SlideShare a Scribd company logo
37
Multiple Correlation
UNIT 11 MULTIPLE CORRELATION
Structure
11.1 Introduction
Objectives
11.2 Coefficient of Multiple Correlation
11.3 Properties of Multiple Correlation Coefficient
11.4 Summary
11.5 Solutions / Answers
11.1 INTRODUCTION
In Unit 9, you have studied the concept of regression and linear regression.
Regression coefficient was also discussed with its properties. You learned
how to determine the relationship between two variables in regression and
how to predict value of one variable from the given value of the other
variable. Plane of regression for trivariate, properties of residuals and
variance of the residuals were discussed in Unit 10 of this block, which are
basis for multiple and partial correlation coefficients. In Block 2, you have
studied the coefficient of correlation that provides the degree of linear
relationship between the two variables.
If we have more than two variables which are interrelated in someway and
our interest is to know the relationship between one variable and set of
others. This leads us to multiple correlation study.
In this unit, you will study the multiple correlation and multiple correlation
coefficient with its properties .To understand the concept of multiple
correlation you must be well versed with correlation coefficient. Before
starting this unit, you go through the correlation coefficient given in Unit 6
of the Block 2. You should also clear the basics given in Unit 10 of this
block to understand the mathematical formulation of multiple correlation
coefficients.
Section 11.2 discusses the concept of multiple correlation and multiple
correlation coefficient. It gives the derivation of the multiple correlation
coefficient formula. Properties of multiple correlation coefficients are
described in Section 11.3
Objectives
After reading this unit, you would be able to
 describe the concept of multiple correlation;
 define multiple correlation coefficient;
 derive the multiple correlation coefficient formula; and
 explain the properties of multiple correlation coefficient.
Regression and Multiple
Correlation
38
11.2 COEFFICIENT OF MULTIPLE
CORRELATION
If information on two variables like height and weight, income and
expenditure, demand and supply, etc. are available and we want to study the
linear relationship between two variables, correlation coefficient serves our
purpose which provides the strength or degree of linear relationship with
direction whether it is positive or negative. But in biological, physical and
social sciences, often data are available on more than two variables and value
of one variable seems to be influenced by two or more variables. For
example, crimes in a city may be influenced by illiteracy, increased
population and unemployment in the city, etc. The production of a crop may
depend upon amount of rainfall, quality of seeds, quantity of fertilizers used
and method of irrigation, etc. Similarly, performance of students in
university exam may depend upon his/her IQ, mother’s qualification, father’s
qualification, parents income, number of hours of studies, etc. Whenever we
are interested in studying the joint effect of two or more variables on a single
variable, multiple correlation gives the solution of our problem.
In fact, multiple correlation is the study of combined influence of two or
more variables on a single variable.
Suppose, 1
X , 2
X and 3
X are three variables having observations on N
individuals or units. Then multiple correlation coefficient of 1
X on 2
X and
3
X is the simple correlation coefficient between 1
X and the joint effect of
2
X and 3
X . It can also be defined as the correlation between 1
X and its
estimate based on 2
X and 3
X .
Multiple correlation coefficient is the simple correlation coefficient between
a variable and its estimate.
Let us define a regression equation of 1
X on 2
X and 3
X as
3
2
.
13
2
3
.
12
1 X
b
X
b
a
X 


Let us consider three variables 3
2
1 x
and
x
,
x measured from their respective
means. The regression equation of 1
x depends upon 3
2 x
and
x is given by
3
2
.
13
2
3
.
12
1 x
b
x
b
x 
 … (1)
3
3
3
2
2
2
1
1
1 x
X
X
and
x
X
X
,
x
X
X
Where 





0
x
x
x 3
2
1 


 


Right hand side of equation (1) can be considered as expected or estimated
value of 1
x based on 2
x and 3
x which may be expressed as
3
2
.
13
2
3
.
12
23
.
1 x
b
x
b
x 
 … (2)
Residual 23
.
1
e (see definition of residual in Unit 5 of Block 2 of MST 002) is
written as
23
.
1
e = 3
2
.
13
2
3
.
12
1 x
b
x
b
x 
 = 23
.
1
1 x
x 
39
Multiple Correlation
23
.
1
1
23
.
1 x
x
e 


23
.
1
1
23
.
1 e
x
x 

 … (3)
The multiple correlation coefficient can be defined as the simple correlation
coefficient between 1
x and its estimate 23
.
1
e . It is usually denoted by 23
.
1
R
and defined as
)
x
(
V
)
x
(
V
)
x
,
x
(
Cov
R
23
.
1
1
23
.
1
1
23
.
1  … (4)
Now,
  
 

 23
.
1
23
.
1
1
1
23
.
1
1 x
x
x
x
N
1
)
x
,
x
(
Cov
(By the definition of covariance)
Since, 2
1 x
,
x and 3
x are measured from their respective means, so
0
x
x
x 3
2
1 

 

 0
x
x
x 3
2
1 



and consequently
0
x
b
x
b
x 3
2
.
13
2
3
.
12
23
.
1 

 (From equation (2))
Thus,

)
x
,
x
(
Cov 23
.
1
1 23
.
1
1x
x
N
1

)
e
x
(
x
N
1
23
.
1
1
1 
  (From equation (3))

 
 23
.
1
1
2
1 e
x
N
1
x
N
1
(By third property of residuals)

 
 2
23
.
1
2
1 e
N
1
x
N
1
2
23
.
1
2
1 


 (From equation (29) of Unit10)
Now  
 2
23
.
1
23
.
1
23
.
1 )
x
x
(
N
1
)
x
(
V

 2
23
.
1 )
x
(
N
1
(Since 23
.
1
x = 0)
=   2
23
.
1
1 )
e
x
(
N
1
(From equation (3))
 

 )
e
x
2
e
x
(
N
1
23
.
1
1
2
23
.
1
2
1
Regression and Multiple
Correlation
40
 
 

 23
.
1
1
2
23
.
1
2
1 e
x
N
1
2
e
N
1
x
N
1
 
 

 2
23
.
1
2
23
.
1
2
1 e
N
1
2
e
N
1
x
N
1
(By third property of residuals)
 

 2
23
.
1
2
1 e
N
1
x
N
1
)
x
(
V 23
.
1
2
23
.
1
2
1 


 (From equation (29) of Unit 10)
Substituting the value of )
x
,
x
(
Cov 23
.
1
1 and )
x
(
V 23
.
1 in equation (4),
we have
)
(
R
2
23
.
1
2
1
2
1
2
23
.
1
2
1
23
.
1








)
(
)
(
R 2
23
.
1
2
1
2
1
2
2
23
.
1
2
1
2
23
.
1








2
1
2
23
.
1
2
1
2
23
.
1
2
1
2
23
.
1
σ
σ
1
σ
σ
σ
R 



here, 2
23
.
1
 is the variance of residual, which is
)
r
r
r
2
r
r
r
1
(
r
1
13
23
12
2
13
2
12
2
23
2
23
2
1
2
23
.
1 







(From equation (30) of unit 10)
Then,
2
23
.
1
R
)
r
1
(
)
r
r
r
2
r
r
r
1
(
1 2
23
2
1
23
13
12
2
23
2
13
2
12
2
1









2
23
.
1
R 2
23
23
13
12
2
23
2
13
2
12
r
1
r
r
r
2
r
r
r
1
1







2
23
.
1
R 2
23
23
13
12
2
23
2
13
2
12
2
23
r
1
r
r
r
2
r
r
r
1
r
1








2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




23
.
1
R = 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



… (5)
which is required formula for multiple correlation coefficient.
where, 12
r is the total correlation coefficient between variable 1
X and 2
X ,
23
r is the total correlation coefficient between variable 2
X and 3
X ,
41
Multiple Correlation
13
r is the total correlation coefficient between variable 1
X and 3
X .
Now let us solve a problem on multiple correlation coefficients.
Example 1: From the following data, obtain 23
.
1
R and 13
.
2
R
1
X 65 72 54 68 55 59 78 58 57 51
2
X 56 58 48 61 50 51 55 48 52 42
3
X 9 11 8 13 10 8 11 10 11 7
Solution: To obtain multiple correlation coefficients 23
.
1
R and ,
R 13
.
2 we
use following formulae
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



 and
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




We need 23
13
12 r
and
r
,
r which are obtained from the following table:
S. No. X1 X2 X3 (X1)2
(X2)2
(X3)2
X1X2 X1X3 X2X3
1 65 56 9 4225 3136 81 3640 585 504
2 72 58 11 5184 3364 121 4176 792 638
3 54 48 8 2916 2304 64 2592 432 384
4 68 61 13 4624 3721 169 4148 884 793
5 55 50 10 3025 2500 100 2750 550 500
6 59 51 8 3481 2601 64 3009 472 408
7 78 55 11 6084 3025 121 4290 858 605
8 58 48 10 3364 2304 100 2784 580 480
9 57 52 11 3249 2704 121 2964 627 572
10 51 42 7 2601 1764 49 2142 357 294
Total 617 521 98 38753 27423 990 32495 6137 5178
Now we get the total correlation coefficient 23
13
12 r
and
r
,
r
  




