PPR Maths nbk

                                  MODULE 12
            SKIM TUISYEN FELDA (STF) MATEMATIK SPM “ENRICHMENT”
                              TOPIC : MATRICES
                                TIME : 2 HOURS

                                     ⎛3 − 2⎞        ⎛− 4   n⎞
1.    (a)      The inverse matrix of ⎜
                                     ⎜     ⎟ is m
                                           ⎟        ⎜
                                                    ⎜− 5    ⎟
                                     ⎝5 − 4⎠        ⎝      3⎟
                                                            ⎠

               Find the value of m and of n.

      (b)      Hence, using matrices, solve the following simultaneous equations :
                     3x – 2y = 8
                     5x – 4y = 13

Answer :

(a)




(b)
PPR Maths nbk

            Given that G = ⎜
                            ⎛ m 3⎞                                       1 ⎛ 4 − 3⎞
2.    (a)
                           ⎜     ⎟     and the inverse matrix of G is      ⎜       ⎟,
                            ⎝ 2 n⎟
                                 ⎠                                      14 ⎜ − 2 m ⎟
                                                                           ⎝       ⎠
            find the value of m and of n.

      (b)   Hence, using matrices, calculate the value of p and of q that satisfies the
            following equation :
                                ⎛ p⎞ ⎛ 1 ⎞
                               G⎜ ⎟ = ⎜ ⎟
                                ⎜ q ⎟ ⎜ − 8⎟
                                ⎝ ⎠ ⎝ ⎠

Answer :

(a)




(b)
PPR Maths nbk

                          ⎛ −1 2⎞ ⎛1 0⎞
3.    (a)   Given that   A⎜
                          ⎜ − 3 5 ⎟ = ⎜ 0 1 ⎟,
                                  ⎟ ⎜       ⎟
                                                 find matrix A.
                          ⎝       ⎠ ⎝       ⎠

      (b)   Hence, using the matrix method, find the value of r and s which satisfy the
            simultaneous equations below.

                     -r + 2s = -4
                   -3r + 5s = -9

Answer :

(a)




(b)
PPR Maths nbk

                       ⎛ 4 5⎞                   ⎛1 0⎞
      Given matrix P = ⎜    ⎟ and matrix PQ =   ⎜
                                                ⎜0 1⎟
4.
                       ⎜ 6 8⎟                       ⎟
                       ⎝    ⎠                   ⎝   ⎠
      (a)   Find the matrix Q.
      (b)   Hence, calculate by using the matrix method, the values of m and n that
            satisfy the following simultaneous linear equations :
                     4m + 5n = 7
                     6m + 8n = 10


Answer :

(a)




(b)
PPR Maths nbk

                            ⎛ 4 − 3⎞
5.    Given the matrix P is ⎜      ⎟,
                            ⎜ 8 − 5⎟
                            ⎝      ⎠
                                              ⎛1 0⎞
      (a)    Find the matrix Q so that PQ = ⎜
                                            ⎜      ⎟
                                              ⎝ 0 1⎟
                                                   ⎠

      (b)    Hence, calculate the values of h and k, which satisfy the matrix equation:

                        ⎛ 4 − 3 ⎞⎛ h ⎞ ⎛ − 7 ⎞
                        ⎜
                        ⎜ 8 − 5 ⎟⎜ k ⎟ = ⎜ − 11⎟
                                ⎟⎜ ⎟ ⎜         ⎟
                        ⎝       ⎠⎝ ⎠ ⎝         ⎠
Answer :

(a)




(b)
PPR Maths nbk

                              ⎛ k 6⎞
6.    (a)   Given matrix M = ⎜       ⎟, find the value of k if matrix M has no inverse.
                             ⎜  − 4 2⎟
                              ⎝      ⎠

