SlideShare a Scribd company logo
Numerical Solution of Oscillatory Reaction – Diffusion System
of   Type
1
Saad Manaa & 2
Mohammad Sabawi
1
Department of Mathematics, College of Computers Sciences and Mathematics, Mosul University, Mosul, Iraq
2
Department of Mathematics, College of Education for Women, Tikrit University, Tikrit, Iraq
Abstract
Numerical solution of oscillatory reaction–diffusion system of   type was done by using two finite difference
schemes . The first one is the explicit scheme and the second one is the implicit rank– Nicholson scheme with averaging
of  vuf , and without averaging of  vuf , . The comparison showed that Crank–Nicholson scheme is better than
explicit scheme and Crank–Nicholson scheme with averaging of  vuf , is more accurate but it needs more time and
double storage and double time steps than Crank–Nicholson scheme without averaging of  vuf , .
1. Introduction and Mathematical Model
  Systems are a class of simple examples of two
coupled reaction – diffusion equations whose kinetics
have a stable limit cycle:
   
   
)1( a
vrurvv
vruruu
xxt
xxt







Here u and v are functions of space x and time t , with
Rx and 0t , and 22
vur  [1].  
Systems are an important prototype for the study of
reaction – diffusion equations which have been used to
model a number of biological and chemical systems [2].
Many systems in biology and chemistry are intrinsically
oscillatory. In such cases, the stable state in the absence
of spatial variation is not a stationary equilibrium , but
rather consists of temporal oscillations in the interacting
chemical or biological species . Examples include
intracellular calcium signaling , the Belousov –
Zhabotinskii reaction and some predator – prey
interactions . These systems also exhibit spatial
interactions , which are often modeled by diffusion . This
combination of local oscillations and spatial diffusion
produces a very wide range of spatiotemporal behaviors ,
including spiral waves , target patterns and
spatiotemporal chaos . In one spatial dimension , the
equivalent of both spiral waves and target patterns are
periodic travelling waves , which are periodic functions
of space and time, moving with constant shape and
speed. Sherratt studied various features of the oscillatory
reaction-diffusion systems of   type in series of
papers. He presented numerical evidence for a complex
sequence of bifurcations in the unstable region of
parameter space [6]. He also used numerical techniques
to give suggestion that the spatiotemporal irregularities
are genuinely chaotic [3]. He also made a comparison
between the numerical solutions of the oscillatory
reaction-diffusion systems of   type [4]. He used
numerical results suggesting that when this system is
solved on semi-infinite domain subject to Dirichlet
boundary conditions in which the variables are fixed at
zero periodic travelling waves develop in the domain [5].
Borzi and Griesse presented the formulation, analysis,
and numerical solution of distributed optimal control
problems governed by lambda-omega systems [6].
Garvie and Blowey undertook the numerical analysis of a
reaction-diffusion system of   type, their results
are presented for a fully practical piecewise linear finite
element method by mimicing results in the continuous
case [7]. In this paper, the numerical solution of an
oscillatory reaction-diffusion system of   type by
the use of two finite difference schemes is done to the
following system [4].
  
  
 b
vuvu
x
v
t
v
vuvu
x
u
t
u
1
31
31
22
2
2
22
2
2


















With initial and boundary conditions 0





x
v
x
u at
0x and 01.0 vu at 0x , 0 vu , for 0x at
0t and 0 vu at Lx  where L is sufficiently
large number.
2. Discretization of the   System by Using
Explicit Scheme
By using the finite difference approximations for the
derivatives [8], we have
     


 
jijijiji
jijijijiji
vuvu
h
uuu
k
uu
,,
2
,
2
,
2
,1,,1,1,
31
2
     
     2
,,,
2
,
2
,,
3
,,,1,11,
333
21
jijijijijiji
jijijijiji
vkkvuvkukv
ukukruuru

  (2)
Where 2
/ hkr 
For the boundary condition 0xu , by using the central
difference formula, we get
jj
jj
uu
h
uu
,1,1
,1,1
0
2





(3)
from (2) , we have , for 0i
     
     3
,0,0,0
2
,0
2
,0,0
3
,0,0,1,11,0
333
21
jjjjjj
jjjjj
vkkvuvkukv
ukukruuru

  (4)
Substitute (3) in (4) , we obtain
   
     2
,0,0,0
2
,0
2
,0,0
3
,0,0,11,0
333
212
jjjjjj
jjjj
vkkvuvkukv
ukukrruu

 (5)
Equation (5) represents the right boundary condition,
with respect to equation (1b)
     jijijiji
jijijijiji
vuvu
h
vvv
k
vv
,,
2
,
2
,
2
,1,,1,,
31
21



 
     
     3
,,,
2
,
2
,,
3
,,,1,11,
333
21
jijijijijiji
jijijijiji
ukkuuvkukv
vkvkrvvrv

  (6)
The boundary condition 0xv , by using the central
difference formula, we have:
jj
jj
vv
h
vv
,1,1
,1,1
0
2




(7)
From (6) we have , for 0i
     
     3
,0,0,0
2
,0
2
,0,0
3
,0,0,1,11,0
333
21
jjjjjj
jjjjj
ukkuuvkukv
vkvkrvvrv

  (8)
Substitute (7) in (8), we obtain
   
     3
,0,0,0
2
,0
2
,0,0
3
,0,0,11,0
333
212
jjjjjj
jjjj
ukkuuvkukv
vkvkrrvv

 (9)
which represents the right boundary condition, with
respect to equation (1b).
3. Discretization of the   System by Using of
Crank – Nicholson Scheme without Averaging of
 vuf ,
The diffusion term xxu in this method is represented
with central differences, with their values at the current
and previous time steps averaged [8].
     




 
jijijiji
jijijijijijijiji
vuvu
h
uuu
h
uuu
k
uu
,,
2
,
2
,
2
,1,,1
2
1,1,1,1,1,
31
2
2
2
2
     