 





2
2
2
2
2
1
2
1
2
1
2
1
12
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
521
(
)
521
(
)
27423
10
(
)
617
(
)
617
(
)
38753
10
(
)
521
(
)
617
(
)
32495
10
(
r12










Regression and Multiple
Correlation
42
   
80
.
0
01
.
4368
3493
2789
6841
3493
r12 



  




 





2
3
2
3
2
1
2
1
3
1
3
1
13
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
98
98
(
)
990
10
(
)
617
617
(
)
38753
10
(
)
98
(
)
617
(
)
6137
10
(
r13










  
64
.
0
00
.
1423
904
296
6841
904
r13 


and
  




 





2
3
2
3
2
2
2
2
3
2
3
2
23
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
98
98
(
)
990
10
(
)
521
521
(
)
27423
10
(
)
98
(
)
521
(
)
5178
10
(
r23










  
79
.
0
59
.
908
722
296
2789
722
r23 


Now, we calculate 23
.
1
R
We have, 80
.
0
r12  , 64
.
0
r13  and 79
.
0
r23  , then
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




2
2
2
79
.
0
1
79
.
0
64
.
0
80
.
0
2
64
.
0
80
.
0







63
.
0
38
.
0
24
.
0
R
62
.
0
1
81
.
0
41
.
0
64
.
0
2
23
.
1 





Then
79
.
0
R 23
.
1  .
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




2
2
2
64
.
0
1
79
.
0
64
.
0
80
.
0
2
79
.
0
80
.
0







88
.
0
51
.
0
45
.
0
49
.
0
1
81
.
0
62
.
0
64
.
0






43
Multiple Correlation
Thus,
13
.
2
R = 0.94
Example 2: From the following data, obtain 23
.
1
R , 13
.
2
R and 12
.
3
R
1
X 2 5 7 11
2
X 3 6 10 12
3
X 1 3 6 10
Solution: To obtain multiple correlation coefficients 23
.
1
R 13
.
2
R and R3.12,
we use following formulae
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



 ,
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r



 and
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




We need 23
13
12 r
and
r
,
r which are obtained from the following table:
S. No. X1 X2 X3 (X1)2
(X2)2
(X3)2
X1X2 X1X3 X2X3
1 2 3 1 4 9 1 6 2 3
2 5 6 3 25 36 9 30 15 18
3 7 10 6 49 100 36 70 42 60
4 11 12 10 121 144 100 132 110 120
Total 25 31 20 199 289 146 238 169 201
Now we get the total correlation coefficient 23
13
12 r
and
r
,
r
  




 





2
2
2
2
2
1
2
1
2
1
2
1
12
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
31
(
)
31
(
)
289
4
(
)
25
(
)
25
(
)
199
4
(
)
31
(
)
25
(
)
238
4
(
r12










  
97
.
0
.
0
61
.
182
177
195
171
177
r12 


  




 





2
3
2
3
2
1
2
1
3
1
3
1
13
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
Regression and Multiple
Correlation
44
  
)
20
20
(
)
146
4
(
)
25
25
(
)
199
4
(
)
20
(
)
25
(
)
169
4
(
r13










  
99
.
0
38
.
177
176
184
171
176
r13 


and
  




 





2
3
2
3
2
2
2
2
3
2
3
2
23
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
20
20
(
)
146
4
(
)
31
31
(
)
289
4
)
20
(
)
31
(
)
201
4
(
r23










  
97
.
0
42
.
189
184
184
195
184
r23 


Now, we calculate 23
.
1
R
We have, 97
.
0
r12  , 99
.
0
r13  and 97
.
0
r23  , then
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




2
2
2
97
.
0
1
97
.
0
99
.
0
97
.
0
2
99
.
0
97
.
0







98
.
0
059
.
0
058
.
0


Then
99
.
0
R 23
.
1  .
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




2
2
2
99
.
0
1
97
.
0
99
.
0
97
.
0
2
97
.
0
97
.
0







95
.
0
20
.
0
19
.
0


Thus,
13
.
2
R = 0.97
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




2
2
2
97
.
0
1
97
.
0
99
.
0
97
.
0
2
97
.
0
99
.
0







45
Multiple Correlation
981
.
0
591
.
0
58
.
0


Thus,
12
.
3
R = 0.99
Example 3: The following data is given:
1
X 60 68 50 66 60 55 72 60 62 51
2
X 42 56 45 64 50 55 57 48 56 42
3
X 74 71 78 80 72 62 70 70 76 65
Obtain 23
.
1
R , 13
.
2
R and 12
.
3
R
Solution: To obtain multiple correlation coefficients 23
.
1
R , 13
.
2
R and 12
.
3
R
we use following formulae:
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



 ,
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




and
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




We need 23
13
12 r
and
r
,
r which are obtained from the following table:
S.
No.
X1 X2 X3 d1=
X1 -60
d2 =
X2 -50
d3=
X3 -70
(d1)2
(d2)2
(d3)2
d1d2 d1d3 d2d3
1 60 42 74 0 -8 4 0 64 16 0 0 -32
2 68 56 71 8 6 1 64 36 1 48 8 6
3 50 45 78 -10 -5 8 100 25 64 50 -80 -40
4 66 64 80 6 14 10 36 196 100 84 60 140
5 60 50 72 0 0 2 0 0 4 0 0 0
6 55 55 62 -5 5 -8 25 25 64 -25 40 -40
7 72 57 70 12 7 0 144 49 0 84 0 0
8 60 48 70 0 -2 0 0 4 0 0 0 0
9 62 56 76 2 6 6 4 36 36 12 12 36
10 51 42 65 -9 -8 -5 81 64 25 72 45 40
Total 4 15 18 454 499 310 325 85 110
Regression and Multiple
Correlation
46
Here, we can also use shortcut method to calculate r12, r13 & r23,
Let d1 = X1− 60
d2 = X2− 50
d3 = X1− 70
Now we get the total correlation coefficient 23
13
12 r
and
r
,
r
  




 





2
2
2
2
2
1
2
1
2
1
2
1
12
)
d
(
)
d
(
N
)
d
(
)
d
(
N
)
d
(
)
d
(
)
d
d
(
N
r
  
)
15
(
)
15
(
)
499
10
(
)
4
(
)
4
(
)
454
10
(
)
15
(
)
4
(
)
325
10
(
r12










  
69
.
0
94
.
4642
3190
4765
4524
3190
r12 


  




 





2
3
2
3
2
1
2
1
3
1
3
1
13
)
d
(
)
d
(
N
)
d
(
)
d
(
N
)
d
(
)
d
(
)
d
d
(
N
r
  
)
18
18
(
)
310
10
(
)
4
4
(
)
454
10
(
)
18
(
)
4
(
)
85
10
(
r13










  
22
.
0
81
.
3543
778
2776
4524
778
r13 


and
  




 





2
3
2
3
2
2
2
2
3
2
3
2
23
)
d
(
)
d
(
N
)
d
(
)
d
(
N
)
d
(
)
d
(
)
d
d
(
N
r
  
)
18
18
(
)
310
10
(
)
15
15
(
)
499
10
(
)
18
(
)
15
(
)
110
10
(
r23










  
23
.
0
98
.
3636
830
2776
4765
830
r23 


Now, we calculate 23
.
1
R
We have, 69
.
0
r12  , 22
.
0
r13  and 23
.
0
r23  , then
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




2
2
2
23
.
0
1
23
.
0
22
.
0
69
.
0
2
22
.
0
69
.
0







4801
.
0
9471
.
0
4547
.
0


Then
69
.
0
R 23
.
1 
47
Multiple Correlation
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




2
2
2
22
.
0
1
23
.
0
22
.
0
69
.
0
2
23
.
0
69
.
0







4825
.
0
9516
.
0
4592
.
0


Thus,
13
.
2
R = 0.69
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




2
2
2
69
.
0
1
23
.
0
22
.
0
69
.
0
2
23
.
0
22
.
0







0601
.
0
5239
.
0
0315
.
0


Thus,
12
.
3
R = 0.25
Now let us solve some exercises.
E1) In bivariate distribution, 54
.
0
r
r
,
6
.
0
r 31
23
12 

 , then calculate
23
.
1
R .
E2) If 54
.
0
r
and
74
.
0
r
,
70
.
0
r 23
13
12 

 , calculate multiple correlation
coefficient 13
.
2
R .
E3) Calculate multiple correlation coefficients 23
.
1
R and 13
.
2
R from the
following information: 42
.
0
r
and
57
.
0
r
,
82
.
0
r 13
23
12 



