H=           Ji,j |ωi ωj | +       Ei |ωi ωi |
               i,j=i                     i

                                    Ei ∆




∆/J = 0                        ∆/J > 0
                                −|x/L|α
                              e
H=           Ji,j |ωi ωj | +       Ei |ωi ωi |
               i,j=i                     i

                                    Ei ∆




∆/J = 0                        ∆/J > 0
                                −|x/L|α
                              e
H=           Ji,j |ωi ωj | +               Ei |ωi ωi |
                                                     i,j=i                         i
                  T < Tc                              1
                               N                     + U            ni (ˆ i − 1)
                                                                    ˆ n
ψ(r1 , r2 , · · · , rN , ) =         φ0 (ri )         2         i
                               i=1




                                                 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x)
                                                                     si                i
                                                  β = k2 /k1
                                                                     Ei
H=           Ji,j |ωi ωj | +               Ei |ωi ωi |
                                                     i,j=i                         i
                  T < Tc                              1
                               N                     + U            ni (ˆ i − 1)
                                                                    ˆ n
ψ(r1 , r2 , · · · , rN , ) =         φ0 (ri )         2         i
                               i=1




                                                 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x)
                                                                     si                i
                                                  β = k2 /k1
                                                                     Ei
H=           Ji,j |ωi ωj | +               Ei |ωi ωi |
                                                     i,j=i                         i
                  T < Tc                              1
                               N                     + U            ni (ˆ i − 1)
                                                                    ˆ n
ψ(r1 , r2 , · · · , rN , ) =         φ0 (ri )         2         i
                               i=1




                                                 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x)
                                                                     si                i
                                                  β = k2 /k1
                                                                     Ei



∆/J          si , β
∆                                       s
∆/J                                  s, β
      J                                       β




          fα (x) = A exp(−|(x − x0 )/l)|α )   α
H=           Ji,j |ωi ωj | +       Ei |ωi ωi |
     i,j=i                     i




H=J        (|wm wm+1 | + |wm+1 wm |)
      m

      +∆         cos(2πβm + φ) |wm wm |
             m
V (x)/Er1
x(µm)
V (x)/Er1
x(µm)
V (x)/Er1
x(µm)
V (x)/Er1
x(µm)
∆/J
                                                        1 1      √ 2
                                            |ω(ξ)| 2
                                                       √ s1 exp(− s1 ξ )
                                                           4

                                                         π
                                           s2 β 2      −β 2
                           √            ∆=        exp( √ )
J     1.43s0.98
           1      exp(−2.07 s1 )             2          s1

                        (8 < s1 < 30)




∆/J
                                          s1 < 8            ∆/J


∆/J =                    ∆/J =
∆/J =
European Laboratory for Non-Linear Spectroscopy (LENS)




                                                         39
                                                              K



                                     1      1
                       Vho (x, r⊥ ) = mω x + mω⊥ r⊥
                                        2 2    2 2
                                     2      2




                              Energy



                                             Position x(µm)
0
                         1.8
∆/J
                         4.2
                         7



      Time(ms) = 750



               ∆/J = 6


                               ∆/J
∆/J ≈ 1         ∆/J ≈ 15

fα (x) = A exp(−|(x − x0 )/l)|α )




                                           Position x(µm)




α=2                                 α
α=1


                                                  ∆/J
β = 1032/862
    φ=0




6
2
                                                             1                         ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                              2                        2
                                                             2                     (       φ=0        )
                                    0.5
                                   0.45        ∆/J = 0
∆/J = 0                             0.4
                                   0.35
                                    0.3
                         |P(k)|2

∆/J = 1.1                          0.25
                                    0.2
                ∆/J = 7.2          0.15
                                    0.1
                ∆/J = 25           0.05
                                      0
                                          -4      -3       -2   -1     0       1       2    3    4
                                                                     k/k1

  s1 < 8                                       s1=5.0 s2=0.0                s1=9.0 s2=0.0
                                               s1=7.0 s2=0.0
2
                                                             1              ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                            2                 2
                                                             2          (     φ=0          )

