SlideShare a Scribd company logo
1 of 63
UNIT 3
PROGRAMMABLE PERIPERAL
INTERFACE
Content
• Introduction
• Architecture of 8255
• Keyboard interfacing
• LED display –interfacing
• ADC and DAC interface
• Temperature Control
• Stepper Motor Control
• Traffic Control interface
Introduction
• To communicate with the outside world,
microprocessor use peripherals (I/O devices)
• Input devices – Keyboards, A/D converters
etc.,
• Output devices – CRT, Printers, LEDs etc.,
• Peripherals are connected to the
microprocessors through electronic circuit
known as interfacing circuits.
Microprocessors unit with I/O devices
Input
devices
(keyboard)
Micro
processors
Output
devices
(LED)
Input
peripherals
Output
peripherals
• Some of the general purpose interfacing devices
– I/O ports
– Programmable peripherals interface (PPI)
– DMA controllers
– Interrupt controller
• Some of the special purpose interfacing devices
– CRT controller
– Keyboard
– Display
– Floppy Disc controllers
Peripheral interfacing Chips are used
generation of I/O ports
• Programmable peripherals interface Inter 8255 (PPI)
• Programmable Interrupt controller (PIC) Intel 8259
• Programmable communication interface (PCI) Intel
8251
• Keyboard display Controller Intel 8279
• Programmable counter /Inverter timer Intel 8253
• A/D and D/A Converter Interfacing
Microprocessors unit with I/O devices
Input
devices
(key
board)
PPI
8255
Micro
proce
ssors
8279
Display
Output
device
(LED)
Peripheral
Interface
Display
Interface
Address Space Partitioning
• The Microprocessors uses 16 bit wide address
bus for addressing memories and I/O devices.
• Using 16 bit wide address bus, it can access
216 = 64k bytes of memory and I/O devices
• Two schemes for the allocation of addresses
to memories and I/O devices
– Memory mapped I/O
– I/O mapped I/O
Memory mapped I/O
• It has only one address space
• Address space is defined as the set of all possible
addresses that a microprocessor can generate
• Some addresses assigned to memories and Some
addresses to I/O devices
• Memory locations are assigned with addresses
from 8000 to 84FF
• I/O devices are assigned with addresses from
8500 to 85FF
I/O mapped I/O scheme
• In this scheme, addresses assigned to
memories locations can also be assigned to
I/O devices
• Since the same address may be assigned to
memories locations or an I/O devices
• The microprocessor has a signal to distinguish
whether the address on the address bus is for
memories locations or an I/O devices
I/O mapped I/O scheme
• When signal is high, then address on the address bus is
for an I/O devices
• When signal is low, then address on the address bus is
for memory locations
• Two extra instruction IN and OUT are used to address
I/O devices.
• The IN instruction is used to read the data of an input
devices.
• The OUT instruction is used to send the data of an
input devices.
• This scheme is suitable for a large system.
PROGRAMMABLE PERIPHERALS INTERFACE INTER 8255
(PPI)
Operating mode of 8255
• Bit Set Reset (BSR) Mode
• I/O Mode
Bit Set Reset (BSR) Mode
BSR control word format
I/O Mode
• The 8255 has the following 3 modes of
operation
– Mode 0 – Simple Input/output
– Mode 1 – Input / Output with the Handshake or
strobed
– Mode 2 – Bi-directional I/O
I/O Mode
Mode 0 – Simple Input/output
– Port A and port B are used as two simple 8-bit I/O
port
– Port C as two 4-bit port
• Features
– Outputs are latched
– Inputs are buffered not latched
– Ports do not have handshake or interrupt
capability
I/O Mode
• Mode 1 – Input / Output with the Handshake
– Input or output data transfer is controlled by
handshaking signals.
– Handshaking signals are used to transfer data