 .
E4) From the following data,
1
X 22 15 27 28 30 42 40
2
X 12 15 17 15 42 15 28
3
X 13 16 12 18 22 20 12
Obtain 23
.
1
R , 13
.
2
R and 12
.
3
R
E5) The following data is given:
1
X 50 54 50 56 50 55 52 50 52 51
2
X 42 46 45 44 40 45 43 42 41 42
3
X 72 71 73 70 72 72 70 71 75 71
By using the short-cut method obtain 23
.
1
R , 13
.
2
R and 12
.
3
R
Regression and Multiple
Correlation
48
11.3 PROPERTIES OF MULTIPLE
CORRELATION COEFFICIENT
The following are some of the properties of multiple correlation coefficients:
1. Multiple correlation coefficient is the degree of association between
observed value of the dependent variable and its estimate obtained by
multiple regression,
2. Multiple Correlation coefficient lies between 0 and 1,
3. If multiple correlation coefficient is 1, then association is perfect and
multiple regression equation may said to be perfect prediction formula,
4. If multiple correlation coefficient is 0, dependent variable is uncorrelated
with other independent variables. From this, it can be concluded that
multiple regression equation fails to predict the value of dependent
variable when values of independent variables are known,
5. Multiple correlation coefficient is always greater or equal than any total
correlation coefficient. If 23
.
1
R is the multiple correlation coefficient
than 23
13
12
23
.
1 r
or
r
or
r
R  , and
6. Multiple correlation coefficient obtained by method of least squares
would always be greater than the multiple correlation coefficient
obtained by any other method.
11.4 SUMMARY
In this unit, we have discussed:
1. The multiple correlation, which is the study of joint effect of a group of
two or more variables on a single variable which is not included in that
group,
2. The estimate obtained by regression equation of that variable on other
variables,
3. Limit of multiple correlation coefficient, which lies between 0 and +1,
4. The numerical problems of multiple correlation coefficient, and
5. The properties of multiple correlation coefficient.
11.5 SOLUTIONS / ANSWERS
E1) We have,
54
.
0
r
r
,
6
.
0
r 31
23
12 


2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




49
Multiple Correlation
42
.
0
71
.
0
30
.
0
71
.
0
35
.
0
29
.
0
36
.
0





Then
65
.
0
R 23
.
1 
E2) We have
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




49
.
0
45
.
0
22
.
0
55
.
0
1
56
.
0
29
.
0
49
.
0






Thus
13
.
2
R = 0.70.
E3) We have
42
.
0
r
57
.
0
r
,
82
.
0
r 13
23
12 



 .
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




68
.
0
68
.
0
46
.
0
68
.
0
39
.
0
18
.
0
67
.
0





Then
23
.
1
R = 0.82
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




73
.
0
82
.
0
60
.
0
82
.
0
39
.
0
32
.
0
67
.
0





Thus,
13
.
2
R = 0.85.
E4) To obtain multiple correlation coefficients 23
.
1
R , 13
.
2
R and 12
.
3
R
we use following formulae:
Regression and Multiple
Correlation
50
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



 ,
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r



 and
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




We need 23
13
12 r
and
r
,
r which are obtained from the following
table:
S. No. X1 X2 X3 (X1)2
(X2)2
(X3)2
X1X2 X1X3 X2X3
1 22 12 13 484 144 169 264 286 156
2 15 15 16 225 225 256 225 240 240
3 27 17 12 729 289 144 459 324 204
4 28 15 18 784 225 324 420 504 270
5 30 42 22 900 1764 484 1260 660 924
6 42 15 20 1764 225 400 630 840 300
7 40 28 12 1600 784 144 1120 480 336
Total 204 144 113 6486 3656 1921 4378 3334 2430
Now, we get the total correlation coefficient 23
13
12 r
and
r
,
r
  




 





2
2
2
2
2
1
2
1
2
1
2
1
12
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
144
(
)
144
(
)
3656
7
(
)
204
(
)
204
(
)
6486
7
(
)
144
(
)
204
(
)
4378
7
(
r12










  
4856
3786
1270
r12 
30
.
0
75
.
4287
1270


  




 





2
3
2
3
2
1
2
1
3
1
3
1
13
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
113
113
(
)
1921
7
(
)
204
204
(
)
6486
7
(
)
113
(
)
204
(
)
3334
7
(
r13










51
Multiple Correlation
678
3786
286
r13


18
.
0
16
.
1602
286


and
  




 





2
3
2
3
2
2
2
2
3
2
3
2
23
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
113
113
(
)
1921
7
(
)
144
144
(
)
3656
7
)
113
(
)
144
(
)
2430
7
(
r23










  
678
4856
738
r23 
41
.
0
49
.
1814
738


Now, we calculate 23
.
1
R
We have, 30
.
0
r12  , 18
.
0
r13  and 41
.
0
r23  , then
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




2
2
2
)
41
.
0
(
1
41
.
0
18
.
0
30
.
2
18
.
0
30
.
0







9380
.
0
8319
.
0
0781
.
0


Then
30
.
0
R 23
.
1  .
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




2
2
2
18
.
0
1
41
.
0
18
.
0
30
.
2
41
.
0
30
.
0







221
.
0
9676
.
0
2138
.
0


Thus,
13
.
2
R = 0.47
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




Regression and Multiple
Correlation
52
2
2
2
30
.
0
1
41
.
0
18
.
0
30
.
0
2
41
.
0
18
.
0







1717
.
0
9100
.
0
1562
.
0


Thus,
12
.
3
R = 0.41
E5) To obtain multiple correlation coefficients 23
.
1
R , 13
.
2
R and 12
.
3
R
we use following formulae
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r



 ,
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




and
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




We need 23
13
12 r
and
r
,
r which are obtained from the following
table:
S.
No.
X1 X2 X3 d1=
X1 -50
d2 =
X2 -40
d3=
X3 -70
(d1)2
(d2)2
(d3)2
d1d2 d1d3 d2d3
1 50 42 72 0 2 2 0 4 4 0 0 4
2 54 46 71 4 6 1 16 36 1 24 4 6
3 50 45 73 0 5 3 0 25 9 0 0 15
4 56 44 70 6 4 0 36 16 0 24 0 0
5 50 40 72 0 0 2 0 0 4 0 0 0
6 55 45 72 5 5 2 25 25 4 25 10 10
7 52 43 70 2 3 0 4 9 0 6 0 0
8 50 42 71 0 2 1 0 4 1 0 0 2
9 52 41 75 2 1 5 4 1 25 2 10 5
10 51 42 71 1 2 1 1 4 1 2 1 2
Total 20 30 17 86 124 49 83 25 44
Now, we get the total correlation coefficient 23
13
12 r
and
r
,
r
  




 





2
2
2
2
2
1
2
1
2
1
2
1
12
)
d
(
)
d
(
N
)
d
(
)
d
(
N
)
d
(
)
d
(
)
d
d
(
N
r
  
)
30
(
)
30
(
)
124
10
(
)
20
(
)
20
(
)
86
10
(
)
30
(
)
20
(
)
83
10
(
r12










53
Multiple Correlation
340
460
230
r12


58
.
0
47
.
395
230


  




 





2
3
2
3
2
1
2
1
3
1
3
1
13
)
d
(
)
d
(
N
)
d
(
)
d
(
N
)
d
(
)
d
(
)
d
d
(
N
r
  
)
17
17
(
)
49
10
(
)
20
20
(
)
86
10
(
)
17
(
)
20
(
)
25
10
(
r13










  
201
460
90
r13


30
.
0
07
.
304
90




and
  




 





2
3
2
3
2
2
2
2
3
2
3
2
23
)
X
(
)
X
(
N
)
X
(
)
X
(
N
)
X
(
)
X
(
)
X
X
(
N
r
  
)
17
17
(
)
49
10
(
)
20
20
(
)
124
10
(
)
17
(
)
30
(
)
44
10
(
r23










  
201
340
70
r23


27
.
0
42
.
261
70




Now, we calculate 23
.
1
R
We have, 58
.
0
r12  , 30
.
0
r13 
 and 27
.
0
r23 
 , then
2
23
.
1
R 2
23
23
13
12
2
13
2
12
r
1
r
r
r
2
r
r