∆/J = 0


∆/J = 1.1


                ∆/J = 7.2

                ∆/J = 25




  s1 < 8
2
                                                             1                         ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                              2                        2
                                                             2                     (        φ=0       )
                                    0.2
                                   0.18        ∆/J = 1.1
∆/J = 0                            0.16
                                   0.14
                                   0.12
                         |P(k)|2

∆/J = 1.1                           0.1
                                   0.08
                ∆/J = 7.2          0.06
                                   0.04
                ∆/J = 25           0.02
                                      0
                                          -4      -3       -2   -1     0       1        2    3    4
                                                                     k/k1

  s1 < 8                                       s1=3.2 s2=0.7                s1=9.5 s2=0.1
                                               s1=5.6 s2=0.3
2
                                                             1              ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                            2                 2
                                                             2          (     φ=0          )

∆/J = 0


∆/J = 1.1


                ∆/J = 7.2

                ∆/J = 25




  s1 < 8
2
                                                             1                         ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                                 2                      2
                                                             2                     (        φ=0       )
                                     0.025
                                                  ∆/J = 7.2
∆/J = 0                               0.02

                                     0.015
                       2
                        |P(k)|

∆/J = 1.1
                                      0.01
                ∆/J = 7.2
                                     0.005
                ∆/J = 25
                                        0
                                             -4    -3       -2   -1     0      1        2    3    4
                                                                      k/k1

  s1 < 8                                      s1=3.0 s2=2.7                  s1=9.0 s2=0.4
                                              s1=5.0 s2=1.3
2
                                                             1              ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                            2                 2
                                                             2          (     φ=0          )

∆/J = 0


∆/J = 1.1


                ∆/J = 7.2

                ∆/J = 25




  s1 < 8
2
                                                             1                         ω = 2π × 5Hz
H=−
      2m
            2
            x   + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2
                                 2                      2
                                                             2                     (        φ=0       )
                                     0.012
                                      0.01        ∆/J = 25
∆/J = 0
                                     0.008
                       |P(k)|2

∆/J = 1.1                            0.006
                                     0.004
                ∆/J = 7.2
                                     0.002
                ∆/J = 25
                                        0
                                             -4    -3       -2   -1     0      1        2    3    4
                                                                      k/k1

  s1 < 8                                      s1=4.9 s2=3.8                  s1=8.0 s2=1.5
                                              s1=6.5 s2=2.3
2
                                                                                    2.4
                  H=−                  2
                                           + s1 Er1 sin (k1 x)
                                                             2
                            2m         x                                            2.2
                                         1                                           2
                 +s2 Er2 sin (k2 x + φ) + mω 2 x2
                                   2
                                         2                                          1.8
                                                                                    1.6
                                                                               α    1.4




                                                                               !
             fα (x) = A exp(−|(x − x0 )/l)| )                         α
                                                                                    1.2
                                                                                     1
                                                                                    0.8
              -4                                                                    0.6
              -6                                                                    0.4
              -8                                                                          1                 10   100
             -10                                                                                     ∆/J
                                                                                                      "/J
log|P(x)|2




             -12
             -14
             -16                                                                          ∆/J < 6
             -18
             -20
             -22
             -24
                                                                                              6 < ∆/J < 70
                -40   -30    -20       -10    0      10          20       30   40
                                             !/"
                            #=2.00                 $/J=0.0
2
                                                 2.4
   H=−             2
                       + s1 Er1 sin (k1 x)
                                   2
         2m        x                             2.2
                          1                       2
  +s2 Er2 sin (k2 x + φ) + mω 2 x2
               2
                          2                      1.8
                                                 1.6
                                             α   1.4




                                             !
fα (x) = A exp(−|(x − x0 )/l)| )       α
                                                 1.2
                                                  1
                                                 0.8
                                                 0.6
                                                 0.4
                                                       1                 10   100
                                                                  ∆/J
                                                                   "/J