between devices whose data transfer speeds are
not same.
– Port A and Port B are designed to operate with the
Port C.
– When Port A and Port B are programmed in Mode
1, 6 pins of port C is used for their control.
I/O Mode
• D0-D7 data bus
– bi directional, tri state data bus line
– It is used to transfer data and control word from
8085 to 8255
• RD (Read)
– When this pin is low, the CPU can read data in the
port or status word through the data buffer
• WR (write)
– When this pin is low, the CPU can write data in the
port or in the control register through the data
buffer
I/O Mode
• Mode 2 – Bi-directional I/O
• Port A can be programmed to operate as a
bidirectional port.
• The mode 2 operation is only for port A
• When port A is programmed in Mode 2, the
Port B can be used in either Mode 1 or Mode
0.
• Mode 2 operation the port a is controlled by
PC3 to PC7 of port C.
PIN
DIAGRAM
OF 8255
PROGRAMMING and OPERATION of
8255
• Programming in MODE 0
• D7 –set to 1
• D6,D5,D2- all set to 0 –MODE 0
• D4,D3,D1 and D0- determine weather the
corresponding ports are to configured as input
or output
A B GROUP A GROUP B
D4 D3 D1 D0 PORT A PORTC U PORT B PORT C L
0 0 0 0 OUT OUT OUT OUT
0 0 0 1 OUT OUT OUT IP
0 0 1 0 OUT OUT IP OUT
0 0 1 1 OUT OUT IP IP
0 1 0 0 OUT IP OUT OUT
0 1 0 1 OUT IP OUT IP
0 1 1 0 OUT IP IP OUT
0 1 1 1 OUT IP IP IP
1 0 0 0 IP OUT OUT OUT
1 0 0 1 IP OUT OUT IP
1 0 1 0 IP OUT IP OUT
1 0 1 1 IP OUT IP IP
1 1 0 0 IP IP OUT OUT
1 1 0 1 IP IP OUT IP
1 1 1 0 IP IP IP OUT
1 1 1 1 IP IP IP IP
Programming in MODE 1
• IBF- input buffer full
• INTR- interrupt request
• INTE-interrupt enable
• OBF-output buffer full
• INTR-interrupt request
• INTE-interrupt enable
Programming in MODE 2
Interfacing cable
Basic Key operation
2 X 2 Key operation
Keyboard Microprocessor Interface software Flowchart
INTERFACING-keyboard
LED Operation
Microprocessor interface to LED
(Common anode)
Microprocessor interface to 7 segment LED
(Parallel)
Microprocessor interface to 7
segment LED (serial)
Serial interface of 7
segment LED to
Microprocessor
software flowchart
INTERFACE-LED display
ADC INTERFACE
BLOCK diagram of ADC 0808
PIN diagram of ADC 0808
DAC INTERFACE
Pin diagram of DAC
Pin diagram of DAC
INTERFACING diagram for DAC
TEMPERATURE CONTROL
• Temperature sensor –convert temp to
electrical signal by thermistor
• Transducer convert physical data into
electrical signal
• Physical data –temp, light, flow, speed etc…
• LM34 & LM35 –temperature sensor by
NATIONAL SEMICONDUCTOR CO-OPERATION
• LM34
• Output voltage is
linearly proportional to
Fahrenheit temp
• No external calibration
• 10mV for each degree
of Fahrenheit temp
• LM35
• Output voltage is
linearly proportional to
Celsius temp
• No external calibration
• 10mV for each degree
of Centigrate temp
STEPPER MOTOR CONTROL interface
• Digital motor used to translate electrical pulse
into mechanical movement
• Center tap winding connected to 12 V supply
• Motor can be excited by grounding four
terminals of the two windings
• ROTOR-Stepper motor has permanent magnet
rotor .It is also known as shaft
• STEP ANGLE-It is minimum degree of rotation
associated with a single step
Stepper Motor Interface
Excitation Table
Step X1 X2 X3 X4
1 0 1 0 1
2 1 0 0 1
3 1 0 1 0
4 0 1 1 0
1 0 1 0 1
Traffic Light Control System
• Allow traffic from W to E and E to W transition
for 20 seconds
• Give transition period of 5 seconds (yellow
bulbs ON)
• Allow traffic from N to s and S to n for 20
seconds
• Give transition period of 5 seconds (yellow
bulbs ON)
• Repeat the process
Traffic Light Control System
Interfacing diagram for Traffic Light
Control System
Unit 3-PROGRAMMABLE PERIPHERAL INTERFACE-ME6702– MECHATRONICS