     
 2
2
2
27
.
0
1
27
.
0
30
.
0
58
.
0
2
30
.
0
58
.
0











36
.
0
9271
.
0
3324
.
0


Then
60
.
0
R 23
.
1  .
2
13
.
2
R 2
13
23
13
12
2
23
2
12
r
1
r
r
r
2
r
r




Regression and Multiple
Correlation
54
     
 2
2
2
30
.
0
1
27
.
0
30
.
0
58
.
0
2
27
.
0
58
.
0











35
.
0
9100
.
0
3153
.
0


Thus,
13
.
2
R = 0.59
2
12
.
3
R 2
12
23
13
12
2
23
2
13
r
1
r
r
r
2
r
r




       
 2
2
2
58
.
0
1
27
.
0
30
.
0
58
.
0
2
27
.
0
30
.
0











10
.
0
6636
.
0
0689
.
0


Thus,
12
.
3
R = 0.32

More Related Content

What's hot

Factorial design
Factorial designFactorial design
Factorial design
Gaurav Kr
 
Experimental design techniques
Experimental design techniquesExperimental design techniques
Experimental design techniques
gopinathannsriramachandraeduin
 
Central Composite Design
Central Composite DesignCentral Composite Design
Central Composite Design
Ruchir Shah
 
Friedman test Stat
Friedman test Stat Friedman test Stat
Friedman test Stat
Kate Malda
 
3.1 non parametric test
3.1 non parametric test3.1 non parametric test
3.1 non parametric test
Shital Patil
 
DATA GRAPHICS 8th Sem.pdf
DATA GRAPHICS 8th Sem.pdfDATA GRAPHICS 8th Sem.pdf
DATA GRAPHICS 8th Sem.pdf
Ravinandan A P
 
Two factor factorial_design_pdf
Two factor factorial_design_pdfTwo factor factorial_design_pdf
Two factor factorial_design_pdf
Rione Drevale
 
All non parametric test
All non parametric testAll non parametric test
All non parametric test
gopinathannsriramachandraeduin
 
Non parametric test
Non parametric testNon parametric test
Non parametric test
dineshmeena53
 
Correlation - Biostatistics
Correlation - BiostatisticsCorrelation - Biostatistics
Correlation - Biostatistics
Fahmida Swati
 
The Kruskal-Wallis H Test
The Kruskal-Wallis H TestThe Kruskal-Wallis H Test
The Kruskal-Wallis H Test
Dr. Ankit Gaur
 
Karl pearson's correlation
Karl pearson's correlationKarl pearson's correlation
Karl pearson's correlation
fairoos1
 
Graphs (Biostatistics)
Graphs (Biostatistics)Graphs (Biostatistics)
Graphs (Biostatistics)
Prashant Jatkar
 
Kruskal wallis test
Kruskal wallis testKruskal wallis test
Kruskal wallis test
YASMEEN CHAUDHARI
 
Factorial Design.pptx
Factorial Design.pptxFactorial Design.pptx
Factorial Design.pptx
Ashwani Dhingra
 
Design of experiment
Design of experimentDesign of experiment
Design of experiment
bhargavi1603
 
RESPONSE SURFACE METHODOLOGY.pptx
RESPONSE SURFACE METHODOLOGY.pptxRESPONSE SURFACE METHODOLOGY.pptx
RESPONSE SURFACE METHODOLOGY.pptx
SreeLatha49
 
designing the methodology.pptx
designing the methodology.pptxdesigning the methodology.pptx
designing the methodology.pptx
SreeLatha98
 
Wilcoxon Rank-Sum Test
Wilcoxon Rank-Sum TestWilcoxon Rank-Sum Test
Wilcoxon Rank-Sum Test
Sahil Jain
 
Unit 1 Correlation- BSRM.pdf
Unit 1 Correlation- BSRM.pdfUnit 1 Correlation- BSRM.pdf
Unit 1 Correlation- BSRM.pdf
Ravinandan A P
 

What's hot (20)

Factorial design
Factorial designFactorial design
Factorial design
 
Experimental design techniques
Experimental design techniquesExperimental design techniques
Experimental design techniques
 
Central Composite Design
Central Composite DesignCentral Composite Design
Central Composite Design
 
Friedman test Stat
Friedman test Stat Friedman test Stat
Friedman test Stat
 
3.1 non parametric test
3.1 non parametric test3.1 non parametric test
3.1 non parametric test
 
DATA GRAPHICS 8th Sem.pdf
DATA GRAPHICS 8th Sem.pdfDATA GRAPHICS 8th Sem.pdf
DATA GRAPHICS 8th Sem.pdf
 
Two factor factorial_design_pdf
Two factor factorial_design_pdfTwo factor factorial_design_pdf
Two factor factorial_design_pdf
 
All non parametric test
All non parametric testAll non parametric test
All non parametric test
 
Non parametric test
Non parametric testNon parametric test
Non parametric test
 
Correlation - Biostatistics
Correlation - BiostatisticsCorrelation - Biostatistics
Correlation - Biostatistics
 
The Kruskal-Wallis H Test
The Kruskal-Wallis H TestThe Kruskal-Wallis H Test
The Kruskal-Wallis H Test
 
Karl pearson's correlation
Karl pearson's correlationKarl pearson's correlation
Karl pearson's correlation
 
Graphs (Biostatistics)
Graphs (Biostatistics)Graphs (Biostatistics)
Graphs (Biostatistics)
 
Kruskal wallis test
Kruskal wallis testKruskal wallis test
Kruskal wallis test
 
Factorial Design.pptx
Factorial Design.pptxFactorial Design.pptx
Factorial Design.pptx
 
Design of experiment
Design of experimentDesign of experiment
Design of experiment
 
RESPONSE SURFACE METHODOLOGY.pptx
RESPONSE SURFACE METHODOLOGY.pptxRESPONSE SURFACE METHODOLOGY.pptx
RESPONSE SURFACE METHODOLOGY.pptx
 
designing the methodology.pptx
designing the methodology.pptxdesigning the methodology.pptx
designing the methodology.pptx
 
Wilcoxon Rank-Sum Test
Wilcoxon Rank-Sum TestWilcoxon Rank-Sum Test
Wilcoxon Rank-Sum Test
 
Unit 1 Correlation- BSRM.pdf
Unit 1 Correlation- BSRM.pdfUnit 1 Correlation- BSRM.pdf
Unit 1 Correlation- BSRM.pdf
 

Similar to Unit 1 BP801T t h multiple correlation examples

A statistical criterion for reducing indeterminacy in linear causal modeling
A statistical criterion for reducing indeterminacy in linear causal modelingA statistical criterion for reducing indeterminacy in linear causal modeling
A statistical criterion for reducing indeterminacy in linear causal modeling
Gianluca Bontempi
 
Bayesian Inferences for Two Parameter Weibull Distribution
Bayesian Inferences for Two Parameter Weibull DistributionBayesian Inferences for Two Parameter Weibull Distribution
Bayesian Inferences for Two Parameter Weibull Distribution
IOSR Journals
 
REGRESSION ANALYSIS THEORY EXPLAINED HERE
REGRESSION ANALYSIS THEORY EXPLAINED HEREREGRESSION ANALYSIS THEORY EXPLAINED HERE
REGRESSION ANALYSIS THEORY EXPLAINED HERE
ShriramKargaonkar
 
Statistics
Statistics Statistics
Statistics
KafiPati
 
Regression
RegressionRegression
Regression
Sauravurp
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
Japheth Muthama
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
Japheth Muthama
 
D03402029035
D03402029035D03402029035
D03402029035
theijes
 
07 Tensor Visualization
07 Tensor Visualization07 Tensor Visualization
07 Tensor Visualization
Valerii Klymchuk
 
Regression and correlation in statistics
Regression and correlation in statisticsRegression and correlation in statistics
Regression and correlation in statistics
iphone4s4
 
47032417.pdf
47032417.pdf47032417.pdf
47032417.pdf
RismanYusuf1
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
eSAT Publishing House
 
Scatter plot- Complete
Scatter plot- CompleteScatter plot- Complete
Scatter plot- Complete
Irfan Yaqoob
 
stats_ch12.pdf
stats_ch12.pdfstats_ch12.pdf
stats_ch12.pdf
shermanullah
 
Extreme bound analysis based on correlation coefficient for optimal regressio...
Extreme bound analysis based on correlation coefficient for optimal regressio...Extreme bound analysis based on correlation coefficient for optimal regressio...
Extreme bound analysis based on correlation coefficient for optimal regressio...
Loc Nguyen
 
D040101030040
D040101030040D040101030040
D040101030040
ijceronline
 
Lecture notes on Johansen cointegration
Lecture notes on Johansen cointegrationLecture notes on Johansen cointegration
Lecture notes on Johansen cointegration
Moses sichei
 
ML Module 3.pdf
ML Module 3.pdfML Module 3.pdf
ML Module 3.pdf
Shiwani Gupta
 
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Mohammad Sabawi Lecturer at Mathematics Department/College of Educations for Women/Tikrit University
 
Correlation and Regression
Correlation and Regression Correlation and Regression
Correlation and Regression
Dr. Tushar J Bhatt
 