      (b)   Given the matrix equations
                     ⎛ 7 − 6 ⎞⎛ x ⎞ ⎛ − 4 ⎞            ⎛ x⎞   1 ⎛ 8 6 ⎞⎛ − 4 ⎞
                     ⎜
                     ⎜ − 5 8 ⎟⎜ y ⎟ = ⎜ 1 ⎟
                             ⎟⎜ ⎟ ⎜ ⎟          and ⎜ ⎟ = ⎜
                                                   ⎜ y ⎟ h ⎜ 5 7 ⎟⎜ 1 ⎟
                                                                 ⎟⎜ ⎟
                     ⎝       ⎠⎝ ⎠ ⎝ ⎠              ⎝ ⎠     ⎝     ⎠⎝ ⎠

            (i)    Find the value of h
            (ii)   Hence, find the value of x and y.

Answer :

(a)




(b)
PPR Maths nbk

                                 ⎛2 5 ⎞
7.    It is given that matrix P = ⎜     ⎟ does not have an inverse matrix.
                                  ⎜k − 2⎟
                                 ⎝      ⎠

      (a)     Find the value of k.
      (b)     If k = 1, find the inverse matrix of P and hence, using matrices, find the
              values of x and y that satisfy the following simultaneous linear equations.

                      2x + 5y = 13
                       x - 2y = -7

Answer :

(a)




(b)
PPR Maths nbk

                                     ⎛ 2 4⎞    ⎛ 2 4⎞
            Find matrix M such that ⎜     ⎟M = ⎜
                                               ⎜1 3⎟
8.    (a)
                                    ⎜  1 3⎟         ⎟
                                     ⎝    ⎠    ⎝    ⎠

      (b)   Using matrices, calculate the values of x and y that satisfy the following
            matrix equation.

                                      ⎛ 2 4 ⎞⎛ x ⎞ ⎛ 6 ⎞
                                      ⎜
                                      ⎜ 1 3 ⎟⎜ y ⎟ = ⎜ 5 ⎟
                                            ⎟⎜ ⎟ ⎜ ⎟
                                      ⎝     ⎠⎝ ⎠ ⎝ ⎠


Answer :

(a)




(b)
PPR Maths nbk


                                        ⎛3 −1⎞
9.    (a)   Find the inverse of matrix ⎜       ⎟ .
                                       ⎜  5 − 2⎟
                                        ⎝      ⎠


      (b)   Hence, using matrices, calculate the values of d and e that satisfy the
            following simultaneous equations :

                   2d – e = 7
                   5d – e = 16


Answer :

(a)




(b)
PPR Maths nbk


                       ⎛1 − 2⎞
10.   Given matrix M = ⎜     ⎟ , find
                       ⎜ 2 5 ⎟
                       ⎝     ⎠

      (a)   the inverse matrix of M
      (b)   hence, using matrices, the values of u and v that satisfy the following
            simultaneous equations :

                     u – 2v = 8
                    2u + 5v = 7


Answer :

(a)




(b)
PPR Maths nbk

                                     MODULE 12 - ANSWERS
                                       TOPIC : MATRICES

                          1
1.   (a)        m= −                 1m
                          2
                n =2                 1m


     (b) ⎛ 3     − 2⎞ ⎛ x ⎞ ⎛8 ⎞
           ⎜         ⎟⎜ ⎟ = ⎜ ⎟
           ⎜5    − 4 ⎟ ⎜ y ⎟ ⎜13 ⎟
                                          1m
           ⎝         ⎠⎝ ⎠ ⎝ ⎠

                          ⎛ x ⎞ 1 ⎛− 4    2 ⎞⎛ 8 ⎞        1m
                          ⎜ ⎟= ⎜
                          ⎜ y⎟ 2 ⎜− 5       ⎟⎜ ⎟
                          ⎝ ⎠     ⎝       3 ⎟⎜13 ⎟
                                            ⎠⎝ ⎠
                x=3                  1m
                          1
                y= −                 1m
                          2