More Related Content

What's hot

Introduction to 8085 Microprocessors
Introduction to 8085 MicroprocessorsIntroduction to 8085 Microprocessors
Introduction to 8085 MicroprocessorsVeerakumar S
 
Operation of 8255A
Operation of 8255AOperation of 8255A
Operation of 8255AAnuj Yadav
 
Programmable Peripheral Interface 8255
 Programmable Peripheral Interface   8255 Programmable Peripheral Interface   8255
Programmable Peripheral Interface 8255Dr.P.Parandaman
 
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. Kaware
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. KawareMicroprocessor & Interfacing (Part-2) By Er. Swapnil V. Kaware
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. KawareProf. Swapnil V. Kaware
 
Week 1.2 pin diagram
Week 1.2   pin diagramWeek 1.2   pin diagram
Week 1.2 pin diagrambaraniselva
 
IC 8253 - Microprocessor
IC 8253 - Microprocessor IC 8253 - Microprocessor
IC 8253 - Microprocessor Vatsal N Shah
 
advancsed microprocessor and interfacing
advancsed microprocessor and interfacingadvancsed microprocessor and interfacing
advancsed microprocessor and interfacing@zenafaris91
 
Lecture12 13 15936-timing-diagram
Lecture12 13 15936-timing-diagramLecture12 13 15936-timing-diagram
Lecture12 13 15936-timing-diagramriyasekaran
 
Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Ganesh Ram
 
An application of 8085 register interfacing with LED
An application  of 8085 register interfacing with LEDAn application  of 8085 register interfacing with LED
An application of 8085 register interfacing with LEDTaha Malampatti
 
Basics of peripheral devices and Working
Basics of peripheral devices and WorkingBasics of peripheral devices and Working
Basics of peripheral devices and WorkingDr.YNM
 
Programmable peripheral interface 8255
Programmable peripheral interface 8255Programmable peripheral interface 8255
Programmable peripheral interface 8255Marajulislam3
 
Microprocessors 8085 architecture
Microprocessors 8085 architectureMicroprocessors 8085 architecture
Microprocessors 8085 architectureVARUN BABUNELSON
 

What's hot (20)

8255 PPI
8255 PPI8255 PPI
8255 PPI
 
Introduction to 8085 Microprocessors
Introduction to 8085 MicroprocessorsIntroduction to 8085 Microprocessors
Introduction to 8085 Microprocessors
 
Operation of 8255A
Operation of 8255AOperation of 8255A
Operation of 8255A
 
8155 Basic Concepts
8155 Basic Concepts8155 Basic Concepts
8155 Basic Concepts
 
Programmable Peripheral Interface 8255
 Programmable Peripheral Interface   8255 Programmable Peripheral Interface   8255
Programmable Peripheral Interface 8255
 
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. Kaware
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. KawareMicroprocessor & Interfacing (Part-2) By Er. Swapnil V. Kaware
Microprocessor & Interfacing (Part-2) By Er. Swapnil V. Kaware
 
Week 1.2 pin diagram
Week 1.2   pin diagramWeek 1.2   pin diagram
Week 1.2 pin diagram
 
8251 USART
8251 USART8251 USART
8251 USART
 
Mechatronics ME8791
Mechatronics ME8791 Mechatronics ME8791
Mechatronics ME8791
 
IC 8253 - Microprocessor
IC 8253 - Microprocessor IC 8253 - Microprocessor
IC 8253 - Microprocessor
 
advancsed microprocessor and interfacing
advancsed microprocessor and interfacingadvancsed microprocessor and interfacing
advancsed microprocessor and interfacing
 
Lecture12 13 15936-timing-diagram
Lecture12 13 15936-timing-diagramLecture12 13 15936-timing-diagram
Lecture12 13 15936-timing-diagram
 
Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))Architecture of 8051 microcontroller))
Architecture of 8051 microcontroller))
 
Interfacing 8255
Interfacing 8255Interfacing 8255
Interfacing 8255
 
Unit 5
Unit 5Unit 5
Unit 5
 
An application of 8085 register interfacing with LED
An application  of 8085 register interfacing with LEDAn application  of 8085 register interfacing with LED
An application of 8085 register interfacing with LED
 
Basics of peripheral devices and Working
Basics of peripheral devices and WorkingBasics of peripheral devices and Working
Basics of peripheral devices and Working
 
Programmable peripheral interface 8255
Programmable peripheral interface 8255Programmable peripheral interface 8255
Programmable peripheral interface 8255
 
Microprocessors 8085 architecture
Microprocessors 8085 architectureMicroprocessors 8085 architecture
Microprocessors 8085 architecture
 
Ppi 8255
Ppi 8255Ppi 8255
Ppi 8255
 

Similar to Unit 3-PROGRAMMABLE PERIPHERAL INTERFACE-ME6702– MECHATRONICS

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE
UNIT III PROGRAMMABLE PERIPHERAL INTERFACE UNIT III PROGRAMMABLE PERIPHERAL INTERFACE
UNIT III PROGRAMMABLE PERIPHERAL INTERFACE ravis205084
 