Similar to Unit 1 BP801T t h multiple correlation examples (20)

A statistical criterion for reducing indeterminacy in linear causal modeling
A statistical criterion for reducing indeterminacy in linear causal modelingA statistical criterion for reducing indeterminacy in linear causal modeling
A statistical criterion for reducing indeterminacy in linear causal modeling
 
Bayesian Inferences for Two Parameter Weibull Distribution
Bayesian Inferences for Two Parameter Weibull DistributionBayesian Inferences for Two Parameter Weibull Distribution
Bayesian Inferences for Two Parameter Weibull Distribution
 
REGRESSION ANALYSIS THEORY EXPLAINED HERE
REGRESSION ANALYSIS THEORY EXPLAINED HEREREGRESSION ANALYSIS THEORY EXPLAINED HERE
REGRESSION ANALYSIS THEORY EXPLAINED HERE
 
Statistics
Statistics Statistics
Statistics
 
Regression
RegressionRegression
Regression
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
 
D03402029035
D03402029035D03402029035
D03402029035
 
07 Tensor Visualization
07 Tensor Visualization07 Tensor Visualization
07 Tensor Visualization
 
Regression and correlation in statistics
Regression and correlation in statisticsRegression and correlation in statistics
Regression and correlation in statistics
 
47032417.pdf
47032417.pdf47032417.pdf
47032417.pdf
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
Scatter plot- Complete
Scatter plot- CompleteScatter plot- Complete
Scatter plot- Complete
 
stats_ch12.pdf
stats_ch12.pdfstats_ch12.pdf
stats_ch12.pdf
 
Extreme bound analysis based on correlation coefficient for optimal regressio...
Extreme bound analysis based on correlation coefficient for optimal regressio...Extreme bound analysis based on correlation coefficient for optimal regressio...
Extreme bound analysis based on correlation coefficient for optimal regressio...
 
D040101030040
D040101030040D040101030040
D040101030040
 
Lecture notes on Johansen cointegration
Lecture notes on Johansen cointegrationLecture notes on Johansen cointegration
Lecture notes on Johansen cointegration
 
ML Module 3.pdf
ML Module 3.pdfML Module 3.pdf
ML Module 3.pdf
 
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
 
Correlation and Regression
Correlation and Regression Correlation and Regression
Correlation and Regression
 

More from ashish7sattee

Unti 1 bp801 t ga correlation worksheet24022022
Unti 1 bp801 t ga correlation worksheet24022022Unti 1 bp801 t ga correlation worksheet24022022
Unti 1 bp801 t ga correlation worksheet24022022
ashish7sattee
 
Unit i bp801 t k spearman coefficient of correlation24022022
Unit i  bp801 t k spearman coefficient of correlation24022022Unit i  bp801 t k spearman coefficient of correlation24022022
Unit i bp801 t k spearman coefficient of correlation24022022
ashish7sattee
 
Unit i bp801 t j introduction to correlation 24022022
Unit i  bp801 t j introduction to correlation 24022022Unit i  bp801 t j introduction to correlation 24022022
Unit i bp801 t j introduction to correlation 24022022
ashish7sattee
 
Unit 1 bp801 t g correlation analysis24022022
Unit 1 bp801 t g correlation analysis24022022Unit 1 bp801 t g correlation analysis24022022
Unit 1 bp801 t g correlation analysis24022022
ashish7sattee
 
Unit 1 bp801 t f standard deviation 24022022
Unit 1 bp801 t f standard deviation 24022022Unit 1 bp801 t f standard deviation 24022022
Unit 1 bp801 t f standard deviation 24022022
ashish7sattee
 
Unit 1 bp801 t e range24022022
Unit 1 bp801 t e range24022022Unit 1 bp801 t e range24022022
Unit 1 bp801 t e range24022022
ashish7sattee
 
Unit 1 bp801 t d mode 24022022
Unit 1 bp801 t d mode 24022022Unit 1 bp801 t d mode 24022022
Unit 1 bp801 t d mode 24022022
ashish7sattee
 
Unit 1 bp801 t c median with solved examples
Unit 1 bp801 t c median with solved examplesUnit 1 bp801 t c median with solved examples
Unit 1 bp801 t c median with solved examples
ashish7sattee
 
Unit 1 bp801 t b frequency distribution
Unit 1 bp801 t b frequency distributionUnit 1 bp801 t b frequency distribution
Unit 1 bp801 t b frequency distribution
ashish7sattee
 
Unit 1 BP801T a introduction mean median mode
Unit 1 BP801T a introduction mean median mode Unit 1 BP801T a introduction mean median mode
Unit 1 BP801T a introduction mean median mode
ashish7sattee
 
Unit 1 bp801 t i standard deviation
Unit 1 bp801 t  i standard deviationUnit 1 bp801 t  i standard deviation
Unit 1 bp801 t i standard deviation
ashish7sattee
 
MRM301TResearch Methodology and Biostatistics: An introduction to Euthanasia
MRM301TResearch Methodology and Biostatistics: An introduction to  EuthanasiaMRM301TResearch Methodology and Biostatistics: An introduction to  Euthanasia
MRM301TResearch Methodology and Biostatistics: An introduction to Euthanasia
ashish7sattee
 
MRM301T Research Methodology and Biostatistics: Euthanasia An Indian perspec...
MRM301T Research Methodology and Biostatistics: Euthanasia  An Indian perspec...MRM301T Research Methodology and Biostatistics: Euthanasia  An Indian perspec...
MRM301T Research Methodology and Biostatistics: Euthanasia An Indian perspec...
ashish7sattee
 
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
ashish7sattee
 
ashish7sattee
ashish7satteeashish7sattee
ashish7sattee
ashish7sattee
 
Statistical tools in research 1
Statistical tools in research 1Statistical tools in research 1
Statistical tools in research 1
ashish7sattee
 

More from ashish7sattee (16)

Unti 1 bp801 t ga correlation worksheet24022022
Unti 1 bp801 t ga correlation worksheet24022022Unti 1 bp801 t ga correlation worksheet24022022
Unti 1 bp801 t ga correlation worksheet24022022
 
Unit i bp801 t k spearman coefficient of correlation24022022
Unit i  bp801 t k spearman coefficient of correlation24022022Unit i  bp801 t k spearman coefficient of correlation24022022
Unit i bp801 t k spearman coefficient of correlation24022022
 
Unit i bp801 t j introduction to correlation 24022022
Unit i  bp801 t j introduction to correlation 24022022Unit i  bp801 t j introduction to correlation 24022022
Unit i bp801 t j introduction to correlation 24022022
 
Unit 1 bp801 t g correlation analysis24022022
Unit 1 bp801 t g correlation analysis24022022Unit 1 bp801 t g correlation analysis24022022
Unit 1 bp801 t g correlation analysis24022022
 
Unit 1 bp801 t f standard deviation 24022022
Unit 1 bp801 t f standard deviation 24022022Unit 1 bp801 t f standard deviation 24022022
Unit 1 bp801 t f standard deviation 24022022
 
Unit 1 bp801 t e range24022022
Unit 1 bp801 t e range24022022Unit 1 bp801 t e range24022022
Unit 1 bp801 t e range24022022
 
Unit 1 bp801 t d mode 24022022
Unit 1 bp801 t d mode 24022022Unit 1 bp801 t d mode 24022022
Unit 1 bp801 t d mode 24022022
 
Unit 1 bp801 t c median with solved examples
Unit 1 bp801 t c median with solved examplesUnit 1 bp801 t c median with solved examples
Unit 1 bp801 t c median with solved examples
 
Unit 1 bp801 t b frequency distribution
Unit 1 bp801 t b frequency distributionUnit 1 bp801 t b frequency distribution
Unit 1 bp801 t b frequency distribution
 
Unit 1 BP801T a introduction mean median mode
Unit 1 BP801T a introduction mean median mode Unit 1 BP801T a introduction mean median mode
Unit 1 BP801T a introduction mean median mode
 
Unit 1 bp801 t i standard deviation
Unit 1 bp801 t  i standard deviationUnit 1 bp801 t  i standard deviation
Unit 1 bp801 t i standard deviation
 
MRM301TResearch Methodology and Biostatistics: An introduction to Euthanasia
MRM301TResearch Methodology and Biostatistics: An introduction to  EuthanasiaMRM301TResearch Methodology and Biostatistics: An introduction to  Euthanasia
MRM301TResearch Methodology and Biostatistics: An introduction to Euthanasia
 
MRM301T Research Methodology and Biostatistics: Euthanasia An Indian perspec...
MRM301T Research Methodology and Biostatistics: Euthanasia  An Indian perspec...MRM301T Research Methodology and Biostatistics: Euthanasia  An Indian perspec...
MRM301T Research Methodology and Biostatistics: Euthanasia An Indian perspec...
 