         3
,,,
2
,
2
,,
3
,,
,1,11,1,11,1
33322
22
jijijijijijijiji
jijijijiji
vkkvuvkukvukukr
uururuur

 
(10)
For the boundary condition 0xu , from central
difference formula , we have
jj
jj
uu
h
uu
,1,1
,1,1
0
2



 (11)
from (10) , we have , for 0i
     
         3
,0,0,0
2
,0
2
,0,0
3
,0,0
,1,11,01,11,1
33322
22
jjjjjjjj
jjjjj
vkkvuvkukvukukr
uururuur

 
from (11) , we get
1,11, 
 jji
uu (12)
substitute (11) and (12) in (10), we obtain the equation
for the left boundary condition which is
     
     3
,0,0,0
2
,0
2
,0,0
3
,0,0,11,01,1
333
222222
jjjjjj
jjjjj
vkkvuvkukv
ukukrruurru

  (13)
for (b) , we have
     




 
jijijiji
jijijijijijijiji
vuvu
h
vvv
h
vvv
k
vv
,,
2
,
2
,
2
,1,,1
2
1,11,1,1,1,
31
2
2
2
2
     
         3
,,,
2
,
2
,,
3
,0,
,1,11,1,11,1
33322
22
jijijijijijijii
jijijijiji
ukkuuvkukvvkvkr
vvrvrvvr

 
(14)
For the boundary condition 0xv , from central
difference formula, we have
jj
jj
vv
h
vv
,1,1
,1,1
0
2



 (15)
from (14), we have
     
      
   3
,0,0,0
2
,0
2
,0,0
3
,0,0
,1,11,01,11,1
333
22
22
jjjj
jjjj
jjjjj
ukkuuvk
uvkvkvkr
vvrvrvvr


 
from (15), we have
1,11,1 
 jj
vv (16)
Substitute (15) and (16) in (14), we have the equation for
the left boundary condition, with respect to equation
(1b)-
     
      3
,0,0,0
2
,0
2
,0,0
3
,0,0,11,01,1
333
222222
jjjjjj
jjjjj
ukkuuvkuvk
vkvkrrvvrrv

  (17)
The equations in above are especially pleasing to view in
their tridiagonal matrix form 111 BXA  , where 1A is the
coefficient matrix, X is the unknown vector and B is the
known vector as shown below:



































































1,
1j1,-n
1j2,-n
1,
1,2
1,1
u
u
:
:
1
22
22
22
22
222
jn
jp
j
j
u
u
u
u
rr
rrr
rrr
rr
r
r
r
=
         
         
         
         
         




































0
33322
33322
33322
33322
333222
3
,1,1,1
2
,1
2
,1,1
3
,1,1,2
3
,2,2,2
2
,2
2
,2,2
3
,2,1,2,3
3
,,,
2
,
2
,,
3
,,1,,1
3
,2,2,2
2
,2
2
,2,2
3
,2,3,2,1
3
,1,1,1
2
,1
2
,1,1
3
,1,2,1
jnjnjnjnjnjnjnjnjn
jnjnjnjnjnjnjnjnjnjn
jpjpjpjpjpjpjpjpjpjp
jjjjjjjjjj
jjjjjjjjj
vkkvuvkukvukukrru
vkkvuvkukvukruukrru
vkkvuvkukvukruukrru
vkkvuvkukvukruukrru
vkkvuvkukvukruukr



































































1,
1j1,-n
1j2,-n
1,
1,2
1,1
v
v
:
:
1
22
22
22
22
222
jn
jp
j
j
v
v
v
v
rr
rrr
rrr
rr
r
r
r
=
         
         
         
         
         




































0
33322
33322
33322
33322
3333222
3
,1,1,1
2
,1
2
,1,1
3
,1,1,2
3
,2,2,2
2
,2
2
,2,2
3
,2,1,2,3
3
,,,
2
,
2
,,
3
,,1,,1
3
,2,2,2
2
,2
2
,2,2
3
,2,3,2,1
3
,1,1,1
2
,1
2
,1,1
3
,1,2,1
jnjnjnjnjnjnjnjnjn
jnjnjnjnjnjnjnjnjnjn
jpjpjpjpjpjpjpjpjpjp
jjjjjjjjjj
jjjjjjjjj
ukkuuvkukvvkvkrrv
ukkuvukvkuvkrvvkrrv
ukkuvukvkuvkrvvkrrv
ukkuvukvkuvkrvvkrrv
ukkuvukvkuvkrvvkr
4. Discretization of the   System by Using of Crank – Nicholson Scheme with Averaging of  vuf ,
In this scheme the functions u and v in system (1b)will be replaced by their values at the current and previous steps
averaged.













 





 













 





 









2
3
2
22
1
2
2
2
2
,1,,1,
2
,1,
2
,1,
2
,1,,1
2
1,11,1,1,1,
jijijiji
jijijiji
jijijijijijijiji
vvuu
vvuu
h
uuu
h
uuu
k
uu
(18)
    jijiji
jijiji
jijijijiji
vuu
h
uuu
h
uuu
k
uu
,,
2
,2
,1,,1
2
2/1,12/1,2/1,1,2/1,
31
2
2
2
2
2/








(19a)
    
 










2/1,2/1,
2
2/1,
2
2/1,2
2/1,12/1,2/1,1
2
1,11,1,12/1,1,
3
1
2
2
2
2
2/
jiji
jiji
jijiji
jijijijiji
vu
vu
h
uuu
h
uuu
k
uu
(19b)
     
     2
2/1,2/1,1
3
2/1,12/1,11
2/1,12/1,111,11,11,11
322
22




jijijiji
jijijijiji
uvkukukr
uururuur
(20a)
  2/1,12/1,
2
2/1,1 3   jijiji vkuvk (20b)
Where
2
1 2/ hkr 
By the same manner we have followed in (4), with repeat to right boundary condition 0xu , we get
   
       3
,01,01,0
2
,01
2
,0,01
3
,01
,011,112/1,012/1,11
333
222222
jjjjjjj
jjjj
vkvkuvkuvkuk
ukrururur