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.ppt
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.pptMECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.ppt
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.pptCHANDRA KUMAR S
 
UNIT- 3.pptx
UNIT- 3.pptxUNIT- 3.pptx
UNIT- 3.pptxBASKARS53
 
UNIT 3 Peripheral Interfacing.pptx
UNIT 3 Peripheral Interfacing.pptxUNIT 3 Peripheral Interfacing.pptx
UNIT 3 Peripheral Interfacing.pptxGowrishankar C
 
MicroProcessors and MicroControllersUnit3
MicroProcessors and MicroControllersUnit3MicroProcessors and MicroControllersUnit3
MicroProcessors and MicroControllersUnit3deepakdmaat
 
8255 ppi students material for ppi mpmc study
8255 ppi students material for ppi mpmc study8255 ppi students material for ppi mpmc study
8255 ppi students material for ppi mpmc studySirisha Vamsi
 
Interfacing with peripherals: analog to digital converters and digital to ana...
Interfacing with peripherals: analog to digital converters and digital to ana...Interfacing with peripherals: analog to digital converters and digital to ana...
Interfacing with peripherals: analog to digital converters and digital to ana...NimeshSingh27
 
23. serial and parallel data communication
23. serial and parallel data communication23. serial and parallel data communication
23. serial and parallel data communicationsandip das
 
8251 -USART.pptx
8251 -USART.pptx8251 -USART.pptx
8251 -USART.pptxVikasMahor3
 
20620115-Programmable-Logic-Controllers.ppt
20620115-Programmable-Logic-Controllers.ppt20620115-Programmable-Logic-Controllers.ppt
20620115-Programmable-Logic-Controllers.pptmohammedsaadqureshi
 
INTRODUCTION TO MICROCONTROLLER
INTRODUCTION TO MICROCONTROLLERINTRODUCTION TO MICROCONTROLLER
INTRODUCTION TO MICROCONTROLLERAnkita Jaiswal
 
Micro Processor And Micro Controller for engineering in Pondicherry University
Micro Processor And Micro Controller for engineering in Pondicherry UniversityMicro Processor And Micro Controller for engineering in Pondicherry University
Micro Processor And Micro Controller for engineering in Pondicherry UniversityShyamShyam76
 
20ME702– MECHATRONICS -UNIT-4.ppt
20ME702– MECHATRONICS -UNIT-4.ppt20ME702– MECHATRONICS -UNIT-4.ppt
20ME702– MECHATRONICS -UNIT-4.pptMohanumar S
 
Programmable logic Controlller ppt
Programmable logic Controlller pptProgrammable logic Controlller ppt
Programmable logic Controlller pptkarthik R
 

Similar to Unit 3-PROGRAMMABLE PERIPHERAL INTERFACE-ME6702– MECHATRONICS (20)

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE
UNIT III PROGRAMMABLE PERIPHERAL INTERFACE UNIT III PROGRAMMABLE PERIPHERAL INTERFACE
UNIT III PROGRAMMABLE PERIPHERAL INTERFACE
 
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.ppt
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.pptMECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.ppt
MECHATRONICS-Unit 3-PROGRAMMABLE PERIPERAL INTERFACE.ppt
 
UNIT- 3.pptx
UNIT- 3.pptxUNIT- 3.pptx
UNIT- 3.pptx
 
UNIT 3 Peripheral Interfacing.pptx
UNIT 3 Peripheral Interfacing.pptxUNIT 3 Peripheral Interfacing.pptx
UNIT 3 Peripheral Interfacing.pptx
 
8255.pdf
8255.pdf8255.pdf
8255.pdf
 
MicroProcessors and MicroControllersUnit3
MicroProcessors and MicroControllersUnit3MicroProcessors and MicroControllersUnit3
MicroProcessors and MicroControllersUnit3
 
8255 ppi students material for ppi mpmc study
8255 ppi students material for ppi mpmc study8255 ppi students material for ppi mpmc study
8255 ppi students material for ppi mpmc study
 
Interfacing with peripherals: analog to digital converters and digital to ana...
Interfacing with peripherals: analog to digital converters and digital to ana...Interfacing with peripherals: analog to digital converters and digital to ana...
Interfacing with peripherals: analog to digital converters and digital to ana...
 