2.   (a)        n =4                 1m
                m=5                  1m

     (b) ⎛ 5     3 ⎞⎛ p ⎞       ⎛ 1 ⎞
           ⎜
           ⎜2      ⎟⎜ ⎟ =       ⎜ ⎟
                                ⎜ − 8⎟
                 4 ⎟⎜ q ⎟
                                                     1m
           ⎝       ⎠⎝ ⎠         ⎝ ⎠

           ⎛ p ⎞ 1 ⎛ 4 − 3 ⎞⎛ 1 ⎞
           ⎜ ⎟= ⎜
           ⎜ q ⎟ 14 ⎜ − 2 5 ⎟⎜ − 8 ⎟
                            ⎟⎜ ⎟
                                                     1m
           ⎝ ⎠      ⎝       ⎠⎝ ⎠
                 p=2                                 1m
                 q = -3                              1m



                     ⎛5       − 2⎞
3.   (a)        A=⎜              ⎟                   2m
                     ⎜3       −1 ⎟
                     ⎝           ⎠

            ⎛ −1 2⎞ ⎛ r ⎞ ⎛ − 4⎞
     (b)    ⎜− 3 5⎟ ⎜ s ⎟ = ⎜ − 9⎟
            ⎜     ⎟⎜ ⎟ ⎜ ⎟                           1m
            ⎝     ⎠⎝ ⎠ ⎝ ⎠

            ⎛ r ⎞ 1 ⎛ 5 − 2 ⎞⎛ − 4 ⎞
            ⎜ ⎟= ⎜
            ⎜ s ⎟ 1 ⎜ 3 − 1 ⎟⎜ − 9 ⎟
                            ⎟⎜ ⎟                     1m
            ⎝ ⎠     ⎝       ⎠⎝ ⎠

                          r = -2                     1m

                          s = -3                     1m
                         1 ⎛ 8 − 5⎞
4.   (a)        P=            ⎜       ⎟              1m
                      32 − 30 ⎜ − 6 4 ⎟
                              ⎝       ⎠
PPR Maths nbk




                    1 ⎛ 8 − 5⎞
                      ⎜      ⎟
                  =
                    2 ⎜− 6 4 ⎟
                      ⎝      ⎠
                                               1m


            ⎛ 4 5 ⎞⎛ m ⎞ ⎛ 7 ⎞
     (b)    ⎜
            ⎜ 6 8 ⎟⎜ n ⎟ = ⎜10 ⎟
                  ⎟⎜ ⎟ ⎜ ⎟                     1m
            ⎝     ⎠⎝ ⎠ ⎝ ⎠

            ⎛ m ⎞ 1 ⎛ 8 − 5 ⎞⎛ 7 ⎞
            ⎜ ⎟= ⎜
            ⎜ n ⎟ 2 ⎜ − 6 4 ⎟⎜10 ⎟
                            ⎟⎜ ⎟               1m
            ⎝ ⎠     ⎝       ⎠⎝ ⎠

            m=3                                1m

            n = -1                             1m



                           1     ⎛ − 5 3 ⎞ 1m
5.   (a)    P =                  ⎜       ⎟
                    − 20 − (−24) ⎜ 8 4 ⎟
                                 ⎝       ⎠
                    1 ⎛ − 5 3⎞
                   = ⎜        ⎟            1m
                    4 ⎜ 8 4⎟
                      ⎝       ⎠

     (b)   ⎛ 4 − 3 ⎞⎛ h ⎞ ⎛ − 7 ⎞
           ⎜
           ⎜ 8 − 5 ⎟⎜ k ⎟ = ⎜ − 11⎟
                   ⎟⎜ ⎟ ⎜         ⎟
           ⎝       ⎠⎝ ⎠ ⎝         ⎠
           ⎛ h ⎞ 1 ⎛ − 5 3 ⎞⎛ − 7 ⎞
           ⎜ ⎟= ⎜
           ⎜ k ⎟ 2 ⎜ 8 4 ⎟⎜ − 11⎟
                              ⎟⎜    ⎟          1m
           ⎝ ⎠     ⎝          ⎠⎝    ⎠
                 1⎛ 2 ⎞
                = ⎜         ⎟
                 2 ⎜ − 100 ⎟
                                               1m
                   ⎝        ⎠

            h=1                                1m
            k = -50                            1m