                                                       ∆/J < 6


                                                           6 < ∆/J < 70
2
                                                                                  2.4
                   H=−                 2
                                            + s1 Er1 sin (k1 x)
                                                           2
                            2m         x                                          2.2
                                           1                                       2
                   +s2 Er2 sin (k2 x + φ) + mω 2 x2
                                   2
                                           2                                      1.8
                                                                                  1.6
                                                                             α    1.4




                                                                             !
             fα (x) = A exp(−|(x − x0 )/l)| )                       α
                                                                                  1.2
                                                                                   1
                                                                                  0.8
              0                                                                   0.6
              -5                                                                  0.4
                                                                                        1                 10   100
             -10
                                                                                                   ∆/J
                                                                                                    "/J
             -15
log|P(x)|2




             -20
             -25                                                                        ∆/J < 6
             -30
             -35
             -40
                                                                                            6 < ∆/J < 70
                -20   -15    -10       -5      0       5       10       15   20
                                              !/"
                            #=1.09                  $/J=5.6
2
                                                 2.4
   H=−             2
                       + s1 Er1 sin (k1 x)
                                   2
         2m        x                             2.2
                          1                       2
  +s2 Er2 sin (k2 x + φ) + mω 2 x2
               2
                          2                      1.8
                                                 1.6
                                             α   1.4




                                             !
fα (x) = A exp(−|(x − x0 )/l)| )       α
                                                 1.2
                                                  1
                                                 0.8
                                                 0.6
                                                 0.4
                                                       1                 10   100
                                                                  ∆/J
                                                                   "/J


                                                       ∆/J < 6


                                                           6 < ∆/J < 70
2
                                                                                2.4
                    H=−                 2
                                             + s1 Er1 sin (k1 x)
                                                            2
                              2m        x                                       2.2
                                           1                                     2
                   +s2 Er2 sin (k2 x + φ) + mω 2 x2
                                    2
                                           2                                    1.8
                                                                                1.6
                                                                            α   1.4




                                                                            !
             fα (x) = A exp(−|(x − x0 )/l)| )                       α
                                                                                1.2
                                                                                 1
                                                                                0.8

              0
                                                                                0.6

              -5
                                                                                0.4
                                                                                      1                 10   100
             -10
                                                                                                 ∆/J
                                                                                                  "/J
             -15
log|P(x)|2




             -20
             -25                                                                      ∆/J < 6
             -30
             -35
             -40
                                                                                          6 < ∆/J < 70
                   -8   -6     -4       -2      0       2       4       6   8
                                               !/"
                             #=0.56                  $/J=18.1
2
                                                 2.4
   H=−             2
                       + s1 Er1 sin (k1 x)
                                   2
         2m        x                             2.2
                          1                       2
  +s2 Er2 sin (k2 x + φ) + mω 2 x2
               2
                          2                      1.8
                                                 1.6
                                             α   1.4




                                             !
fα (x) = A exp(−|(x − x0 )/l)| )       α
                                                 1.2
                                                  1
                                                 0.8
                                                 0.6
                                                 0.4
                                                       1                 10   100
                                                                  ∆/J
                                                                   "/J


                                                       ∆/J < 6


                                                           6 < ∆/J < 70
2
                                                                               2.4
                    H=−                2
                                            + s1 Er1 sin (k1 x)
                                                           2
                             2m        x                                       2.2
                                           1                                    2
                   +s2 Er2 sin (k2 x + φ) + mω 2 x2
                                   2
                                           2                                   1.8
                                                                               1.6
                                                                           α   1.4




                                                                           !
             fα (x) = A exp(−|(x − x0 )/l)| )                      α
                                                                               1.2
                                                                                1
                                                                               0.8
              0                                                                0.6
              -5                                                               0.4
                                                                                     1                 10   100
             -10
                                                                                                ∆/J
                                                                                                 "/J
             -15
log|P(x)|2




             -20
             -25                                                                     ∆/J < 6
             -30
             -35
             -40
                                                                                         6 < ∆/J < 70
                   -4   -3    -2       -1      0       1       2       3   4
                                              !/"
                             #=1.08                 $/J=88.1
s1 < 8
                                                2.2
    2.2
                                                 2
     2
    1.8                                         1.8

    1.6                                         1.6

α   1.4                                     α   1.4




                                            !
!