Wds
WdsWds
Wds
 
Parth xyz
Parth xyzParth xyz
Parth xyz
 
Arduino
ArduinoArduino
Arduino
 
8255 PPI.pptx
8255 PPI.pptx8255 PPI.pptx
8255 PPI.pptx
 
23. serial and parallel data communication
23. serial and parallel data communication23. serial and parallel data communication
23. serial and parallel data communication
 
8251 -USART.pptx
8251 -USART.pptx8251 -USART.pptx
8251 -USART.pptx
 
20620115-Programmable-Logic-Controllers.ppt
20620115-Programmable-Logic-Controllers.ppt20620115-Programmable-Logic-Controllers.ppt
20620115-Programmable-Logic-Controllers.ppt
 
INTRODUCTION TO MICROCONTROLLER
INTRODUCTION TO MICROCONTROLLERINTRODUCTION TO MICROCONTROLLER
INTRODUCTION TO MICROCONTROLLER
 
Uc1(vii sem)
Uc1(vii sem)Uc1(vii sem)
Uc1(vii sem)
 
Micro Processor And Micro Controller for engineering in Pondicherry University
Micro Processor And Micro Controller for engineering in Pondicherry UniversityMicro Processor And Micro Controller for engineering in Pondicherry University
Micro Processor And Micro Controller for engineering in Pondicherry University
 
20ME702– MECHATRONICS -UNIT-4.ppt
20ME702– MECHATRONICS -UNIT-4.ppt20ME702– MECHATRONICS -UNIT-4.ppt
20ME702– MECHATRONICS -UNIT-4.ppt
 
Programmable logic Controlller ppt
Programmable logic Controlller pptProgrammable logic Controlller ppt
Programmable logic Controlller ppt
 

More from Mohanumar S

20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt
20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt
20CE501PE – INDUSTRIAL WASTE MANAGEMENT.pptMohanumar S
 
20ME702– MECHATRONICS -UNIT-3.ppt
20ME702– MECHATRONICS -UNIT-3.ppt20ME702– MECHATRONICS -UNIT-3.ppt
20ME702– MECHATRONICS -UNIT-3.pptMohanumar S
 
20ME702– MECHATRONICS -UNIT-2.pptx
20ME702– MECHATRONICS -UNIT-2.pptx20ME702– MECHATRONICS -UNIT-2.pptx
20ME702– MECHATRONICS -UNIT-2.pptxMohanumar S
 
20ME702– MECHATRONICS -UNIT-5-Motor.ppt
20ME702– MECHATRONICS -UNIT-5-Motor.ppt20ME702– MECHATRONICS -UNIT-5-Motor.ppt
20ME702– MECHATRONICS -UNIT-5-Motor.pptMohanumar S
 
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.pptMohanumar S
 
M.P- II-UNIT II CENTRE LATHE AND SPECIAL PURPOSE LATHES..ppt
M.P- II-UNIT II  CENTRE LATHE AND SPECIAL PURPOSE  LATHES..pptM.P- II-UNIT II  CENTRE LATHE AND SPECIAL PURPOSE  LATHES..ppt
M.P- II-UNIT II CENTRE LATHE AND SPECIAL PURPOSE LATHES..pptMohanumar S
 
M.P- II-UNIT I -THEORY OF METAL CUTTING.ppt
M.P- II-UNIT I -THEORY OF METAL CUTTING.pptM.P- II-UNIT I -THEORY OF METAL CUTTING.ppt
M.P- II-UNIT I -THEORY OF METAL CUTTING.pptMohanumar S
 
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.ppt
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.pptM.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.ppt
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.pptMohanumar S
 
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptx
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptxM.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptx
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptxMohanumar S
 
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.ppt
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.pptM.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.ppt
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.pptMohanumar S
 
EM-Unit-V-Mechanical properties
EM-Unit-V-Mechanical propertiesEM-Unit-V-Mechanical properties
EM-Unit-V-Mechanical propertiesMohanumar S
 
EM-UNIT-V-Testing utm-hardness-impact
EM-UNIT-V-Testing  utm-hardness-impactEM-UNIT-V-Testing  utm-hardness-impact
EM-UNIT-V-Testing utm-hardness-impactMohanumar S
 
EM-Unit-IV- Vacuum plasma hardening
EM-Unit-IV- Vacuum plasma hardeningEM-Unit-IV- Vacuum plasma hardening
EM-Unit-IV- Vacuum plasma hardeningMohanumar S
 