 
(21a)
   
     
 3
2/1,012/1,01
2/1,0
2
2/1,01
2
2/1,02/1,01
3
2/1,01
2/1,0112/1,111,011,11
33
3
222222






jj
jjjjj
jjjj
vkvk
uvkuvkuk
ukrururur
(21b)
with repeat to (1b) , we have













 





 













 





 









22
3
22
1
2
2
2
2
,1,,1,
2
,1,
2
,1,
2
,1,,1
2
1,11,1,1,1,
jijijiji
jijijiji
jijijijijijijiji
vvuu
vvuu
h
vvv
h
vvv
k
vv
(22)
     jijijiji
jijiji
jijijijiji
vuvu
h
vvv
h
vvv
k
vv
,,
2
,
2
,2
,1,,1
2
2/1,12/1,2/1,1,2/1,
31
2
2
2
2
2/








(23a)
    
 










2/1,2/1,
2
2/1,
2
2/1,2
2/1,12/1,2/1,1
2
1,11,1,12/1,1,
3
1
2
2
2
2
2/
jiji
jiji
jijiji
jijijijiji
vu
vu
h
vvv
h
vvv
k
vv
(23b)
     
     
   3
,,1,
2
,1
2
,,1
3
,1,11
,1,112/1,12/1,12/1,11
333
22
22
jijijiji
jijijiji
jijijijiji
ukukuvk
uvkukvkr
vvrvrvvr


 
(24a)
     
     
   3
2/1,12/1,
2
2/1,1
2
2/1,2/1,1
3
2/1,12/1,11
12/1,111,11,11,11
3
22
22






jijiji
jijijiji
ijijijiji
ukuvk
uvkukukr
uururuur
(24b)
By the same manner we have already followed in (4) , with repeat to the right boundary condition , we get
   
       3
,01,01,0
2
,01
2
,0,01
3
,01
,011,112/1,012/1,11
333
222222
jjjjjjj
jjjj
ukukuvkuvkvk
vkrvrvrvr