6.   (a)    k = -12                            1m

     (b)    (i)       h = 26                   1m




                     ⎛ x⎞   1 ⎛ 8 6 ⎞⎛ − 4 ⎞
                     ⎜ ⎟ =
                     ⎜ y ⎟ 26 ⎜ 5 7 ⎟⎜ 1 ⎟
                               ⎜      ⎟⎜ ⎟
                     ⎝ ⎠       ⎝      ⎠⎝ ⎠
                            1 ⎛ − 26 ⎞
                          =    ⎜      ⎟
                            26 ⎜ − 13 ⎟
                               ⎝      ⎠
PPR Maths nbk

           (ii)                                     1m


                                                    1m



                                  x = -1            1m
                                           1
                                  y= −              1m
                                           2

7.   (a)   - 4 – 5k = 0                        1m

                  5k = -4
                              4
                      k= −                     1m
                              5

     (b)    ⎛ 2 5 ⎞⎛ x ⎞ ⎛ 13 ⎞
            ⎜
            ⎜ 1 − 2 ⎟⎜ y ⎟ = ⎜ − 7 ⎟
                    ⎟⎜ ⎟ ⎜ ⎟                        1m
            ⎝       ⎠⎝ ⎠ ⎝ ⎠

           ⎛ x⎞ 1 ⎛ − 2 − 5 ⎞⎛ 13 ⎞
           ⎜ ⎟=− ⎜
           ⎜ y⎟             ⎟⎜ ⎟
                9 ⎜ − 1 2 ⎟⎜ − 7 ⎟
                                                    1m
           ⎝ ⎠    ⎝         ⎠⎝ ⎠

                       x = -1                       1m
                       y=3                          1m

                      ⎛1 0⎞
8.   (a)   M= ⎜           ⎟                         2m
              ⎜           ⎟
                      ⎝0 1⎠

     (b)   ⎛ x⎞    1 ⎛ 3 − 4 ⎞⎛ 6 ⎞
           ⎜ ⎟=
           ⎜ y ⎟ 6 − 4 ⎜ − 1 2 ⎟⎜ 5 ⎟
                       ⎜       ⎟⎜ ⎟                 1m
           ⎝ ⎠         ⎝       ⎠⎝ ⎠
                   1 ⎛ 3 − 4 ⎞⎛ 6 ⎞
                  =  ⎜       ⎟⎜ ⎟
                   2 ⎜ − 1 2 ⎟⎜ 5 ⎟
                     ⎝       ⎠⎝ ⎠
                   1 ⎛ − 2⎞
                  = ⎜ ⎟                             1m
                   2⎜ 4 ⎟
                     ⎝ ⎠
                       x = -1                       1m
                       y=2                          1m
PPR Maths nbk

9.    (a)      1 ⎛ − 2 1⎞
                    ⎜      ⎟
            − 6 + 5 ⎜ − 5 3⎟
                                       1m
                    ⎝      ⎠


                1 ⎛ − 2 1⎞
            =       ⎜      ⎟
                − 1 ⎜ − 5 3⎟
                                       1m
                    ⎝      ⎠