EM-Unit-IV- Ttt diagram
EM-Unit-IV- Ttt diagramEM-Unit-IV- Ttt diagram
EM-Unit-IV- Ttt diagramMohanumar S
 
EM-Unit-IV- Cct diagram
EM-Unit-IV- Cct diagramEM-Unit-IV- Cct diagram
EM-Unit-IV- Cct diagramMohanumar S
 
EM-Unit-IV- Case hardening
EM-Unit-IV- Case hardeningEM-Unit-IV- Case hardening
EM-Unit-IV- Case hardeningMohanumar S
 
EM-Unit-IV- case hardening
EM-Unit-IV- case hardeningEM-Unit-IV- case hardening
EM-Unit-IV- case hardeningMohanumar S
 
EM-Unit-IV- heat treatment
EM-Unit-IV- heat treatmentEM-Unit-IV- heat treatment
EM-Unit-IV- heat treatmentMohanumar S
 
EM-UNIT III -ceramics & composites
EM-UNIT III -ceramics & compositesEM-UNIT III -ceramics & composites
EM-UNIT III -ceramics & compositesMohanumar S
 
EM-UNIT III - thermoplastics prop and applications
EM-UNIT III - thermoplastics prop and applicationsEM-UNIT III - thermoplastics prop and applications
EM-UNIT III - thermoplastics prop and applicationsMohanumar S
 

More from Mohanumar S (20)

20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt
20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt
20CE501PE – INDUSTRIAL WASTE MANAGEMENT.ppt
 
20ME702– MECHATRONICS -UNIT-3.ppt
20ME702– MECHATRONICS -UNIT-3.ppt20ME702– MECHATRONICS -UNIT-3.ppt
20ME702– MECHATRONICS -UNIT-3.ppt
 
20ME702– MECHATRONICS -UNIT-2.pptx
20ME702– MECHATRONICS -UNIT-2.pptx20ME702– MECHATRONICS -UNIT-2.pptx
20ME702– MECHATRONICS -UNIT-2.pptx
 
20ME702– MECHATRONICS -UNIT-5-Motor.ppt
20ME702– MECHATRONICS -UNIT-5-Motor.ppt20ME702– MECHATRONICS -UNIT-5-Motor.ppt
20ME702– MECHATRONICS -UNIT-5-Motor.ppt
 
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt
20ME702– MECHATRONICS -UNIT-1-Sensor and transducers.ppt
 
M.P- II-UNIT II CENTRE LATHE AND SPECIAL PURPOSE LATHES..ppt
M.P- II-UNIT II  CENTRE LATHE AND SPECIAL PURPOSE  LATHES..pptM.P- II-UNIT II  CENTRE LATHE AND SPECIAL PURPOSE  LATHES..ppt
M.P- II-UNIT II CENTRE LATHE AND SPECIAL PURPOSE LATHES..ppt
 
M.P- II-UNIT I -THEORY OF METAL CUTTING.ppt
M.P- II-UNIT I -THEORY OF METAL CUTTING.pptM.P- II-UNIT I -THEORY OF METAL CUTTING.ppt
M.P- II-UNIT I -THEORY OF METAL CUTTING.ppt
 
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.ppt
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.pptM.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.ppt
M.P- II-UNIT III-SHAPER, MILLING AND BROACHING MACHINES.ppt
 
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptx
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptxM.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptx
M.P- II-UNIT IV - ABRASIVE PROCESSES AND GEAR CUTTING.pptx
 
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.ppt
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.pptM.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.ppt
M.P- II-UNIT V - CNC MACHINE TOOLS AND PART PROGRAMMING.ppt
 
EM-Unit-V-Mechanical properties
EM-Unit-V-Mechanical propertiesEM-Unit-V-Mechanical properties
EM-Unit-V-Mechanical properties
 
EM-UNIT-V-Testing utm-hardness-impact
EM-UNIT-V-Testing  utm-hardness-impactEM-UNIT-V-Testing  utm-hardness-impact
EM-UNIT-V-Testing utm-hardness-impact
 
EM-Unit-IV- Vacuum plasma hardening
EM-Unit-IV- Vacuum plasma hardeningEM-Unit-IV- Vacuum plasma hardening
EM-Unit-IV- Vacuum plasma hardening
 
EM-Unit-IV- Ttt diagram
EM-Unit-IV- Ttt diagramEM-Unit-IV- Ttt diagram
EM-Unit-IV- Ttt diagram
 