  (25a)
Conclusions
In this study, we concluded that the Crank – Nicholson
Schemes without averaging and with averaging of  vuf ,
are more accurate than the explicit scheme which is
simpler and needs less time and storage . Crank –
Nicholson scheme with averaging of  vuf , is more
accurate than Crank – Nicholson scheme without
averaging of  vuf , but it doubles the time steps and
needs more storage as shown in table (1) below. The
figures (1), (2) and (3) show a comparison among
explicit, Crank-Nicholson without averaging and Crank-
Nicholson with averaging schemes. The figures (4) and
(5) show a comparison between explicit scheme and
Crank-Nicholson without averaging scheme when
4.0,01.0,2.0,1001,101,10,10  rkhmnba
. From the figures we concluded that the solutions
converge to the steady state solution 0,0  vu when
gets large.
Acknowledgement
The authors would like to express their gratitude and indebtedness to their colleague A. F. Kassim (Mosul University,
Iraq), for some references.
Table (1)
Crank-
Nicholson
with averaging
Crank –
Nicholson
without
averaging
Explicit
Scheme
0.010000.010000.01000
0.006890.004880.00192
0.005150.003340.00357
0.004120.002660.00191
0.003480.002270.00225
0.003040.002010.00161
0.002730.001820.00172
0.002410.001670.00149
0.002310.001550.00144
0.002170.001450.00131
0.002040.001210.00126
0.001640.001230.00117
0.001850.001180.00112
0.001770.001130.00106
0.001610.001060.00101
0.001640.001040.00965
0.001580.001010.00923
0.001530.000970.00883
0.001480.000640.00847
0.001440.000610.00812
0.001310.000860.00780
0.001360.000860.00749
0.001330.000840.00720
0.001210.000810.00693
0.000130.000790.00667
Table (1) shows a comparison among explicit, Crank-Nicholson without averaging and Crank-Nicholson
schemes with averaging of u when 1.0,004.0,4.0,251,11,1,1  hkrmnba .
Figure (1)
explains the solution function u of the system by using explicit scheme when
4.0,01.0,2.0,1001,101,10,10  rkhmnba
Figure(2)
explains the solution function u of the system by using Crank- Nicholson scheme without averaging when
4.0,01.0,2.0,1001,101,10,10  rkhmnba .
0 20 40 60 80 100 120
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
u
0 20 40 60 80 100 120
-0.05
-0.04
-0.03
-0.02
-0.01
0
0.01
0.02
x
u
x
Figure(3)
explains the solution function u of the system by using Crank-Nicholson with averaging when
4.0,01.0,2.0,1001,101,10,10  rkhmnba .
Figure (4)
explains the solution function v of the system by using explicit scheme when
4.0,01.0,2.0,1001,101,10,10  rkhmnba .
0 20 40 60 80 100 120
-0.025
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
x
u
0 20 40 60 80 100 120
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
x
v
Figure (5)
explains thee solution function v of the system by using Crank-Nicholson scheme without averaging when
4.0,01.0,2.0,1001,101,10,10  rkhmnba .
Figure (6)
explains thee solution function v of the system by using Crank-Nicholson scheme with averaging when
4.0,01.0,2.0,1001,101,10,10  rkhmnba .
0 20 40 60 80 100 120
-0.01
0
0.01
0.02
0.03
0.04
0.05
0 20 40 60 80 100 120
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
0.025
0.03
References
1. J. A. Sherratt, On the Speed of Amplitude
Transition Waves in Reaction-Diffusion Systems
of   Type, IMA Journal of applied mathematics,
52, (1994), pp. 79-92.
2. J. A. Sherratt, Unstable Wavetrains and Chaotic
Wakes in Reaction-Diffusion Systems of  
Type, Physica D 82, (1995), PP. 165-179.
3. J. A. Sherratt, Periodic Waves in Reaction-
Diffusion Models of Oscillatory Biological
Systems, Forma, 11, (1996), pp. 61-80.
4. J. A. Sherratt, A Comparison of Two Numerical
Methods for Oscillatory Reaction-Diffusion
Systems, Appl. Math. Lett. Vol. 10, (1997), No. 2,
pp. 1-5.
5. J. A. Sherratt, Periodic Travelling Wave Selection
by Dirichlet Boundary Conditions in Oscillatory
Reaction-Diffusion Systems, SIAM J.APPL.
MATH. Vol. 63, (2005), No. 5, pp. 1520-1583.
6. A. Borzi and R. Griesse, Distributed Optimal
Control of Lambda-Omega Systems,
www.ricam.oeaw.ac.at/people/page/griesse/publicat
ions/oclosn.pdf.
7. Garvie, M. R. and Blowey, J. F., (2002), A
Reaction-Diffusion System of Type Part I I:
Numerical Analysis, Euro. Jnl of Applied
Mathematics pp. 1-26.
8. J. H. Mathews and K. D. Fink, Numerical Methods
Using MATLAB, Fourth Edition, (2004), Pearson
Prentice Hall.
‫االنتشار‬ ‫لنظام‬ ‫العددي‬ ‫الحل‬–‫ع‬‫النو‬ ‫من‬ ‫المتذبذب‬ ‫التفاعل‬ 
1
‫سعد‬‫اهلل‬ ‫عبد‬‫مناع‬‫و‬2
‫محيميد‬ ‫عبد‬ ‫محمد‬
1
‫ياضيات‬‫ر‬‫ال‬ ‫قسم‬،‫ياضيات‬‫ر‬‫ال‬‫و‬ ‫الحاسبات‬ ‫علوم‬ ‫كلية‬،‫الموصل‬ ‫جامعة‬‫اق‬‫ر‬‫الع‬ ، ‫الموصل‬ ،
2
‫ياضيات‬‫ر‬‫ال‬ ‫قسم‬،‫للبنات‬ ‫بية‬‫ر‬‫الت‬ ‫كلية‬،‫يت‬‫ر‬‫تك‬ ‫جامعة‬‫اق‬‫ر‬‫الع‬ ، ‫يت‬‫ر‬‫تك‬ ،
‫الملخص‬
‫االنتشار‬ ‫نظام‬ ‫حل‬ ‫تم‬–‫ع‬‫النو‬ ‫من‬ ‫المتذبذب‬ ‫التفاعل‬ ‫هي‬ ‫الثانية‬‫و‬ ‫يحة‬‫ر‬‫الص‬ ‫يقة‬‫ر‬‫الط‬ ‫هي‬ ‫األولى‬ . ‫المنتهية‬ ‫الفروقات‬ ‫ائق‬‫ر‬‫ط‬ ‫من‬ ‫يقتين‬‫ر‬‫ط‬ ‫باستخدام‬
‫يقة‬‫ر‬‫ط‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫بأخذ‬ ‫األولى‬ : ‫حالتين‬ ‫في‬ ‫الضمنية‬ vuf ,‫ـ‬‫ل‬ ‫المعدل‬ ‫اخذ‬ ‫بدون‬ ‫الثانية‬‫و‬ ، vuf ,‫يقة‬‫ر‬‫ط‬ ‫إن‬ ‫نة‬‫ر‬‫المقا‬ ‫بينت‬ ‫إذ‬ .
Crank – Nicholson‫يقة‬‫ر‬‫ط‬ ‫ان‬‫و‬ ‫يحة‬‫ر‬‫الص‬ ‫يقة‬‫ر‬‫الط‬ ‫من‬ ‫أفضل‬ ‫هي‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫بأخذ‬ vuf ,‫إلى‬ ‫تحتاج‬ ‫ولكنها‬ ‫دقة‬ ‫أكثر‬ ‫هي‬
‫يقة‬‫ر‬‫ط‬ ‫من‬ ‫مضاعف‬ ‫وخزن‬ ‫زمنية‬ ‫ات‬‫و‬‫خط‬ ‫الى‬‫و‬ ‫أكثر‬ ‫زمن‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫اخذ‬ ‫بدون‬ vuf ,.

More Related Content

What's hot

Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential EquationErrors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equationijtsrd
 
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...inventy
 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)PhysicsLover
 
Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physicsSpringer
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
Paper id 71201906
Paper id 71201906Paper id 71201906
Paper id 71201906IJRAT
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...IOSR Journals
 
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...inventionjournals
 
International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2IJEMM
 
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...IJERA Editor
 

What's hot (17)

Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential EquationErrors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
 
Stability Analysis for Steady State Solutions of Huxley Equation
Stability Analysis for Steady State Solutions of Huxley EquationStability Analysis for Steady State Solutions of Huxley Equation
Stability Analysis for Steady State Solutions of Huxley Equation
 
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
Additional Conservation Laws for Two-Velocity Hydrodynamics Equations with th...
 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)
 
Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physics
 
A03401001005
A03401001005A03401001005
A03401001005
 
Paper id 71201906
Paper id 71201906Paper id 71201906
Paper id 71201906
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
 
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...
Algebraic Method of the Robust Stability of Continuous Linear Interval Dynami...
 