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
MRM301T Research Methodology and Biostatistics: Confidentiality 1 22102021
 
ashish7sattee
ashish7satteeashish7sattee
ashish7sattee
 
Statistical tools in research 1
Statistical tools in research 1Statistical tools in research 1
Statistical tools in research 1
 

Recently uploaded

BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 

Recently uploaded (20)

BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 

Unit 1 BP801T t h multiple correlation examples

  • 1. 37 Multiple Correlation UNIT 11 MULTIPLE CORRELATION Structure 11.1 Introduction Objectives 11.2 Coefficient of Multiple Correlation 11.3 Properties of Multiple Correlation Coefficient 11.4 Summary 11.5 Solutions / Answers 11.1 INTRODUCTION In Unit 9, you have studied the concept of regression and linear regression. Regression coefficient was also discussed with its properties. You learned how to determine the relationship between two variables in regression and how to predict value of one variable from the given value of the other variable. Plane of regression for trivariate, properties of residuals and variance of the residuals were discussed in Unit 10 of this block, which are basis for multiple and partial correlation coefficients. In Block 2, you have studied the coefficient of correlation that provides the degree of linear relationship between the two variables. If we have more than two variables which are interrelated in someway and our interest is to know the relationship between one variable and set of others. This leads us to multiple correlation study. In this unit, you will study the multiple correlation and multiple correlation coefficient with its properties .To understand the concept of multiple correlation you must be well versed with correlation coefficient. Before starting this unit, you go through the correlation coefficient given in Unit 6 of the Block 2. You should also clear the basics given in Unit 10 of this block to understand the mathematical formulation of multiple correlation coefficients. Section 11.2 discusses the concept of multiple correlation and multiple correlation coefficient. It gives the derivation of the multiple correlation coefficient formula. Properties of multiple correlation coefficients are described in Section 11.3 Objectives After reading this unit, you would be able to  describe the concept of multiple correlation;  define multiple correlation coefficient;  derive the multiple correlation coefficient formula; and  explain the properties of multiple correlation coefficient.
  • 2. Regression and Multiple Correlation 38 11.2 COEFFICIENT OF MULTIPLE CORRELATION If information on two variables like height and weight, income and expenditure, demand and supply, etc. are available and we want to study the linear relationship between two variables, correlation coefficient serves our purpose which provides the strength or degree of linear relationship with direction whether it is positive or negative. But in biological, physical and social sciences, often data are available on more than two variables and value of one variable seems to be influenced by two or more variables. For example, crimes in a city may be influenced by illiteracy, increased population and unemployment in the city, etc. The production of a crop may depend upon amount of rainfall, quality of seeds, quantity of fertilizers used and method of irrigation, etc. Similarly, performance of students in university exam may depend upon his/her IQ, mother’s qualification, father’s qualification, parents income, number of hours of studies, etc. Whenever we are interested in studying the joint effect of two or more variables on a single variable, multiple correlation gives the solution of our problem. In fact, multiple correlation is the study of combined influence of two or more variables on a single variable. Suppose, 1 X , 2 X and 3 X are three variables having observations on N individuals or units. Then multiple correlation coefficient of 1 X on 2 X and 3 X is the simple correlation coefficient between 1 X and the joint effect of 2 X and 3 X . It can also be defined as the correlation between 1 X and its estimate based on 2 X and 3 X . Multiple correlation coefficient is the simple correlation coefficient between a variable and its estimate. Let us define a regression equation of 1 X on 2 X and 3 X as 3 2 . 13 2 3 . 12 1 X b X b a X    Let us consider three variables 3 2 1 x and x , x measured from their respective means. The regression equation of 1 x depends upon 3 2 x and x is given by 3 2 . 13 2 3 . 12 1 x b x b x   … (1) 3 3 3 2 2 2 1 1 1 x X X and x X X , x X X Where       0 x x x 3 2 1        Right hand side of equation (1) can be considered as expected or estimated value of 1 x based on 2 x and 3 x which may be expressed as 3 2 . 13 2 3 . 12 23 . 1 x b x b x   … (2) Residual 23 . 1 e (see definition of residual in Unit 5 of Block 2 of MST 002) is written as 23 . 1 e = 3 2 . 13 2 3 . 12 1 x b x b x   = 23 . 1 1 x x 
  • 3. 39 Multiple Correlation 23 . 1 1 23 . 1 x x e    23 . 1 1 23 . 1 e x x    … (3) The multiple correlation coefficient can be defined as the simple correlation coefficient between 1 x and its estimate 23 . 1 e . It is usually denoted by 23 . 1 R and defined as ) x ( V ) x ( V ) x , x ( Cov R 23 . 1 1 23 . 1 1 23 . 1  … (4) Now,        23 . 1 23 . 1 1 1 23 . 1 1 x x x x N 1 ) x , x ( Cov (By the definition of covariance) Since, 2 1 x , x and 3 x are measured from their respective means, so 0 x x x 3 2 1       0 x x x 3 2 1     and consequently 0 x b x b x 3 2 . 13 2 3 . 12 23 . 1    (From equation (2)) Thus,  ) x , x ( Cov 23 . 1 1 23 . 1 1x x N 1  ) e x ( x N 1 23 . 1 1 1    (From equation (3))     23 . 1 1 2 1 e x N 1 x N 1 (By third property of residuals)     2 23 . 1 2 1 e N 1 x N 1 2 23 . 1 2 1     (From equation (29) of Unit10) Now    2 23 . 1 23 . 1 23 . 1 ) x x ( N 1 ) x ( V   2 23 . 1 ) x ( N 1 (Since 23 . 1 x = 0) =   2 23 . 1 1 ) e x ( N 1 (From equation (3))     ) e x 2 e x ( N 1 23 . 1 1 2 23 . 1 2 1
  • 4. Regression and Multiple Correlation 40       23 . 1 1 2 23 . 1 2 1 e x N 1 2 e N 1 x N 1       2 23 . 1 2 23 . 1 2 1 e N 1 2 e N 1 x N 1 (By third property of residuals)     2 23 . 1 2 1 e N 1 x N 1 ) x ( V 23 . 1 2 23 . 1 2 1     (From equation (29) of Unit 10) Substituting the value of ) x , x ( Cov 23 . 1 1 and ) x ( V 23 . 1 in equation (4), we have ) ( R 2 23 . 1 2 1 2 1 2 23 . 1 2 1 23 . 1         ) ( ) ( R 2 23 . 1 2 1 2 1 2 2 23 . 1 2 1 2 23 . 1         2 1 2 23 . 1 2 1 2 23 . 1 2 1 2 23 . 1 σ σ 1 σ σ σ R     here, 2 23 . 1  is the variance of residual, which is ) r r r 2 r r r 1 ( r 1 13 23 12 2 13 2 12 2 23 2 23 2 1 2 23 . 1         (From equation (30) of unit 10) Then, 2 23 . 1 R ) r 1 ( ) r r r 2 r r r 1 ( 1 2 23 2 1 23 13 12 2 23 2 13 2 12 2 1          2 23 . 1 R 2 23 23 13 12 2 23 2 13 2 12 r 1 r r r 2 r r r 1 1        2 23 . 1 R 2 23 23 13 12 2 23 2 13 2 12 2 23 r 1 r r r 2 r r r 1 r 1         2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     23 . 1 R = 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r    … (5) which is required formula for multiple correlation coefficient. where, 12 r is the total correlation coefficient between variable 1 X and 2 X , 23 r is the total correlation coefficient between variable 2 X and 3 X ,