EM-Unit-IV- Cct diagram
EM-Unit-IV- Cct diagramEM-Unit-IV- Cct diagram
EM-Unit-IV- Cct diagram
 
EM-Unit-IV- Case hardening
EM-Unit-IV- Case hardeningEM-Unit-IV- Case hardening
EM-Unit-IV- Case hardening
 
EM-Unit-IV- case hardening
EM-Unit-IV- case hardeningEM-Unit-IV- case hardening
EM-Unit-IV- case hardening
 
EM-Unit-IV- heat treatment
EM-Unit-IV- heat treatmentEM-Unit-IV- heat treatment
EM-Unit-IV- heat treatment
 
EM-UNIT III -ceramics & composites
EM-UNIT III -ceramics & compositesEM-UNIT III -ceramics & composites
EM-UNIT III -ceramics & composites
 
EM-UNIT III - thermoplastics prop and applications
EM-UNIT III - thermoplastics prop and applicationsEM-UNIT III - thermoplastics prop and applications
EM-UNIT III - thermoplastics prop and applications
 

Recently uploaded

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 

Recently uploaded (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 

Unit 3-PROGRAMMABLE PERIPHERAL INTERFACE-ME6702– MECHATRONICS

  • 2. Content • Introduction • Architecture of 8255 • Keyboard interfacing • LED display –interfacing • ADC and DAC interface • Temperature Control • Stepper Motor Control • Traffic Control interface
  • 3. Introduction • To communicate with the outside world, microprocessor use peripherals (I/O devices) • Input devices – Keyboards, A/D converters etc., • Output devices – CRT, Printers, LEDs etc., • Peripherals are connected to the microprocessors through electronic circuit known as interfacing circuits.
  • 4. Microprocessors unit with I/O devices Input devices (keyboard) Micro processors Output devices (LED) Input peripherals Output peripherals
  • 5. • Some of the general purpose interfacing devices – I/O ports – Programmable peripherals interface (PPI) – DMA controllers – Interrupt controller • Some of the special purpose interfacing devices – CRT controller – Keyboard – Display – Floppy Disc controllers
  • 6. Peripheral interfacing Chips are used generation of I/O ports • Programmable peripherals interface Inter 8255 (PPI) • Programmable Interrupt controller (PIC) Intel 8259 • Programmable communication interface (PCI) Intel 8251 • Keyboard display Controller Intel 8279 • Programmable counter /Inverter timer Intel 8253 • A/D and D/A Converter Interfacing
  • 7. Microprocessors unit with I/O devices Input devices (key board) PPI 8255 Micro proce ssors 8279 Display Output device (LED) Peripheral Interface Display Interface
  • 8. Address Space Partitioning • The Microprocessors uses 16 bit wide address bus for addressing memories and I/O devices. • Using 16 bit wide address bus, it can access 216 = 64k bytes of memory and I/O devices • Two schemes for the allocation of addresses to memories and I/O devices – Memory mapped I/O – I/O mapped I/O
  • 9. Memory mapped I/O • It has only one address space • Address space is defined as the set of all possible addresses that a microprocessor can generate • Some addresses assigned to memories and Some addresses to I/O devices • Memory locations are assigned with addresses from 8000 to 84FF • I/O devices are assigned with addresses from 8500 to 85FF
  • 10. I/O mapped I/O scheme • In this scheme, addresses assigned to memories locations can also be assigned to I/O devices • Since the same address may be assigned to memories locations or an I/O devices • The microprocessor has a signal to distinguish whether the address on the address bus is for memories locations or an I/O devices
  • 11. I/O mapped I/O scheme • When signal is high, then address on the address bus is for an I/O devices • When signal is low, then address on the address bus is for memory locations • Two extra instruction IN and OUT are used to address I/O devices. • The IN instruction is used to read the data of an input devices. • The OUT instruction is used to send the data of an input devices. • This scheme is suitable for a large system.
  • 13. Operating mode of 8255 • Bit Set Reset (BSR) Mode • I/O Mode
  • 14. Bit Set Reset (BSR) Mode BSR control word format
