2 to 8 nanometers Stable Inert Unstable Reactive Jorio et al. Soil & Tillage Research 122 (2012) 61–66
  • 57.
    Comparison of grainsize between different types of biochar Jorio et al. Soil & Tillage Research (2012) G  La -1 G band Raman FWHM
  • 58.
    Acknowledgements UFMG Luiz Gustavo Cançado CassianoRabelo Douglas S. Ribeiro Mateus G. da Silva João Luiz E. Campos Marcela Pagano Sugandha Pandei Jenaina Ribeiro-Soares Rodolfo Maximiano Indhira Maciel Jaqueline S. Ribeiro Paulo T. Araujo INMETRO Carlos Alberto Achete Marcia Lucchese Braulio Archanjo Thiago Vasconcelos Erlon Ferreira Soares UFRJ Rodrogo Barbosa Capaz ETH Zurich Lukas Novotny Mark Kasperczik Univ. Basel Patrick Maletinsky Univ. Manchester Aravind Vijayaraghavan NIST Ryan Beams FINEPFINEP INPA Newton Falcão Aalto J. Riikonen Weitzman Inst Ernesto Joselevich UNICAMP Pedro A.S. Autreto R. Paupitz Douglas S. Galvão U. Munich Achim Hartschuh CNRS Alain Penicaud