TABLE 7a: For reaction aA→ Products

Order          n=0                                         n =1                             n =2                         n any integer, ≠1

                   d [ A]                                      d [ A]                           d [ A]                       d [ A] ak[A]n=k [A]n
Rate Law       −          = ak [A]0= kA                    −          = ak[A]=kA[A]         −          = ak[A]2=kA[A]2   −
                                                                                                                              dt
                                                                                                                                   =        A
                    dt                                          dt                               dt
                   [ A ]t            t                                                                                       [ A]t               t
                                                                                                                                      d [ A]
Derivation     −     ∫      d [ A] = ∫ k A dt                                                                            −     ∫
                                                                                                                             [ A] o   [ A]n ∫
                                                                                                                                             = k Adt
                                                                                                                                              0
                   [ A ]o            0
of the                                                                                                                       [ A]t

                                                                                                                               ∫ [ A]
                                                                                                                                        −n
integrated     − [ A]t − (−[ A]o ) = k A t − 0                                                                           −                   d [ A] = k At
                                                                                                                             [ A] o
rate law       [ A]o − [ A]t = k A t
                                                                                                                             [ A]t− n +1  [ A]o n +1 
                                                                                                                                               −
                                                                                                                         −              −−
                                                                                                                                          − n + 1  = k At
                                                                                                                                                      
                                                                                                                             − n +1                  
                                                                                                                         − [ A]t− n +1 + [ A]o n +1 = (− n + 1)k At
                                                                                                                                             −


                                                                                                                            1         1
                                                                                                                                  −         = (n − 1)k At
                                                                                                                         [ A]tn −1 [ A]0 −1
                                                                                                                                       n




Unit of k                        Mol L-1s-1                                  s-1


Graph          [A]t vs. t with m = -kA                     ln[A]t vs. t with m = -kA        1/[A]t vs. t with m = kA     log t1/2 vs. [A]0 with m= -(1-n)

                   0.5[ A]o              t1 / 2

Derivation     −        ∫     d [ A] =    ∫k      A   dt
of the half-        [ A ]o                 0

life           − 0.5[ A] o + [ A] o = k A t1 / 2
               0.5[ A] o = k A t1 / 2
                             0.5[ A] o
               t1 / 2 =
                                kA
                           [ A] o                                     ln 2                                 1                                2 n−1 − 1
               t1 / 2    =                                 t1 / 2 =                         t1 / 2 =                     t1 / 2 =
                            2k A                                       kA                              k A [ A]o                        (n − 1)k A [ A]0 −1
                                                                                                                                                       n




                                                                                       32
TABLE 7b: For reaction aA+ bB→ Products with rate law, rate = k[A]x[B]y


        Condition                                Rate Law                                              Integrated rate law

a = b =1, x = 0, y = 0         d [ A]                                              [ A]o − [ A]t = kt
                            −          = ak [A]0 = kA
                                dt
a = b =1, x =1, y = 0          d [ A]                                              ln[ A]o − ln[ A]t = kt
                            −          = k[A]
                                dt
a = b =1,x = 0, y = 1          d [ B]                                              ln[ B]o − ln[ B ]t = kt
                            −          = k[B]
                                dt
a = b =1, x =2, y = 0          d [ A]                                                1     1
                            −          = k[A]2                                          −
                                                                                   [ A]t [ A]0
                                                                                               =kt
                                dt
a = b =1,x =0, y = 2           d [ B]                                                1      1
                            −          = k[B]2                                           −
                                                                                   [ B ]t [ B ]0
                                                                                                 =kt
                                dt
a = b =1,x =1, y = 1           d [ A]                                                1     1
                            −          = k[A][B]= k([A]o-x)([B]o-x)                     −      =kt
[A]o=B]o                                                                           [ A]t [ A]0
                                dt
                            = k([A]o-x)2 = k[A]2
a = b=1 or ≠1,x =1, y = 1      d [ A]                                                   ([ A]o − ax)                             [ A]o
[A]o≠B]o                    −          = k[A][B]                                   ln                = (b[ A]o − a[ B]o )kt + ln
                                dt                                                      ([ B]o − bx)                             [ B]o
                               d ([ A] o − ax) 1 dx
                            −                  =      = k([A]o-ax)([B]o-bx)
                                       dt        a dt
                               d ([ B ] o − bx) 1 dx
                            −                  =      = k([A]o-ax)([B]o-bx)
                                      dt         b dt
a = b ≠1,                   dx
x =1or 2, y = 1or 2              = k[A]o ([B]o-bx) =k‘[B]y
                             dt
[A]o≥B]o                    dx
                                = k([A]o-ax)[B]o =k‘[A]x
                             dt
[A]o≤ B]o