  • 5. 41 Multiple Correlation 13 r is the total correlation coefficient between variable 1 X and 3 X . Now let us solve a problem on multiple correlation coefficients. Example 1: From the following data, obtain 23 . 1 R and 13 . 2 R 1 X 65 72 54 68 55 59 78 58 57 51 2 X 56 58 48 61 50 51 55 48 52 42 3 X 9 11 8 13 10 8 11 10 11 7 Solution: To obtain multiple correlation coefficients 23 . 1 R and , R 13 . 2 we use following formulae 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     and 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     We need 23 13 12 r and r , r which are obtained from the following table: S. No. X1 X2 X3 (X1)2 (X2)2 (X3)2 X1X2 X1X3 X2X3 1 65 56 9 4225 3136 81 3640 585 504 2 72 58 11 5184 3364 121 4176 792 638 3 54 48 8 2916 2304 64 2592 432 384 4 68 61 13 4624 3721 169 4148 884 793 5 55 50 10 3025 2500 100 2750 550 500 6 59 51 8 3481 2601 64 3009 472 408 7 78 55 11 6084 3025 121 4290 858 605 8 58 48 10 3364 2304 100 2784 580 480 9 57 52 11 3249 2704 121 2964 627 572 10 51 42 7 2601 1764 49 2142 357 294 Total 617 521 98 38753 27423 990 32495 6137 5178 Now we get the total correlation coefficient 23 13 12 r and r , r               2 2 2 2 2 1 2 1 2 1 2 1 12 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 521 ( ) 521 ( ) 27423 10 ( ) 617 ( ) 617 ( ) 38753 10 ( ) 521 ( ) 617 ( ) 32495 10 ( r12          
  • 6. Regression and Multiple Correlation 42     80 . 0 01 . 4368 3493 2789 6841 3493 r12                   2 3 2 3 2 1 2 1 3 1 3 1 13 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 98 98 ( ) 990 10 ( ) 617 617 ( ) 38753 10 ( ) 98 ( ) 617 ( ) 6137 10 ( r13              64 . 0 00 . 1423 904 296 6841 904 r13    and               2 3 2 3 2 2 2 2 3 2 3 2 23 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 98 98 ( ) 990 10 ( ) 521 521 ( ) 27423 10 ( ) 98 ( ) 521 ( ) 5178 10 ( r23              79 . 0 59 . 908 722 296 2789 722 r23    Now, we calculate 23 . 1 R We have, 80 . 0 r12  , 64 . 0 r13  and 79 . 0 r23  , then 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     2 2 2 79 . 0 1 79 . 0 64 . 0 80 . 0 2 64 . 0 80 . 0        63 . 0 38 . 0 24 . 0 R 62 . 0 1 81 . 0 41 . 0 64 . 0 2 23 . 1       Then 79 . 0 R 23 . 1  . 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     2 2 2 64 . 0 1 79 . 0 64 . 0 80 . 0 2 79 . 0 80 . 0        88 . 0 51 . 0 45 . 0 49 . 0 1 81 . 0 62 . 0 64 . 0      
  • 7. 43 Multiple Correlation Thus, 13 . 2 R = 0.94 Example 2: From the following data, obtain 23 . 1 R , 13 . 2 R and 12 . 3 R 1 X 2 5 7 11 2 X 3 6 10 12 3 X 1 3 6 10 Solution: To obtain multiple correlation coefficients 23 . 1 R 13 . 2 R and R3.12, we use following formulae 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     , 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     and 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     We need 23 13 12 r and r , r which are obtained from the following table: S. No. X1 X2 X3 (X1)2 (X2)2 (X3)2 X1X2 X1X3 X2X3 1 2 3 1 4 9 1 6 2 3 2 5 6 3 25 36 9 30 15 18 3 7 10 6 49 100 36 70 42 60 4 11 12 10 121 144 100 132 110 120 Total 25 31 20 199 289 146 238 169 201 Now we get the total correlation coefficient 23 13 12 r and r , r               2 2 2 2 2 1 2 1 2 1 2 1 12 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 31 ( ) 31 ( ) 289 4 ( ) 25 ( ) 25 ( ) 199 4 ( ) 31 ( ) 25 ( ) 238 4 ( r12              97 . 0 . 0 61 . 182 177 195 171 177 r12                  2 3 2 3 2 1 2 1 3 1 3 1 13 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r
  • 8. Regression and Multiple Correlation 44    ) 20 20 ( ) 146 4 ( ) 25 25 ( ) 199 4 ( ) 20 ( ) 25 ( ) 169 4 ( r13              99 . 0 38 . 177 176 184 171 176 r13    and               2 3 2 3 2 2 2 2 3 2 3 2 23 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 20 20 ( ) 146 4 ( ) 31 31 ( ) 289 4 ) 20 ( ) 31 ( ) 201 4 ( r23              97 . 0 42 . 189 184 184 195 184 r23    Now, we calculate 23 . 1 R We have, 97 . 0 r12  , 99 . 0 r13  and 97 . 0 r23  , then 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     2 2 2 97 . 0 1 97 . 0 99 . 0 97 . 0 2 99 . 0 97 . 0        98 . 0 059 . 0 058 . 0   Then 99 . 0 R 23 . 1  . 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     2 2 2 99 . 0 1 97 . 0 99 . 0 97 . 0 2 97 . 0 97 . 0        95 . 0 20 . 0 19 . 0   Thus, 13 . 2 R = 0.97 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     2 2 2 97 . 0 1 97 . 0 99 . 0 97 . 0 2 97 . 0 99 . 0       
  • 9. 45 Multiple Correlation 981 . 0 591 . 0 58 . 0   Thus, 12 . 3 R = 0.99 Example 3: The following data is given: 1 X 60 68 50 66 60 55 72 60 62 51 2 X 42 56 45 64 50 55 57 48 56 42 3 X 74 71 78 80 72 62 70 70 76 65 Obtain 23 . 1 R , 13 . 2 R and 12 . 3 R Solution: To obtain multiple correlation coefficients 23 . 1 R , 13 . 2 R and 12 . 3 R we use following formulae: 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     , 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     and 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     We need 23 13 12 r and r , r which are obtained from the following table: S. No. X1 X2 X3 d1= X1 -60 d2 = X2 -50 d3= X3 -70 (d1)2 (d2)2 (d3)2 d1d2 d1d3 d2d3 1 60 42 74 0 -8 4 0 64 16 0 0 -32 2 68 56 71 8 6 1 64 36 1 48 8 6 3 50 45 78 -10 -5 8 100 25 64 50 -80 -40 4 66 64 80 6 14 10 36 196 100 84 60 140 5 60 50 72 0 0 2 0 0 4 0 0 0 6 55 55 62 -5 5 -8 25 25 64 -25 40 -40 7 72 57 70 12 7 0 144 49 0 84 0 0 8 60 48 70 0 -2 0 0 4 0 0 0 0 9 62 56 76 2 6 6 4 36 36 12 12 36 10 51 42 65 -9 -8 -5 81 64 25 72 45 40 Total 4 15 18 454 499 310 325 85 110
  • 10. Regression and Multiple Correlation 46 Here, we can also use shortcut method to calculate r12, r13 & r23, Let d1 = X1− 60 d2 = X2− 50 d3 = X1− 70 Now we get the total correlation coefficient 23 13 12 r and r , r               2 2 2 2 2 1 2 1 2 1 2 1 12 ) d ( ) d ( N ) d ( ) d ( N ) d ( ) d ( ) d d ( N r    ) 15 ( ) 15 ( ) 499 10 ( ) 4 ( ) 4 ( ) 454 10 ( ) 15 ( ) 4 ( ) 325 10 ( r12              69 . 0 94 . 4642 3190 4765 4524 3190 r12                  2 3 2 3 2 1 2 1 3 1 3 1 13 ) d ( ) d ( N ) d ( ) d ( N ) d ( ) d ( ) d d ( N r    ) 18 18 ( ) 310 10 ( ) 4 4 ( ) 454 10 ( ) 18 ( ) 4 ( ) 85 10 ( r13              22 . 0 81 . 3543 778 2776 4524 778 r13    and               2 3 2 3 2 2 2 2 3 2 3 2 23 ) d ( ) d ( N ) d ( ) d ( N ) d ( ) d ( ) d d ( N r    ) 18 18 ( ) 310 10 ( ) 15 15 ( ) 499 10 ( ) 18 ( ) 15 ( ) 110 10 ( r23              23 . 0 98 . 3636 830 2776 4765 830 r23    Now, we calculate 23 . 1 R We have, 69 . 0 r12  , 22 . 0 r13  and 23 . 0 r23  , then 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     2 2 2 23 . 0 1 23 . 0 22 . 0 69 . 0 2 22 . 0 69 . 0        4801 . 0 9471 . 0 4547 . 0   Then 69 . 0 R 23 . 1 
  • 11. 47 Multiple Correlation 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     2 2 2 22 . 0 1 23 . 0 22 . 0 69 . 0 2 23 . 0 69 . 0        4825 . 0 9516 . 0 4592 . 0   Thus, 13 . 2 R = 0.69 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     2 2 2 69 . 0 1 23 . 0 22 . 0 69 . 0 2 23 . 0 22 . 0        0601 . 0 5239 . 0 0315 . 0   Thus, 12 . 3 R = 0.25 Now let us solve some exercises. E1) In bivariate distribution, 54 . 0 r r , 6 . 0 r 31 23 12    , then calculate 23 . 1 R . E2) If 54 . 0 r and 74 . 0 r , 70 . 0 r 23 13 12    , calculate multiple correlation coefficient 13 . 2 R . E3) Calculate multiple correlation coefficients 23 . 1 R and 13 . 2 R from the following information: 42 . 0 r and 57 . 0 r , 82 . 0 r 13 23 12      . E4) From the following data, 1 X 22 15 27 28 30 42 40 2 X 12 15 17 15 42 15 28 3 X 13 16 12 18 22 20 12 Obtain 23 . 1 R , 13 . 2 R and 12 . 3 R E5) The following data is given: 1 X 50 54 50 56 50 55 52 50 52 51 2 X 42 46 45 44 40 45 43 42 41 42 3 X 72 71 73 70 72 72 70 71 75 71 By using the short-cut method obtain 23 . 1 R , 13 . 2 R and 12 . 3 R