    1.2                                         1.2
     1                                           1
          s1=7.0                                0.8   s1=7.0
    0.8   s1=5.0                                      s1=5.0
    0.6   s1=3.0                                0.6   s1=3.0
          s1=2.0                                      s1=2.0
    0.4                                         0.4
       0.01             0.1             1          0.01        0.1     1   10
                              s2
                               s
                               2                                     ∆/J
                                                                     "/J


          s1                                          s1
                                   s2
                   s1                                 s1 < 8
s1 < 8
         ∆/J
V
 H=            Vi,j |ωi ωj | +       Ei |ωi ωi |
       i,j=i                     i



                                                     fα (x) = A exp(−|(x − x0 )/l)|α )



                                                                            E
                                                       (a) |t|    ∆E                        (b) |t|   ∆E
     ψ(x) = c1 φ1 (x) + c2 φ2 (x)
                                                            ψ+                                        ψ+

E±                     c1±                      E+                                  E+                     E2
                                                E1                     E2           E1     ψ−
                                                             ψ−
                       c2±                      E−                                  E−

                c1±   ∆E         ∆E 2 + 4|t|2
                    =                                                       x                               x
                c2±              2|t|

                                                                                n
                                                                    |t|                  −n log( ∆Er )
                                                         Pn =                       =e            |t|
                                                                   ∆Er
L1     ν = L2 /L1
                        g2                                     L2
                           = f (g1 , ν)
                        g1
    log(g2 /g1 )          log g2 − log g1     d log g
lim              = lim                    =
ν→1    log ν      L2 →L1 log L2 − log L1      d log L   L=L1

                                                        β(g)               β(g) = d − 2
                        d log g
                                = β(g)                     1
                                                                               d=3
                        d log L
                                                                               d=2
                                                                    gc           log g
                                                           0
                                                                               d=1
                                                          −1
 g   g0 e−αL/ξ                g ∝ Ld−2
            g
β(g) = log                 β(g) = d − 2                              g
            g0                                            β(g) = log
                                                                     g0
)#
          !"#""+                                                                        !"#(
          !"#""*
          !"#"")
                    (a)                      !(#                                      !"#'$
                                                                                        !"#'
                                                                                                         (d)
                                             !'#




                                +,-./012.'
          !"#""(                                                                      !"#&$
-./01-%




                                                                                &
                                                                                 *+,-.*
          !"#""'                             !&#                                        !"#&
          !"#""&                             !%#                                      !"#%$
          !"#""%                                                                        !"#%
          !"#""$
                                             !$#                                      !"#"$
               !"                            !"#                                          !"
                 ,'" ,&" ,%" ,$"             !" !* !%" !&" !'"
                                                 !$" !" !% !'                     )# )' )(" )'")")&" )*
                                                                                             )%       )%" !" !%" !&" !'" !("
                                             !2"                                  !3"                     !/"
                               #234"#"!                        #4(5##)                      $364(75')            #/0122#%!
           !"#'                                                                             !"#'$
                    (b)                                                                                  (c)
                  !(#$                                                                    !&#'
          !"#&$                                                                                  !"#'
                  !(#(                                                                    !&#&
                   !(                                                                       !"#&$
           !"#&                                                                            !&
*+,-.*&




                                                                                *+,-.*&
                  !'#&                                                                           !"#&
          !"#%$   !'#%                                                                    !%#$

                  !'#$
                                                                                            !"#%$
                                                                                          !%#(
                                                                                !
             !