                                                                              33
34

Table 7a,7b kft 131

  • 1.
    TABLE 7a: Forreaction aA→ Products Order n=0 n =1 n =2 n any integer, ≠1 d [ A] d [ A] d [ A] d [ A] ak[A]n=k [A]n Rate Law − = ak [A]0= kA − = ak[A]=kA[A] − = ak[A]2=kA[A]2 − dt = A dt dt dt [ A ]t t [ A]t t d [ A] Derivation − ∫ d [ A] = ∫ k A dt − ∫ [ A] o [ A]n ∫ = k Adt 0 [ A ]o 0 of the [ A]t ∫ [ A] −n integrated − [ A]t − (−[ A]o ) = k A t − 0 − d [ A] = k At [ A] o rate law [ A]o − [ A]t = k A t [ A]t− n +1  [ A]o n +1  − − −−  − n + 1  = k At  − n +1   − [ A]t− n +1 + [ A]o n +1 = (− n + 1)k At − 1 1 − = (n − 1)k At [ A]tn −1 [ A]0 −1 n Unit of k Mol L-1s-1 s-1 Graph [A]t vs. t with m = -kA ln[A]t vs. t with m = -kA 1/[A]t vs. t with m = kA log t1/2 vs. [A]0 with m= -(1-n) 0.5[ A]o t1 / 2 Derivation − ∫ d [ A] = ∫k A dt of the half- [ A ]o 0 life − 0.5[ A] o + [ A] o = k A t1 / 2 0.5[ A] o = k A t1 / 2 0.5[ A] o t1 / 2 = kA [ A] o ln 2 1 2 n−1 − 1 t1 / 2 = t1 / 2 = t1 / 2 = t1 / 2 = 2k A kA k A [ A]o (n − 1)k A [ A]0 −1 n 32
  • 2.
    TABLE 7b: Forreaction aA+ bB→ Products with rate law, rate = k[A]x[B]y Condition Rate Law Integrated rate law a = b =1, x = 0, y = 0 d [ A] [ A]o − [ A]t = kt − = ak [A]0 = kA dt a = b =1, x =1, y = 0 d [ A] ln[ A]o − ln[ A]t = kt − = k[A] dt a = b =1,x = 0, y = 1 d [ B] ln[ B]o − ln[ B ]t = kt − = k[B] dt a = b =1, x =2, y = 0 d [ A] 1 1 − = k[A]2 − [ A]t [ A]0 =kt dt a = b =1,x =0, y = 2 d [ B] 1 1 − = k[B]2 − [ B ]t [ B ]0 =kt dt a = b =1,x =1, y = 1 d [ A] 1 1 − = k[A][B]= k([A]o-x)([B]o-x) − =kt [A]o=B]o [ A]t [ A]0 dt = k([A]o-x)2 = k[A]2 a = b=1 or ≠1,x =1, y = 1 d [ A] ([ A]o − ax) [ A]o [A]o≠B]o − = k[A][B] ln = (b[ A]o − a[ B]o )kt + ln dt ([ B]o − bx) [ B]o d ([ A] o − ax) 1 dx − = = k([A]o-ax)([B]o-bx) dt a dt d ([ B ] o − bx) 1 dx − = = k([A]o-ax)([B]o-bx) dt b dt a = b ≠1, dx x =1or 2, y = 1or 2 = k[A]o ([B]o-bx) =k‘[B]y dt [A]o≥B]o dx = k([A]o-ax)[B]o =k‘[A]x dt [A]o≤ B]o 33
  • 3.