  • 15. I/O Mode • The 8255 has the following 3 modes of operation – Mode 0 – Simple Input/output – Mode 1 – Input / Output with the Handshake or strobed – Mode 2 – Bi-directional I/O
  • 16. I/O Mode Mode 0 – Simple Input/output – Port A and port B are used as two simple 8-bit I/O port – Port C as two 4-bit port • Features – Outputs are latched – Inputs are buffered not latched – Ports do not have handshake or interrupt capability
  • 17. I/O Mode • Mode 1 – Input / Output with the Handshake – Input or output data transfer is controlled by handshaking signals. – Handshaking signals are used to transfer data between devices whose data transfer speeds are not same. – Port A and Port B are designed to operate with the Port C. – When Port A and Port B are programmed in Mode 1, 6 pins of port C is used for their control.
  • 18. I/O Mode • D0-D7 data bus – bi directional, tri state data bus line – It is used to transfer data and control word from 8085 to 8255 • RD (Read) – When this pin is low, the CPU can read data in the port or status word through the data buffer • WR (write) – When this pin is low, the CPU can write data in the port or in the control register through the data buffer
  • 19. I/O Mode • Mode 2 – Bi-directional I/O • Port A can be programmed to operate as a bidirectional port. • The mode 2 operation is only for port A • When port A is programmed in Mode 2, the Port B can be used in either Mode 1 or Mode 0. • Mode 2 operation the port a is controlled by PC3 to PC7 of port C.
  • 21.
  • 22. PROGRAMMING and OPERATION of 8255 • Programming in MODE 0 • D7 –set to 1 • D6,D5,D2- all set to 0 –MODE 0 • D4,D3,D1 and D0- determine weather the corresponding ports are to configured as input or output
  • 23. A B GROUP A GROUP B D4 D3 D1 D0 PORT A PORTC U PORT B PORT C L 0 0 0 0 OUT OUT OUT OUT 0 0 0 1 OUT OUT OUT IP 0 0 1 0 OUT OUT IP OUT 0 0 1 1 OUT OUT IP IP 0 1 0 0 OUT IP OUT OUT 0 1 0 1 OUT IP OUT IP 0 1 1 0 OUT IP IP OUT 0 1 1 1 OUT IP IP IP 1 0 0 0 IP OUT OUT OUT 1 0 0 1 IP OUT OUT IP 1 0 1 0 IP OUT IP OUT 1 0 1 1 IP OUT IP IP 1 1 0 0 IP IP OUT OUT 1 1 0 1 IP IP OUT IP 1 1 1 0 IP IP IP OUT 1 1 1 1 IP IP IP IP
  • 25. • IBF- input buffer full • INTR- interrupt request • INTE-interrupt enable • OBF-output buffer full • INTR-interrupt request • INTE-interrupt enable
  • 27.
  • 30.
  • 31. 2 X 2 Key operation
  • 32. Keyboard Microprocessor Interface software Flowchart
  • 34.
  • 35.
  • 37.
  • 38. Microprocessor interface to LED (Common anode)
  • 39.
  • 40. Microprocessor interface to 7 segment LED (Parallel)
  • 41. Microprocessor interface to 7 segment LED (serial)
  • 42. Serial interface of 7 segment LED to Microprocessor software flowchart
  • 44.
  • 46. BLOCK diagram of ADC 0808
  • 47.
  • 48. PIN diagram of ADC 0808
  • 53. TEMPERATURE CONTROL • Temperature sensor –convert temp to electrical signal by thermistor • Transducer convert physical data into electrical signal • Physical data –temp, light, flow, speed etc… • LM34 & LM35 –temperature sensor by NATIONAL SEMICONDUCTOR CO-OPERATION
  • 54. • LM34 • Output voltage is linearly proportional to Fahrenheit temp • No external calibration • 10mV for each degree of Fahrenheit temp • LM35 • Output voltage is linearly proportional to Celsius temp • No external calibration • 10mV for each degree of Centigrate temp
  • 55.
  • 56. STEPPER MOTOR CONTROL interface • Digital motor used to translate electrical pulse into mechanical movement • Center tap winding connected to 12 V supply • Motor can be excited by grounding four terminals of the two windings • ROTOR-Stepper motor has permanent magnet rotor .It is also known as shaft • STEP ANGLE-It is minimum degree of rotation associated with a single step
  • 57.
  • 59. Excitation Table Step X1 X2 X3 X4 1 0 1 0 1 2 1 0 0 1 3 1 0 1 0 4 0 1 1 0 1 0 1 0 1
  • 60. Traffic Light Control System • Allow traffic from W to E and E to W transition for 20 seconds • Give transition period of 5 seconds (yellow bulbs ON) • Allow traffic from N to s and S to n for 20 seconds • Give transition period of 5 seconds (yellow bulbs ON) • Repeat the process
  • 62. Interfacing diagram for Traffic Light Control System