           !"#%
                  !'#(                                                                    !%#'   !"#%
          !"#"$    !'                                                                        !"#"$
                         (a)
                                                                                          !%#&
                  !"#&
             !" !"#%
               ()" ('" (&" (%" !" !%" !&" !'" !)"
                                                                                           !%     (b) ('"
                                                                                                  !"
                                                                                                    ()"        (&" (%" !" !%" !&" !'" !)"
                  !"#$                                                                    !"#$
                          !'                 !/"         !'"             !'""                           !%              !%"   !/"   !%""
                                                   ")*                                                            ")*
                               #/01$#2!                                                                          #/01%2#%!
)#
                              !(#
                              !'#




                 +,-./012.'
                              !&#
                              !%#
                              !$#
                              !"#
                                    !*     !"   !%    !'    )#         )'   )%   )"   )*
                                                            !3"
                                           #4(5##)                $364(75')

    !(#$                                                        !&#'
    !(#(                                                        !&#&
     !(
                                                                  !&
    !'#&
    !'#%                                                        !%#$

    !'#$                                                        !%#(
                                                            !
!




    !'#(                                                        !%#'
     !'

           (a)
                                                                !%#&
    !"#&
    !"#%                                                          !%    (b)
    !"#$                                                        !"#$
            !'                       !'"             !'""                   !%              !%"   !%""
                               ")*                                                    ")*
( < x >2 )[µm]
                               !'"
                                                         )$*$"(+
                               !&#                        )$*,('
                                                          )$*#(+
                               !&"
                               !%#




      √
                               !%"
                               !$#
                               !$"
                                !#
                                !"




              !"#
                                 !"("$      !"($             !$
                                                    )%




                                                   s2
                  !'"
                                                             )$*$"(+
                  !&#                                         )$*,('
                                                              )$*#(+
                  !&"
                  !%#
           >
                  !%"
           x2
           <

                  !$#
s1
     √




                  !$"
                      !#
                      !"
                       !"("$             !"($                      !$
                                                   )%