  • 12. Regression and Multiple Correlation 48 11.3 PROPERTIES OF MULTIPLE CORRELATION COEFFICIENT The following are some of the properties of multiple correlation coefficients: 1. Multiple correlation coefficient is the degree of association between observed value of the dependent variable and its estimate obtained by multiple regression, 2. Multiple Correlation coefficient lies between 0 and 1, 3. If multiple correlation coefficient is 1, then association is perfect and multiple regression equation may said to be perfect prediction formula, 4. If multiple correlation coefficient is 0, dependent variable is uncorrelated with other independent variables. From this, it can be concluded that multiple regression equation fails to predict the value of dependent variable when values of independent variables are known, 5. Multiple correlation coefficient is always greater or equal than any total correlation coefficient. If 23 . 1 R is the multiple correlation coefficient than 23 13 12 23 . 1 r or r or r R  , and 6. Multiple correlation coefficient obtained by method of least squares would always be greater than the multiple correlation coefficient obtained by any other method. 11.4 SUMMARY In this unit, we have discussed: 1. The multiple correlation, which is the study of joint effect of a group of two or more variables on a single variable which is not included in that group, 2. The estimate obtained by regression equation of that variable on other variables, 3. Limit of multiple correlation coefficient, which lies between 0 and +1, 4. The numerical problems of multiple correlation coefficient, and 5. The properties of multiple correlation coefficient. 11.5 SOLUTIONS / ANSWERS E1) We have, 54 . 0 r r , 6 . 0 r 31 23 12    2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r    
  • 13. 49 Multiple Correlation 42 . 0 71 . 0 30 . 0 71 . 0 35 . 0 29 . 0 36 . 0      Then 65 . 0 R 23 . 1  E2) We have 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     49 . 0 45 . 0 22 . 0 55 . 0 1 56 . 0 29 . 0 49 . 0       Thus 13 . 2 R = 0.70. E3) We have 42 . 0 r 57 . 0 r , 82 . 0 r 13 23 12      . 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     68 . 0 68 . 0 46 . 0 68 . 0 39 . 0 18 . 0 67 . 0      Then 23 . 1 R = 0.82 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     73 . 0 82 . 0 60 . 0 82 . 0 39 . 0 32 . 0 67 . 0      Thus, 13 . 2 R = 0.85. E4) To obtain multiple correlation coefficients 23 . 1 R , 13 . 2 R and 12 . 3 R we use following formulae:
  • 14. Regression and Multiple Correlation 50 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     , 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     and 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     We need 23 13 12 r and r , r which are obtained from the following table: S. No. X1 X2 X3 (X1)2 (X2)2 (X3)2 X1X2 X1X3 X2X3 1 22 12 13 484 144 169 264 286 156 2 15 15 16 225 225 256 225 240 240 3 27 17 12 729 289 144 459 324 204 4 28 15 18 784 225 324 420 504 270 5 30 42 22 900 1764 484 1260 660 924 6 42 15 20 1764 225 400 630 840 300 7 40 28 12 1600 784 144 1120 480 336 Total 204 144 113 6486 3656 1921 4378 3334 2430 Now, we get the total correlation coefficient 23 13 12 r and r , r               2 2 2 2 2 1 2 1 2 1 2 1 12 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 144 ( ) 144 ( ) 3656 7 ( ) 204 ( ) 204 ( ) 6486 7 ( ) 144 ( ) 204 ( ) 4378 7 ( r12              4856 3786 1270 r12  30 . 0 75 . 4287 1270                 2 3 2 3 2 1 2 1 3 1 3 1 13 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 113 113 ( ) 1921 7 ( ) 204 204 ( ) 6486 7 ( ) 113 ( ) 204 ( ) 3334 7 ( r13          
  • 15. 51 Multiple Correlation 678 3786 286 r13   18 . 0 16 . 1602 286   and               2 3 2 3 2 2 2 2 3 2 3 2 23 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 113 113 ( ) 1921 7 ( ) 144 144 ( ) 3656 7 ) 113 ( ) 144 ( ) 2430 7 ( r23              678 4856 738 r23  41 . 0 49 . 1814 738   Now, we calculate 23 . 1 R We have, 30 . 0 r12  , 18 . 0 r13  and 41 . 0 r23  , then 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     2 2 2 ) 41 . 0 ( 1 41 . 0 18 . 0 30 . 2 18 . 0 30 . 0        9380 . 0 8319 . 0 0781 . 0   Then 30 . 0 R 23 . 1  . 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     2 2 2 18 . 0 1 41 . 0 18 . 0 30 . 2 41 . 0 30 . 0        221 . 0 9676 . 0 2138 . 0   Thus, 13 . 2 R = 0.47 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r    
  • 16. Regression and Multiple Correlation 52 2 2 2 30 . 0 1 41 . 0 18 . 0 30 . 0 2 41 . 0 18 . 0        1717 . 0 9100 . 0 1562 . 0   Thus, 12 . 3 R = 0.41 E5) To obtain multiple correlation coefficients 23 . 1 R , 13 . 2 R and 12 . 3 R we use following formulae 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r     , 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r     and 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r     We need 23 13 12 r and r , r which are obtained from the following table: S. No. X1 X2 X3 d1= X1 -50 d2 = X2 -40 d3= X3 -70 (d1)2 (d2)2 (d3)2 d1d2 d1d3 d2d3 1 50 42 72 0 2 2 0 4 4 0 0 4 2 54 46 71 4 6 1 16 36 1 24 4 6 3 50 45 73 0 5 3 0 25 9 0 0 15 4 56 44 70 6 4 0 36 16 0 24 0 0 5 50 40 72 0 0 2 0 0 4 0 0 0 6 55 45 72 5 5 2 25 25 4 25 10 10 7 52 43 70 2 3 0 4 9 0 6 0 0 8 50 42 71 0 2 1 0 4 1 0 0 2 9 52 41 75 2 1 5 4 1 25 2 10 5 10 51 42 71 1 2 1 1 4 1 2 1 2 Total 20 30 17 86 124 49 83 25 44 Now, we get the total correlation coefficient 23 13 12 r and r , r               2 2 2 2 2 1 2 1 2 1 2 1 12 ) d ( ) d ( N ) d ( ) d ( N ) d ( ) d ( ) d d ( N r    ) 30 ( ) 30 ( ) 124 10 ( ) 20 ( ) 20 ( ) 86 10 ( ) 30 ( ) 20 ( ) 83 10 ( r12          
  • 17. 53 Multiple Correlation 340 460 230 r12   58 . 0 47 . 395 230                 2 3 2 3 2 1 2 1 3 1 3 1 13 ) d ( ) d ( N ) d ( ) d ( N ) d ( ) d ( ) d d ( N r    ) 17 17 ( ) 49 10 ( ) 20 20 ( ) 86 10 ( ) 17 ( ) 20 ( ) 25 10 ( r13              201 460 90 r13   30 . 0 07 . 304 90     and               2 3 2 3 2 2 2 2 3 2 3 2 23 ) X ( ) X ( N ) X ( ) X ( N ) X ( ) X ( ) X X ( N r    ) 17 17 ( ) 49 10 ( ) 20 20 ( ) 124 10 ( ) 17 ( ) 30 ( ) 44 10 ( r23              201 340 70 r23   27 . 0 42 . 261 70     Now, we calculate 23 . 1 R We have, 58 . 0 r12  , 30 . 0 r13   and 27 . 0 r23   , then 2 23 . 1 R 2 23 23 13 12 2 13 2 12 r 1 r r r 2 r r            2 2 2 27 . 0 1 27 . 0 30 . 0 58 . 0 2 30 . 0 58 . 0            36 . 0 9271 . 0 3324 . 0   Then 60 . 0 R 23 . 1  . 2 13 . 2 R 2 13 23 13 12 2 23 2 12 r 1 r r r 2 r r    
  • 18. Regression and Multiple Correlation 54        2 2 2 30 . 0 1 27 . 0 30 . 0 58 . 0 2 27 . 0 58 . 0            35 . 0 9100 . 0 3153 . 0   Thus, 13 . 2 R = 0.59 2 12 . 3 R 2 12 23 13 12 2 23 2 13 r 1 r r r 2 r r              2 2 2 58 . 0 1 27 . 0 30 . 0 58 . 0 2 27 . 0 30 . 0            10 . 0 6636 . 0 0689 . 0   Thus, 12 . 3 R = 0.32