      (b) ⎛ 2    − 1 ⎞⎛ d ⎞ ⎛ 7 ⎞
            ⎜
            ⎜ 5 − 3 ⎟⎜ e ⎟ = ⎜16 ⎟
                     ⎟⎜ ⎟ ⎜ ⎟          1m
            ⎝        ⎠⎝ ⎠ ⎝ ⎠
            ⎛ d ⎞ 1 ⎛ − 3 1 ⎞⎛ 7 ⎞
            ⎜ ⎟=
            ⎜ e ⎟ − 1 ⎜ − 5 2 ⎟⎜16 ⎟
                       ⎜       ⎟⎜ ⎟    1m
            ⎝ ⎠        ⎝       ⎠⎝ ⎠
                1 ⎛ − 5⎞
            =       ⎜ ⎟
                − 1 ⎜ − 3⎟
                    ⎝ ⎠
             ⎛ 5⎞
            =⎜ ⎟
             ⎜ 3⎟
             ⎝ ⎠

            d=5                        1m
            e=3                        1m


10.   (a)       1    ⎛ 5 2⎞
                     ⎜       ⎟
            5 − (−4) ⎜ − 2 1 ⎟
                                       1m
                     ⎝       ⎠
              1 ⎛ 5 2⎞
            = ⎜          ⎟
              9 ⎜− 2 1⎟
                                       1m
                ⎝        ⎠


      (b) ⎛ 1    − 2 ⎞⎛ u ⎞ ⎛ 8 ⎞
          ⎜ ⎜ 2 5 ⎟⎜ v ⎟ = ⎜ 7 ⎟
                                       1m
                     ⎟⎜ ⎟ ⎜ ⎟
            ⎝        ⎠⎝ ⎠ ⎝ ⎠
            ⎛ u ⎞ 1 ⎛ 5 2 ⎞⎛ 8 ⎞
            ⎜ ⎟= ⎜
            ⎜ v ⎟ 9 ⎜ − 2 1 ⎟⎜ 7 ⎟
                             ⎟⎜ ⎟
                                       1m
            ⎝ ⎠      ⎝       ⎠⎝ ⎠
             1 ⎛ 54 ⎞
            = ⎜ ⎟
             9 ⎜ − 9⎟
               ⎝ ⎠
             ⎛6⎞
            =⎜ ⎟
             ⎜ − 1⎟
             ⎝ ⎠
            u=6                        1m
            v = −1                     1m