修士論文発表会

  • 3.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i Ei ∆ ∆/J = 0 ∆/J > 0 −|x/L|α e
  • 4.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i Ei ∆ ∆/J = 0 ∆/J > 0 −|x/L|α e
  • 5.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i T < Tc 1 N + U ni (ˆ i − 1) ˆ n ψ(r1 , r2 , · · · , rN , ) = φ0 (ri ) 2 i i=1 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x) si i β = k2 /k1 Ei
  • 6.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i T < Tc 1 N + U ni (ˆ i − 1) ˆ n ψ(r1 , r2 , · · · , rN , ) = φ0 (ri ) 2 i i=1 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x) si i β = k2 /k1 Ei
  • 7.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i T < Tc 1 N + U ni (ˆ i − 1) ˆ n ψ(r1 , r2 , · · · , rN , ) = φ0 (ri ) 2 i i=1 V (x) = s1 Er1 sin2 (k1 x) + s2 Er2 sin2 (k2 x) si i β = k2 /k1 Ei ∆/J si , β
  • 8.
    s ∆/J s, β J β fα (x) = A exp(−|(x − x0 )/l)|α ) α
  • 10.
    H= Ji,j |ωi ωj | + Ei |ωi ωi | i,j=i i H=J (|wm wm+1 | + |wm+1 wm |) m +∆ cos(2πβm + φ) |wm wm | m
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
    ∆/J 1 1 √ 2 |ω(ξ)| 2 √ s1 exp(− s1 ξ ) 4 π s2 β 2 −β 2 √ ∆= exp( √ ) J 1.43s0.98 1 exp(−2.07 s1 ) 2 s1 (8 < s1 < 30) ∆/J s1 < 8 ∆/J ∆/J = ∆/J = ∆/J =
  • 17.
    European Laboratory forNon-Linear Spectroscopy (LENS) 39 K 1 1 Vho (x, r⊥ ) = mω x + mω⊥ r⊥ 2 2 2 2 2 2 Energy Position x(µm)
  • 18.
    0 1.8 ∆/J 4.2 7 Time(ms) = 750 ∆/J = 6 ∆/J
  • 19.
    ∆/J ≈ 1 ∆/J ≈ 15 fα (x) = A exp(−|(x − x0 )/l)|α ) Position x(µm) α=2 α α=1 ∆/J
  • 21.
  • 22.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) 0.5 0.45 ∆/J = 0 ∆/J = 0 0.4 0.35 0.3 |P(k)|2 ∆/J = 1.1 0.25 0.2 ∆/J = 7.2 0.15 0.1 ∆/J = 25 0.05 0 -4 -3 -2 -1 0 1 2 3 4 k/k1 s1 < 8 s1=5.0 s2=0.0 s1=9.0 s2=0.0 s1=7.0 s2=0.0
  • 23.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) ∆/J = 0 ∆/J = 1.1 ∆/J = 7.2 ∆/J = 25 s1 < 8
  • 24.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) 0.2 0.18 ∆/J = 1.1 ∆/J = 0 0.16 0.14 0.12 |P(k)|2 ∆/J = 1.1 0.1 0.08 ∆/J = 7.2 0.06 0.04 ∆/J = 25 0.02 0 -4 -3 -2 -1 0 1 2 3 4 k/k1 s1 < 8 s1=3.2 s2=0.7 s1=9.5 s2=0.1 s1=5.6 s2=0.3
  • 25.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) ∆/J = 0 ∆/J = 1.1 ∆/J = 7.2 ∆/J = 25 s1 < 8
  • 26.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) 0.025 ∆/J = 7.2 ∆/J = 0 0.02 0.015 2 |P(k)| ∆/J = 1.1 0.01 ∆/J = 7.2 0.005 ∆/J = 25 0 -4 -3 -2 -1 0 1 2 3 4 k/k1 s1 < 8 s1=3.0 s2=2.7 s1=9.0 s2=0.4 s1=5.0 s2=1.3
  • 27.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) ∆/J = 0 ∆/J = 1.1 ∆/J = 7.2 ∆/J = 25 s1 < 8
  • 28.
    2 1 ω = 2π × 5Hz H=− 2m 2 x + s1 Er1 sin (k1 x) + s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 2 ( φ=0 ) 0.012 0.01 ∆/J = 25 ∆/J = 0 0.008 |P(k)|2 ∆/J = 1.1 0.006 0.004 ∆/J = 7.2 0.002 ∆/J = 25 0 -4 -3 -2 -1 0 1 2 3 4 k/k1 s1 < 8 s1=4.9 s2=3.8 s1=8.0 s2=1.5 s1=6.5 s2=2.3
  • 29.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 -4 0.6 -6 0.4 -8 1 10 100 -10 ∆/J "/J log|P(x)|2 -12 -14 -16 ∆/J < 6 -18 -20 -22 -24 6 < ∆/J < 70 -40 -30 -20 -10 0 10 20 30 40 !/" #=2.00 $/J=0.0