H02402058066
H02402058066H02402058066
H02402058066
 
International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2International journal of engineering and mathematical modelling vol2 no1_2015_2
International journal of engineering and mathematical modelling vol2 no1_2015_2
 
en_qu_sch
en_qu_schen_qu_sch
en_qu_sch
 
F023064072
F023064072F023064072
F023064072
 
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
 
Stability Study of Stationary Solutions of The Viscous Burgers Equation
Stability Study of Stationary Solutions of The Viscous Burgers EquationStability Study of Stationary Solutions of The Viscous Burgers Equation
Stability Study of Stationary Solutions of The Viscous Burgers Equation
 
336 1170-1-pb tocher anderson
336 1170-1-pb  tocher anderson336 1170-1-pb  tocher anderson
336 1170-1-pb tocher anderson
 

Similar to Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega$ Type

System of quasilinear equations of reaction diffusion
System of quasilinear equations of reaction diffusionSystem of quasilinear equations of reaction diffusion
System of quasilinear equations of reaction diffusioneSAT Publishing House
 
Derivation and Application of Multistep Methods to a Class of First-order Ord...
Derivation and Application of Multistep Methods to a Class of First-order Ord...Derivation and Application of Multistep Methods to a Class of First-order Ord...
Derivation and Application of Multistep Methods to a Class of First-order Ord...AI Publications
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...CSEIJJournal
 
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...TELKOMNIKA JOURNAL
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORijcseit
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic Systemijtsrd
 
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...inventionjournals
 
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...ijcsa
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...IJCSEIT Journal
 
To the numerical modeling of self similar solutions of
To the numerical modeling of self similar solutions ofTo the numerical modeling of self similar solutions of
To the numerical modeling of self similar solutions ofeSAT Publishing House
 
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...IJECEIAES
 
Generalized synchronization of nonlinear oscillators via opcl coupling
Generalized synchronization of nonlinear oscillators via opcl couplingGeneralized synchronization of nonlinear oscillators via opcl coupling
Generalized synchronization of nonlinear oscillators via opcl couplingIJCI JOURNAL
 
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...IJERA Editor
 
To the numerical modeling of self similar solutions of reaction-diffusion sys...
To the numerical modeling of self similar solutions of reaction-diffusion sys...To the numerical modeling of self similar solutions of reaction-diffusion sys...
To the numerical modeling of self similar solutions of reaction-diffusion sys...eSAT Journals
 
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLijait
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...ijistjournal
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMMallesh N G
 

Similar to Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega$ Type (20)

A Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type SystemA Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type System
 
System of quasilinear equations of reaction diffusion
System of quasilinear equations of reaction diffusionSystem of quasilinear equations of reaction diffusion
System of quasilinear equations of reaction diffusion
 
Derivation and Application of Multistep Methods to a Class of First-order Ord...
Derivation and Application of Multistep Methods to a Class of First-order Ord...Derivation and Application of Multistep Methods to a Class of First-order Ord...
Derivation and Application of Multistep Methods to a Class of First-order Ord...
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
 
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...
A new two-scroll chaotic system with two nonlinearities: dynamical analysis a...
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic System
 
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...
A Study of Some Systems of Linear and Nonlinear Partial Differential Equation...
 
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
 
To the numerical modeling of self similar solutions of
To the numerical modeling of self similar solutions ofTo the numerical modeling of self similar solutions of
To the numerical modeling of self similar solutions of
 
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
 
Generalized synchronization of nonlinear oscillators via opcl coupling
Generalized synchronization of nonlinear oscillators via opcl couplingGeneralized synchronization of nonlinear oscillators via opcl coupling
Generalized synchronization of nonlinear oscillators via opcl coupling
 
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
Evaluation of Vibrational Behavior for A System With TwoDegree-of-Freedom Und...
 
To the numerical modeling of self similar solutions of reaction-diffusion sys...
To the numerical modeling of self similar solutions of reaction-diffusion sys...To the numerical modeling of self similar solutions of reaction-diffusion sys...
To the numerical modeling of self similar solutions of reaction-diffusion sys...
 
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHM
 
Numerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley EquationNumerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley Equation
 

Recently uploaded

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxJisc
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxbennyroshan06
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsCol Mukteshwar Prasad
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfkaushalkr1407
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleCeline George
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxJenilouCasareno
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chipsGeoBlogs
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxDenish Jangid
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasGeoBlogs
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resourcesdimpy50
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationDelapenabediema
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdfTechSoup
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxRaedMohamed3
 

Recently uploaded (20)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Benefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational ResourcesBenefits and Challenges of Using Open Educational Resources
Benefits and Challenges of Using Open Educational Resources
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 

Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega$ Type

  • 1. Numerical Solution of Oscillatory Reaction – Diffusion System of   Type 1 Saad Manaa & 2 Mohammad Sabawi 1 Department of Mathematics, College of Computers Sciences and Mathematics, Mosul University, Mosul, Iraq 2 Department of Mathematics, College of Education for Women, Tikrit University, Tikrit, Iraq Abstract Numerical solution of oscillatory reaction–diffusion system of   type was done by using two finite difference schemes . The first one is the explicit scheme and the second one is the implicit rank– Nicholson scheme with averaging of  vuf , and without averaging of  vuf , . The comparison showed that Crank–Nicholson scheme is better than explicit scheme and Crank–Nicholson scheme with averaging of  vuf , is more accurate but it needs more time and double storage and double time steps than Crank–Nicholson scheme without averaging of  vuf , . 1. Introduction and Mathematical Model   Systems are a class of simple examples of two coupled reaction – diffusion equations whose kinetics have a stable limit cycle:         )1( a vrurvv vruruu xxt xxt        Here u and v are functions of space x and time t , with Rx and 0t , and 22 vur  [1].   Systems are an important prototype for the study of reaction – diffusion equations which have been used to model a number of biological and chemical systems [2]. Many systems in biology and chemistry are intrinsically oscillatory. In such cases, the stable state in the absence of spatial variation is not a stationary equilibrium , but rather consists of temporal oscillations in the interacting chemical or biological species . Examples include intracellular calcium signaling , the Belousov – Zhabotinskii reaction and some predator – prey interactions . These systems also exhibit spatial interactions , which are often modeled by diffusion . This combination of local oscillations and spatial diffusion produces a very wide range of spatiotemporal behaviors , including spiral waves , target patterns and spatiotemporal chaos . In one spatial dimension , the equivalent of both spiral waves and target patterns are periodic travelling waves , which are periodic functions of space and time, moving with constant shape and speed. Sherratt studied various features of the oscillatory reaction-diffusion systems of   type in series of papers. He presented numerical evidence for a complex sequence of bifurcations in the unstable region of parameter space [6]. He also used numerical techniques to give suggestion that the spatiotemporal irregularities are genuinely chaotic [3]. He also made a comparison between the numerical solutions of the oscillatory reaction-diffusion systems of   type [4]. He used numerical results suggesting that when this system is solved on semi-infinite domain subject to Dirichlet boundary conditions in which the variables are fixed at zero periodic travelling waves develop in the domain [5]. Borzi and Griesse presented the formulation, analysis, and numerical solution of distributed optimal control problems governed by lambda-omega systems [6]. Garvie and Blowey undertook the numerical analysis of a reaction-diffusion system of   type, their results are presented for a fully practical piecewise linear finite element method by mimicing results in the continuous case [7]. In this paper, the numerical solution of an oscillatory reaction-diffusion system of   type by the use of two finite difference schemes is done to the following system [4].        b vuvu x v t v vuvu x u t u 1 31 31 22 2 2 22 2 2                   With initial and boundary conditions 0      x v x u at 0x and 01.0 vu at 0x , 0 vu , for 0x at 0t and 0 vu at Lx  where L is sufficiently large number. 2. Discretization of the   System by Using Explicit Scheme By using the finite difference approximations for the derivatives [8], we have           jijijiji jijijijiji vuvu h uuu k uu ,, 2 , 2 , 2 ,1,,1,1, 31 2            2 ,,, 2 , 2 ,, 3 ,,,1,11, 333 21 jijijijijiji jijijijiji vkkvuvkukv ukukruuru    (2) Where 2 / hkr  For the boundary condition 0xu , by using the central difference formula, we get jj jj uu h uu ,1,1 ,1,1 0 2      (3) from (2) , we have , for 0i            3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,1,11,0 333 21 jjjjjj jjjjj vkkvuvkukv ukukruuru    (4) Substitute (3) in (4) , we obtain          2 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,11,0 333 212 jjjjjj jjjj vkkvuvkukv ukukrruu   (5) Equation (5) represents the right boundary condition, with respect to equation (1b)