Module 12 Matrices

  • 1.
    PPR Maths nbk MODULE 12 SKIM TUISYEN FELDA (STF) MATEMATIK SPM “ENRICHMENT” TOPIC : MATRICES TIME : 2 HOURS ⎛3 − 2⎞ ⎛− 4 n⎞ 1. (a) The inverse matrix of ⎜ ⎜ ⎟ is m ⎟ ⎜ ⎜− 5 ⎟ ⎝5 − 4⎠ ⎝ 3⎟ ⎠ Find the value of m and of n. (b) Hence, using matrices, solve the following simultaneous equations : 3x – 2y = 8 5x – 4y = 13 Answer : (a) (b)
  • 2.
    PPR Maths nbk Given that G = ⎜ ⎛ m 3⎞ 1 ⎛ 4 − 3⎞ 2. (a) ⎜ ⎟ and the inverse matrix of G is ⎜ ⎟, ⎝ 2 n⎟ ⎠ 14 ⎜ − 2 m ⎟ ⎝ ⎠ find the value of m and of n. (b) Hence, using matrices, calculate the value of p and of q that satisfies the following equation : ⎛ p⎞ ⎛ 1 ⎞ G⎜ ⎟ = ⎜ ⎟ ⎜ q ⎟ ⎜ − 8⎟ ⎝ ⎠ ⎝ ⎠ Answer : (a) (b)
  • 3.
    PPR Maths nbk ⎛ −1 2⎞ ⎛1 0⎞ 3. (a) Given that A⎜ ⎜ − 3 5 ⎟ = ⎜ 0 1 ⎟, ⎟ ⎜ ⎟ find matrix A. ⎝ ⎠ ⎝ ⎠ (b) Hence, using the matrix method, find the value of r and s which satisfy the simultaneous equations below. -r + 2s = -4 -3r + 5s = -9 Answer : (a) (b)
  • 4.
    PPR Maths nbk ⎛ 4 5⎞ ⎛1 0⎞ Given matrix P = ⎜ ⎟ and matrix PQ = ⎜ ⎜0 1⎟ 4. ⎜ 6 8⎟ ⎟ ⎝ ⎠ ⎝ ⎠ (a) Find the matrix Q. (b) Hence, calculate by using the matrix method, the values of m and n that satisfy the following simultaneous linear equations : 4m + 5n = 7 6m + 8n = 10 Answer : (a) (b)
  • 5.
    PPR Maths nbk ⎛ 4 − 3⎞ 5. Given the matrix P is ⎜ ⎟, ⎜ 8 − 5⎟ ⎝ ⎠ ⎛1 0⎞ (a) Find the matrix Q so that PQ = ⎜ ⎜ ⎟ ⎝ 0 1⎟ ⎠ (b) Hence, calculate the values of h and k, which satisfy the matrix equation: ⎛ 4 − 3 ⎞⎛ h ⎞ ⎛ − 7 ⎞ ⎜ ⎜ 8 − 5 ⎟⎜ k ⎟ = ⎜ − 11⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ Answer : (a) (b)
  • 6.
    PPR Maths nbk ⎛ k 6⎞ 6. (a) Given matrix M = ⎜ ⎟, find the value of k if matrix M has no inverse. ⎜ − 4 2⎟ ⎝ ⎠ (b) Given the matrix equations ⎛ 7 − 6 ⎞⎛ x ⎞ ⎛ − 4 ⎞ ⎛ x⎞ 1 ⎛ 8 6 ⎞⎛ − 4 ⎞ ⎜ ⎜ − 5 8 ⎟⎜ y ⎟ = ⎜ 1 ⎟ ⎟⎜ ⎟ ⎜ ⎟ and ⎜ ⎟ = ⎜ ⎜ y ⎟ h ⎜ 5 7 ⎟⎜ 1 ⎟ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ (i) Find the value of h (ii) Hence, find the value of x and y. Answer : (a) (b)
  • 7.