  • 30.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0.6 0.4 1 10 100 ∆/J "/J ∆/J < 6 6 < ∆/J < 70
  • 31.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0 0.6 -5 0.4 1 10 100 -10 ∆/J "/J -15 log|P(x)|2 -20 -25 ∆/J < 6 -30 -35 -40 6 < ∆/J < 70 -20 -15 -10 -5 0 5 10 15 20 !/" #=1.09 $/J=5.6
  • 32.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0.6 0.4 1 10 100 ∆/J "/J ∆/J < 6 6 < ∆/J < 70
  • 33.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0 0.6 -5 0.4 1 10 100 -10 ∆/J "/J -15 log|P(x)|2 -20 -25 ∆/J < 6 -30 -35 -40 6 < ∆/J < 70 -8 -6 -4 -2 0 2 4 6 8 !/" #=0.56 $/J=18.1
  • 34.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0.6 0.4 1 10 100 ∆/J "/J ∆/J < 6 6 < ∆/J < 70
  • 35.
    2 2.4 H=− 2 + s1 Er1 sin (k1 x) 2 2m x 2.2 1 2 +s2 Er2 sin (k2 x + φ) + mω 2 x2 2 2 1.8 1.6 α 1.4 ! fα (x) = A exp(−|(x − x0 )/l)| ) α 1.2 1 0.8 0 0.6 -5 0.4 1 10 100 -10 ∆/J "/J -15 log|P(x)|2 -20 -25 ∆/J < 6 -30 -35 -40 6 < ∆/J < 70 -4 -3 -2 -1 0 1 2 3 4 !/" #=1.08 $/J=88.1
  • 36.
    s1 < 8 2.2 2.2 2 2 1.8 1.8 1.6 1.6 α 1.4 α 1.4 ! ! 1.2 1.2 1 1 s1=7.0 0.8 s1=7.0 0.8 s1=5.0 s1=5.0 0.6 s1=3.0 0.6 s1=3.0 s1=2.0 s1=2.0 0.4 0.4 0.01 0.1 1 0.01 0.1 1 10 s2 s 2 ∆/J "/J s1 s1 s2 s1 s1 < 8
  • 37.
    s1 < 8 ∆/J
  • 38.
    V H= Vi,j |ωi ωj | + Ei |ωi ωi | i,j=i i fα (x) = A exp(−|(x − x0 )/l)|α ) E (a) |t| ∆E (b) |t| ∆E ψ(x) = c1 φ1 (x) + c2 φ2 (x) ψ+ ψ+ E± c1± E+ E+ E2 E1 E2 E1 ψ− ψ− c2± E− E− c1± ∆E ∆E 2 + 4|t|2 = x x c2± 2|t| n |t| −n log( ∆Er ) Pn = =e |t| ∆Er
  • 39.
    L1 ν = L2 /L1 g2 L2 = f (g1 , ν) g1 log(g2 /g1 ) log g2 − log g1 d log g lim = lim = ν→1 log ν L2 →L1 log L2 − log L1 d log L L=L1 β(g) β(g) = d − 2 d log g = β(g) 1 d=3 d log L d=2 gc log g 0 d=1 −1 g g0 e−αL/ξ g ∝ Ld−2 g β(g) = log β(g) = d − 2 g g0 β(g) = log g0
  • 40.
    )# !"#""+ !"#( !"#""* !"#"") (a) !(# !"#'$ !"#' (d) !'# +,-./012.' !"#""( !"#&$ -./01-% & *+,-.* !"#""' !&# !"#& !"#""& !%# !"#%$ !"#""% !"#% !"#""$ !$# !"#"$ !" !"# !" ,'" ,&" ,%" ,$" !" !* !%" !&" !'" !$" !" !% !' )# )' )(" )'")")&" )* )% )%" !" !%" !&" !'" !(" !2" !3" !/" #234"#"! #4(5##) $364(75') #/0122#%! !"#' !"#'$ (b) (c) !(#$ !&#' !"#&$ !"#' !(#( !&#& !( !"#&$ !"#& !& *+,-.*& *+,-.*& !'#& !"#& !"#%$ !'#% !%#$ !'#$ !"#%$ !%#( ! ! !"#% !'#( !%#' !"#% !"#"$ !' !"#"$ (a) !%#& !"#& !" !"#% ()" ('" (&" (%" !" !%" !&" !'" !)" !% (b) ('" !" ()" (&" (%" !" !%" !&" !'" !)" !"#$ !"#$ !' !/" !'" !'"" !% !%" !/" !%"" ")* ")* #/01$#2! #/01%2#%!
  • 41.
    )# !(# !'# +,-./012.' !&# !%# !$# !"# !* !" !% !' )# )' )% )" )* !3" #4(5##) $364(75') !(#$ !&#' !(#( !&#& !( !& !'#& !'#% !%#$ !'#$ !%#( ! ! !'#( !%#' !' (a) !%#& !"#& !"#% !% (b) !"#$ !"#$ !' !'" !'"" !% !%" !%"" ")* ")*
  • 43.
    ( < x>2 )[µm] !'" )$*$"(+ !&# )$*,(' )$*#(+ !&" !%# √ !%" !$# !$" !# !" !"# !"("$ !"($ !$ )% s2 !'" )$*$"(+ !&# )$*,(' )$*#(+ !&" !%# > !%" x2 < !$# s1 √ !$" !# !" !"("$ !"($ !$ )%