  • 2.      jijijiji jijijijiji vuvu h vvv k vv ,, 2 , 2 , 2 ,1,,1,, 31 21                 3 ,,, 2 , 2 ,, 3 ,,,1,11, 333 21 jijijijijiji jijijijiji ukkuuvkukv vkvkrvvrv    (6) The boundary condition 0xv , by using the central difference formula, we have: jj jj vv h vv ,1,1 ,1,1 0 2     (7) From (6) we have , for 0i            3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,1,11,0 333 21 jjjjjj jjjjj ukkuuvkukv vkvkrvvrv    (8) Substitute (7) in (8), we obtain          3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,11,0 333 212 jjjjjj jjjj ukkuuvkukv vkvkrrvv   (9) which represents the right boundary condition, with respect to equation (1b). 3. Discretization of the   System by Using of Crank – Nicholson Scheme without Averaging of  vuf , The diffusion term xxu in this method is represented with central differences, with their values at the current and previous time steps averaged [8].             jijijiji jijijijijijijiji vuvu h uuu h uuu k uu ,, 2 , 2 , 2 ,1,,1 2 1,1,1,1,1, 31 2 2 2 2                3 ,,, 2 , 2 ,, 3 ,, ,1,11,1,11,1 33322 22 jijijijijijijiji jijijijiji vkkvuvkukvukukr uururuur    (10) For the boundary condition 0xu , from central difference formula , we have jj jj uu h uu ,1,1 ,1,1 0 2     (11) from (10) , we have , for 0i                3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0 ,1,11,01,11,1 33322 22 jjjjjjjj jjjjj vkkvuvkukvukukr uururuur    from (11) , we get 1,11,   jji uu (12) substitute (11) and (12) in (10), we obtain the equation for the left boundary condition which is            3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,11,01,1 333 222222 jjjjjj jjjjj vkkvuvkukv ukukrruurru    (13) for (b) , we have             jijijiji jijijijijijijiji vuvu h vvv h vvv k vv ,, 2 , 2 , 2 ,1,,1 2 1,11,1,1,1, 31 2 2 2 2                3 ,,, 2 , 2 ,, 3 ,0, ,1,11,1,11,1 33322 22 jijijijijijijii jijijijiji ukkuuvkukvvkvkr vvrvrvvr    (14) For the boundary condition 0xv , from central difference formula, we have jj jj vv h vv ,1,1 ,1,1 0 2     (15) from (14), we have                 3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0 ,1,11,01,11,1 333 22 22 jjjj jjjj jjjjj ukkuuvk uvkvkvkr vvrvrvvr     from (15), we have 1,11,1   jj vv (16) Substitute (15) and (16) in (14), we have the equation for the left boundary condition, with respect to equation (1b)-             3 ,0,0,0 2 ,0 2 ,0,0 3 ,0,0,11,01,1 333 222222 jjjjjj jjjjj ukkuuvkuvk vkvkrrvvrrv    (17) The equations in above are especially pleasing to view in their tridiagonal matrix form 111 BXA  , where 1A is the coefficient matrix, X is the unknown vector and B is the known vector as shown below:
  • 3.                                                                    1, 1j1,-n 1j2,-n 1, 1,2 1,1 u u : : 1 22 22 22 22 222 jn jp j j u u u u rr rrr rrr rr r r r =                                                                                       0 33322 33322 33322 33322 333222 3 ,1,1,1 2 ,1 2 ,1,1 3 ,1,1,2 3 ,2,2,2 2 ,2 2 ,2,2 3 ,2,1,2,3 3 ,,, 2 , 2 ,, 3 ,,1,,1 3 ,2,2,2 2 ,2 2 ,2,2 3 ,2,3,2,1 3 ,1,1,1 2 ,1 2 ,1,1 3 ,1,2,1 jnjnjnjnjnjnjnjnjn jnjnjnjnjnjnjnjnjnjn jpjpjpjpjpjpjpjpjpjp jjjjjjjjjj jjjjjjjjj vkkvuvkukvukukrru vkkvuvkukvukruukrru vkkvuvkukvukruukrru vkkvuvkukvukruukrru vkkvuvkukvukruukr                                                                    1, 1j1,-n 1j2,-n 1, 1,2 1,1 v v : : 1 22 22 22 22 222 jn jp j j v v v v rr rrr rrr rr r r r =                                                                                       0 33322 33322 33322 33322 3333222 3 ,1,1,1 2 ,1 2 ,1,1 3 ,1,1,2 3 ,2,2,2 2 ,2 2 ,2,2 3 ,2,1,2,3 3 ,,, 2 , 2 ,, 3 ,,1,,1 3 ,2,2,2 2 ,2 2 ,2,2 3 ,2,3,2,1 3 ,1,1,1 2 ,1 2 ,1,1 3 ,1,2,1 jnjnjnjnjnjnjnjnjn jnjnjnjnjnjnjnjnjnjn jpjpjpjpjpjpjpjpjpjp jjjjjjjjjj jjjjjjjjj ukkuuvkukvvkvkrrv ukkuvukvkuvkrvvkrrv ukkuvukvkuvkrvvkrrv ukkuvukvkuvkrvvkrrv ukkuvukvkuvkrvvkr 4. Discretization of the   System by Using of Crank – Nicholson Scheme with Averaging of  vuf , In this scheme the functions u and v in system (1b)will be replaced by their values at the current and previous steps averaged.
  • 4.                                                      2 3 2 22 1 2 2 2 2 ,1,,1, 2 ,1, 2 ,1, 2 ,1,,1 2 1,11,1,1,1, jijijiji jijijiji jijijijijijijiji vvuu vvuu h uuu h uuu k uu (18)     jijiji jijiji jijijijiji vuu h uuu h uuu k uu ,, 2 ,2 ,1,,1 2 2/1,12/1,2/1,1,2/1, 31 2 2 2 2 2/         (19a)                  2/1,2/1, 2 2/1, 2 2/1,2 2/1,12/1,2/1,1 2 1,11,1,12/1,1, 3 1 2 2 2 2 2/ jiji jiji jijiji jijijijiji vu vu h uuu h uuu k uu (19b)            2 2/1,2/1,1 3 2/1,12/1,11 2/1,12/1,111,11,11,11 322 22     jijijiji jijijijiji uvkukukr uururuur (20a)   2/1,12/1, 2 2/1,1 3   jijiji vkuvk (20b) Where 2 1 2/ hkr  By the same manner we have followed in (4), with repeat to right boundary condition 0xu , we get            3 ,01,01,0 2 ,01 2 ,0,01 3 ,01 ,011,112/1,012/1,11 333 222222 jjjjjjj jjjj vkvkuvkuvkuk ukrururur    (21a)            3 2/1,012/1,01 2/1,0 2 2/1,01 2 2/1,02/1,01 3 2/1,01 2/1,0112/1,111,011,11 33 3 222222       jj jjjjj jjjj vkvk uvkuvkuk ukrururur (21b) with repeat to (1b) , we have                                                      22 3 22 1 2 2 2 2 ,1,,1, 2 ,1, 2 ,1, 2 ,1,,1 2 1,11,1,1,1, jijijiji jijijiji jijijijijijijiji vvuu vvuu h vvv h vvv k vv (22)      jijijiji jijiji jijijijiji vuvu h vvv h vvv k vv ,, 2 , 2 ,2 ,1,,1 2 2/1,12/1,2/1,1,2/1, 31 2 2 2 2 2/         (23a)                  2/1,2/1, 2 2/1, 2 2/1,2 2/1,12/1,2/1,1 2 1,11,1,12/1,1, 3 1 2 2 2 2 2/ jiji jiji jijiji jijijijiji vu vu h vvv h vvv k vv (23b)                3 ,,1, 2 ,1 2 ,,1 3 ,1,11 ,1,112/1,12/1,12/1,11 333 22 22 jijijiji jijijiji jijijijiji ukukuvk uvkukvkr vvrvrvvr     (24a)                3 2/1,12/1, 2 2/1,1 2 2/1,2/1,1 3 2/1,12/1,11 12/1,111,11,11,11 3 22 22       jijiji jijijiji ijijijiji ukuvk uvkukukr uururuur (24b) By the same manner we have already followed in (4) , with repeat to the right boundary condition , we get            3 ,01,01,0 2 ,01 2 ,0,01 3 ,01 ,011,112/1,012/1,11 333 222222 jjjjjjj jjjj ukukuvkuvkvk vkrvrvrvr    (25a)