    PPR Maths nbk ⎛2 5 ⎞ 7. It is given that matrix P = ⎜ ⎟ does not have an inverse matrix. ⎜k − 2⎟ ⎝ ⎠ (a) Find the value of k. (b) If k = 1, find the inverse matrix of P and hence, using matrices, find the values of x and y that satisfy the following simultaneous linear equations. 2x + 5y = 13 x - 2y = -7 Answer : (a) (b)
  • 8.
    PPR Maths nbk ⎛ 2 4⎞ ⎛ 2 4⎞ Find matrix M such that ⎜ ⎟M = ⎜ ⎜1 3⎟ 8. (a) ⎜ 1 3⎟ ⎟ ⎝ ⎠ ⎝ ⎠ (b) Using matrices, calculate the values of x and y that satisfy the following matrix equation. ⎛ 2 4 ⎞⎛ x ⎞ ⎛ 6 ⎞ ⎜ ⎜ 1 3 ⎟⎜ y ⎟ = ⎜ 5 ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ Answer : (a) (b)
  • 9.
    PPR Maths nbk ⎛3 −1⎞ 9. (a) Find the inverse of matrix ⎜ ⎟ . ⎜ 5 − 2⎟ ⎝ ⎠ (b) Hence, using matrices, calculate the values of d and e that satisfy the following simultaneous equations : 2d – e = 7 5d – e = 16 Answer : (a) (b)
  • 10.
    PPR Maths nbk ⎛1 − 2⎞ 10. Given matrix M = ⎜ ⎟ , find ⎜ 2 5 ⎟ ⎝ ⎠ (a) the inverse matrix of M (b) hence, using matrices, the values of u and v that satisfy the following simultaneous equations : u – 2v = 8 2u + 5v = 7 Answer : (a) (b)
  • 11.
    PPR Maths nbk MODULE 12 - ANSWERS TOPIC : MATRICES 1 1. (a) m= − 1m 2 n =2 1m (b) ⎛ 3 − 2⎞ ⎛ x ⎞ ⎛8 ⎞ ⎜ ⎟⎜ ⎟ = ⎜ ⎟ ⎜5 − 4 ⎟ ⎜ y ⎟ ⎜13 ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ x ⎞ 1 ⎛− 4 2 ⎞⎛ 8 ⎞ 1m ⎜ ⎟= ⎜ ⎜ y⎟ 2 ⎜− 5 ⎟⎜ ⎟ ⎝ ⎠ ⎝ 3 ⎟⎜13 ⎟ ⎠⎝ ⎠ x=3 1m 1 y= − 1m 2 2. (a) n =4 1m m=5 1m (b) ⎛ 5 3 ⎞⎛ p ⎞ ⎛ 1 ⎞ ⎜ ⎜2 ⎟⎜ ⎟ = ⎜ ⎟ ⎜ − 8⎟ 4 ⎟⎜ q ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ p ⎞ 1 ⎛ 4 − 3 ⎞⎛ 1 ⎞ ⎜ ⎟= ⎜ ⎜ q ⎟ 14 ⎜ − 2 5 ⎟⎜ − 8 ⎟ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ p=2 1m q = -3 1m ⎛5 − 2⎞ 3. (a) A=⎜ ⎟ 2m ⎜3 −1 ⎟ ⎝ ⎠ ⎛ −1 2⎞ ⎛ r ⎞ ⎛ − 4⎞ (b) ⎜− 3 5⎟ ⎜ s ⎟ = ⎜ − 9⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ r ⎞ 1 ⎛ 5 − 2 ⎞⎛ − 4 ⎞ ⎜ ⎟= ⎜ ⎜ s ⎟ 1 ⎜ 3 − 1 ⎟⎜ − 9 ⎟ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ r = -2 1m s = -3 1m 1 ⎛ 8 − 5⎞ 4. (a) P= ⎜ ⎟ 1m 32 − 30 ⎜ − 6 4 ⎟ ⎝ ⎠
  • 12.