  • 5. Conclusions In this study, we concluded that the Crank – Nicholson Schemes without averaging and with averaging of  vuf , are more accurate than the explicit scheme which is simpler and needs less time and storage . Crank – Nicholson scheme with averaging of  vuf , is more accurate than Crank – Nicholson scheme without averaging of  vuf , but it doubles the time steps and needs more storage as shown in table (1) below. The figures (1), (2) and (3) show a comparison among explicit, Crank-Nicholson without averaging and Crank- Nicholson with averaging schemes. The figures (4) and (5) show a comparison between explicit scheme and Crank-Nicholson without averaging scheme when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . From the figures we concluded that the solutions converge to the steady state solution 0,0  vu when gets large. Acknowledgement The authors would like to express their gratitude and indebtedness to their colleague A. F. Kassim (Mosul University, Iraq), for some references. Table (1) Crank- Nicholson with averaging Crank – Nicholson without averaging Explicit Scheme 0.010000.010000.01000 0.006890.004880.00192 0.005150.003340.00357 0.004120.002660.00191 0.003480.002270.00225 0.003040.002010.00161 0.002730.001820.00172 0.002410.001670.00149 0.002310.001550.00144 0.002170.001450.00131 0.002040.001210.00126 0.001640.001230.00117 0.001850.001180.00112 0.001770.001130.00106 0.001610.001060.00101 0.001640.001040.00965 0.001580.001010.00923 0.001530.000970.00883 0.001480.000640.00847 0.001440.000610.00812 0.001310.000860.00780 0.001360.000860.00749 0.001330.000840.00720 0.001210.000810.00693 0.000130.000790.00667 Table (1) shows a comparison among explicit, Crank-Nicholson without averaging and Crank-Nicholson schemes with averaging of u when 1.0,004.0,4.0,251,11,1,1  hkrmnba .
  • 6. Figure (1) explains the solution function u of the system by using explicit scheme when 4.0,01.0,2.0,1001,101,10,10  rkhmnba Figure(2) explains the solution function u of the system by using Crank- Nicholson scheme without averaging when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . 0 20 40 60 80 100 120 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 u 0 20 40 60 80 100 120 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 x u x
  • 7. Figure(3) explains the solution function u of the system by using Crank-Nicholson with averaging when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . Figure (4) explains the solution function v of the system by using explicit scheme when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . 0 20 40 60 80 100 120 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 x u 0 20 40 60 80 100 120 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 x v
  • 8. Figure (5) explains thee solution function v of the system by using Crank-Nicholson scheme without averaging when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . Figure (6) explains thee solution function v of the system by using Crank-Nicholson scheme with averaging when 4.0,01.0,2.0,1001,101,10,10  rkhmnba . 0 20 40 60 80 100 120 -0.01 0 0.01 0.02 0.03 0.04 0.05 0 20 40 60 80 100 120 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
  • 9. References 1. J. A. Sherratt, On the Speed of Amplitude Transition Waves in Reaction-Diffusion Systems of   Type, IMA Journal of applied mathematics, 52, (1994), pp. 79-92. 2. J. A. Sherratt, Unstable Wavetrains and Chaotic Wakes in Reaction-Diffusion Systems of   Type, Physica D 82, (1995), PP. 165-179. 3. J. A. Sherratt, Periodic Waves in Reaction- Diffusion Models of Oscillatory Biological Systems, Forma, 11, (1996), pp. 61-80. 4. J. A. Sherratt, A Comparison of Two Numerical Methods for Oscillatory Reaction-Diffusion Systems, Appl. Math. Lett. Vol. 10, (1997), No. 2, pp. 1-5. 5. J. A. Sherratt, Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems, SIAM J.APPL. MATH. Vol. 63, (2005), No. 5, pp. 1520-1583. 6. A. Borzi and R. Griesse, Distributed Optimal Control of Lambda-Omega Systems, www.ricam.oeaw.ac.at/people/page/griesse/publicat ions/oclosn.pdf. 7. Garvie, M. R. and Blowey, J. F., (2002), A Reaction-Diffusion System of Type Part I I: Numerical Analysis, Euro. Jnl of Applied Mathematics pp. 1-26. 8. J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, Fourth Edition, (2004), Pearson Prentice Hall. ‫االنتشار‬ ‫لنظام‬ ‫العددي‬ ‫الحل‬–‫ع‬‫النو‬ ‫من‬ ‫المتذبذب‬ ‫التفاعل‬  1 ‫سعد‬‫اهلل‬ ‫عبد‬‫مناع‬‫و‬2 ‫محيميد‬ ‫عبد‬ ‫محمد‬ 1 ‫ياضيات‬‫ر‬‫ال‬ ‫قسم‬،‫ياضيات‬‫ر‬‫ال‬‫و‬ ‫الحاسبات‬ ‫علوم‬ ‫كلية‬،‫الموصل‬ ‫جامعة‬‫اق‬‫ر‬‫الع‬ ، ‫الموصل‬ ، 2 ‫ياضيات‬‫ر‬‫ال‬ ‫قسم‬،‫للبنات‬ ‫بية‬‫ر‬‫الت‬ ‫كلية‬،‫يت‬‫ر‬‫تك‬ ‫جامعة‬‫اق‬‫ر‬‫الع‬ ، ‫يت‬‫ر‬‫تك‬ ، ‫الملخص‬ ‫االنتشار‬ ‫نظام‬ ‫حل‬ ‫تم‬–‫ع‬‫النو‬ ‫من‬ ‫المتذبذب‬ ‫التفاعل‬ ‫هي‬ ‫الثانية‬‫و‬ ‫يحة‬‫ر‬‫الص‬ ‫يقة‬‫ر‬‫الط‬ ‫هي‬ ‫األولى‬ . ‫المنتهية‬ ‫الفروقات‬ ‫ائق‬‫ر‬‫ط‬ ‫من‬ ‫يقتين‬‫ر‬‫ط‬ ‫باستخدام‬ ‫يقة‬‫ر‬‫ط‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫بأخذ‬ ‫األولى‬ : ‫حالتين‬ ‫في‬ ‫الضمنية‬ vuf ,‫ـ‬‫ل‬ ‫المعدل‬ ‫اخذ‬ ‫بدون‬ ‫الثانية‬‫و‬ ، vuf ,‫يقة‬‫ر‬‫ط‬ ‫إن‬ ‫نة‬‫ر‬‫المقا‬ ‫بينت‬ ‫إذ‬ . Crank – Nicholson‫يقة‬‫ر‬‫ط‬ ‫ان‬‫و‬ ‫يحة‬‫ر‬‫الص‬ ‫يقة‬‫ر‬‫الط‬ ‫من‬ ‫أفضل‬ ‫هي‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫بأخذ‬ vuf ,‫إلى‬ ‫تحتاج‬ ‫ولكنها‬ ‫دقة‬ ‫أكثر‬ ‫هي‬ ‫يقة‬‫ر‬‫ط‬ ‫من‬ ‫مضاعف‬ ‫وخزن‬ ‫زمنية‬ ‫ات‬‫و‬‫خط‬ ‫الى‬‫و‬ ‫أكثر‬ ‫زمن‬Crank – Nicholson‫ـ‬‫ل‬ ‫المعدل‬ ‫اخذ‬ ‫بدون‬ vuf ,.