    PPR Maths nbk 1 ⎛ 8 − 5⎞ ⎜ ⎟ = 2 ⎜− 6 4 ⎟ ⎝ ⎠ 1m ⎛ 4 5 ⎞⎛ m ⎞ ⎛ 7 ⎞ (b) ⎜ ⎜ 6 8 ⎟⎜ n ⎟ = ⎜10 ⎟ ⎟⎜ ⎟ ⎜ ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ m ⎞ 1 ⎛ 8 − 5 ⎞⎛ 7 ⎞ ⎜ ⎟= ⎜ ⎜ n ⎟ 2 ⎜ − 6 4 ⎟⎜10 ⎟ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ m=3 1m n = -1 1m 1 ⎛ − 5 3 ⎞ 1m 5. (a) P = ⎜ ⎟ − 20 − (−24) ⎜ 8 4 ⎟ ⎝ ⎠ 1 ⎛ − 5 3⎞ = ⎜ ⎟ 1m 4 ⎜ 8 4⎟ ⎝ ⎠ (b) ⎛ 4 − 3 ⎞⎛ h ⎞ ⎛ − 7 ⎞ ⎜ ⎜ 8 − 5 ⎟⎜ k ⎟ = ⎜ − 11⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ h ⎞ 1 ⎛ − 5 3 ⎞⎛ − 7 ⎞ ⎜ ⎟= ⎜ ⎜ k ⎟ 2 ⎜ 8 4 ⎟⎜ − 11⎟ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ 1⎛ 2 ⎞ = ⎜ ⎟ 2 ⎜ − 100 ⎟ 1m ⎝ ⎠ h=1 1m k = -50 1m 6. (a) k = -12 1m (b) (i) h = 26 1m ⎛ x⎞ 1 ⎛ 8 6 ⎞⎛ − 4 ⎞ ⎜ ⎟ = ⎜ y ⎟ 26 ⎜ 5 7 ⎟⎜ 1 ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ 1 ⎛ − 26 ⎞ = ⎜ ⎟ 26 ⎜ − 13 ⎟ ⎝ ⎠
  • 13.
    PPR Maths nbk (ii) 1m 1m x = -1 1m 1 y= − 1m 2 7. (a) - 4 – 5k = 0 1m 5k = -4 4 k= − 1m 5 (b) ⎛ 2 5 ⎞⎛ x ⎞ ⎛ 13 ⎞ ⎜ ⎜ 1 − 2 ⎟⎜ y ⎟ = ⎜ − 7 ⎟ ⎟⎜ ⎟ ⎜ ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ x⎞ 1 ⎛ − 2 − 5 ⎞⎛ 13 ⎞ ⎜ ⎟=− ⎜ ⎜ y⎟ ⎟⎜ ⎟ 9 ⎜ − 1 2 ⎟⎜ − 7 ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ x = -1 1m y=3 1m ⎛1 0⎞ 8. (a) M= ⎜ ⎟ 2m ⎜ ⎟ ⎝0 1⎠ (b) ⎛ x⎞ 1 ⎛ 3 − 4 ⎞⎛ 6 ⎞ ⎜ ⎟= ⎜ y ⎟ 6 − 4 ⎜ − 1 2 ⎟⎜ 5 ⎟ ⎜ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ 1 ⎛ 3 − 4 ⎞⎛ 6 ⎞ = ⎜ ⎟⎜ ⎟ 2 ⎜ − 1 2 ⎟⎜ 5 ⎟ ⎝ ⎠⎝ ⎠ 1 ⎛ − 2⎞ = ⎜ ⎟ 1m 2⎜ 4 ⎟ ⎝ ⎠ x = -1 1m y=2 1m
  • 14.
    PPR Maths nbk 9. (a) 1 ⎛ − 2 1⎞ ⎜ ⎟ − 6 + 5 ⎜ − 5 3⎟ 1m ⎝ ⎠ 1 ⎛ − 2 1⎞ = ⎜ ⎟ − 1 ⎜ − 5 3⎟ 1m ⎝ ⎠ (b) ⎛ 2 − 1 ⎞⎛ d ⎞ ⎛ 7 ⎞ ⎜ ⎜ 5 − 3 ⎟⎜ e ⎟ = ⎜16 ⎟ ⎟⎜ ⎟ ⎜ ⎟ 1m ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ d ⎞ 1 ⎛ − 3 1 ⎞⎛ 7 ⎞ ⎜ ⎟= ⎜ e ⎟ − 1 ⎜ − 5 2 ⎟⎜16 ⎟ ⎜ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ 1 ⎛ − 5⎞ = ⎜ ⎟ − 1 ⎜ − 3⎟ ⎝ ⎠ ⎛ 5⎞ =⎜ ⎟ ⎜ 3⎟ ⎝ ⎠ d=5 1m e=3 1m 10. (a) 1 ⎛ 5 2⎞ ⎜ ⎟ 5 − (−4) ⎜ − 2 1 ⎟ 1m ⎝ ⎠ 1 ⎛ 5 2⎞ = ⎜ ⎟ 9 ⎜− 2 1⎟ 1m ⎝ ⎠ (b) ⎛ 1 − 2 ⎞⎛ u ⎞ ⎛ 8 ⎞ ⎜ ⎜ 2 5 ⎟⎜ v ⎟ = ⎜ 7 ⎟ 1m ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ u ⎞ 1 ⎛ 5 2 ⎞⎛ 8 ⎞ ⎜ ⎟= ⎜ ⎜ v ⎟ 9 ⎜ − 2 1 ⎟⎜ 7 ⎟ ⎟⎜ ⎟ 1m ⎝ ⎠ ⎝ ⎠⎝ ⎠ 1 ⎛ 54 ⎞ = ⎜ ⎟ 9 ⎜ − 9⎟ ⎝ ⎠ ⎛6⎞ =⎜ ⎟ ⎜ − 1⎟ ⎝ ⎠ u=6 1m v = −1 1m