SlideShare a Scribd company logo
1 of 20
Robust Adaptive Integral Backstepping
  Control and its Implementation on
       Motion Control System

                      Presented By
                  Shubhobrata Rudra
                   Assistant Professor
         Department of Electrical Engineering
  Calcutta Institute of Engineering and Management
Content

 State Model of the Motion Control System

 Control Objective

 Integral Backstepping Control Design

 Adaptation Scheme

 Robustification of the Adaptive Design

 Simulation Results and Discussion

 Conclusion
State Model of the Motion Control System

 Differential Equations of the Motion Control System

                             dθ
                                =ω
                             dt
                             dω
                         J      = Tq − TL
                             dt

 State model: state variables z1 = θ and z 2 = θ
                                 z1 = z 2
                                 
                               J ( z 2 + h ) = Tq
                                   
                                                          TL
                                                     h=
                                                           J
State Model of the Motion Control System




  Tq                   1            ω       θ
         +
             -         J        ∫       ∫

             TL
                  State Model
Objective of the Control Design:


i) The primary objective of the motion control system
   is to track a continuous bounded reference signal θref.


ii) Design a suitable parameter adaptation algorithm to
    estimate the variation of Inertia and Load Toque.

iii)Explore the concept of continuous switching function to
    design a robust adaptive law for parameter adaptation.
Integral Backstepping Control Design.

 Equation of Control Input :
                                  Tq = J ( z 2 + h)
                                           

 Definition of 1st error variable:
                                      e1 = θ - θ ref           ω is acting as a virtual
                                                                control input for the
 Modified Stabilizing Function
  Stabilizing Function:                                            first integrator
                              z refz ref c1 c1e1 + θref + λ 1 χ 1
                                      = = e + θ ref
                                                                                t
 Choice of 2nd error variable:
                                                                         χ 1 = ∫ e1 ( t ) dt
                                   e 2 = z ref - z 2
                                                                                0


 Control Lyapunov Function:
                                      1      2  1 2 1 2
                              V2 =      λ1 χ 1 + e1 + e2
                                      2         2    2
Contd.

 Derivative of the error variable e2:

                             de2                                            T
                                                             + λ χ − q + h
                                 = z ref − z 2 = c1e1 + θ ref
                                                                 1 1
                              dt                                             J

                               (
                             = c1 ( − c1e1 + e2 − λ 1 χ 1 ) + θ ref )
                                                               + λ e − q + h
                                                                        1 1
                                                                               T
                                                                                J

 Derivative of Lyapunov Function:
   = λ χ χ + e e + e e = λ χ e + e ( − c e + e − λ χ ) + e  c ( − c e + e − λ χ ) + θ + λ e − q + h
                                                               (                          )          T
 V2 1 1 1 1          1 2 2 1 1 1 1 1 1 2 1 1 2  1 1 1 2 1 1                            ref    1 1     
                                                                                                     J  
           2       2
                       (  
                          
                                 2
                                   )                                        + h − q 
    = − c1e1 − c2 e2 + e2  1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θ ref
                                                                                   T
                                                                                    J
                                                                                      
                                                                                              Incomplete
                                                                                                Design
                                                                                     

 Control Input:
                      ˆ      2
                              ((             )
                 Tq = J 1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θref + h
                                                                              ˆ         )
Adaptation Scheme

                                            2    2   1 2       1      1        1          1
     Augmented Lyapunov Function:Va = λ1 χ 1 + e1 + e 2 +        J2 +      h2
                                      2        2    2      2γ 1 J      2γ 2



     Derivative of the Lyapunov function:

                                                                                    ˆ
  = -c e 2 - c e 2 + J { e (( 1 − c 2 + λ )e − c λ χ + ( c + c )e + θ + h ) - 1 dJ } + h ( e - 1 dh )
Va                                                                        ˆ
       1 1     2 2         2        1     1 1    1 1 1     1   2 2     ref                    2
                      J                                                        γ 1 dt           γ 2 dt


     Parameter Update Law:

              ˆ
             dJ                 2                                           ˆ
                = γ 1e2 (( 1 − c1 + λ1 )e1 − c1λ1 χ1 + ( c1 + c2 )e2 + θref + h )
             dt

                                     ˆ
                                    dh
                                       = γ 2e2
                                    dt
Robust Adaptive Backstepping


 Difficulties for the designer of Adaptive Control

    Mathematical Models are not free from Un modeled
     Dynamics

    Parameter Drift may occur in the time of real world
     implementation

    Noises are unavoidable in real time application.

    Bounded disturbances may cause a high rate of
     adaptation which leads to an unstable/undesirable
     system performance .
Contd.

  A continuous Switching function is use to implement the Robustification
                                       Different type of switching
   measures :                           techniques can be used to

J    1 2      (
ˆ = γ e ( 1 − c 2 + λ )e − c λ χ + ( c + c )Adaptiveˆ − γ σ J
               1     1  1
                                  prevent the abnormal
                            1 1 1 Robust e2 + θref + h
                                      1
                                                    
                                            2 the rate of
                                  variation of            1 Js
                                                               ˆ                    )
              
              ˆ                     ˆ
              h = γ 2 e 2 − γ 2σ sh h
                                                          Control!!!!!
                                                           adaptation



 where

                   0             ˆ
                               if J < J 0                                        ˆ
                                                                     0        if h < h0
                                                            
             J −J  ˆ                                       h−h ˆ
                        0
                                        ˆ                               0
  σ Js   = σ J 0             if J 0 ≤ J ≤ 2J 0   σ hs   = σ h0                      ˆ
                                                                               if h 0 ≤ h ≤ 2h0
                 J  ˆ                                    h      ˆ 
                                                                       
            σ J0                  ˆ
                                if J ≥ 2J 0                        σ h0           ˆ
                                                                                if h ≥ 2h0
                                                           
Simulation Results and Discussion
   Reference Trajectory and Response of the System




                                       t        t 
Reference Signal   θ ref   = 10 sin( pi ) sin pi 
                                       2      50 
Simulation Results and Discussion

                   Estimation of Inertia Variation




Robust Adaptive Integral Backstepping   Adaptive Integral Backstepping
          Control Scheme                       Control Scheme
Simulation Results and Discussion

              Estimation of Load Torque Variation




Robust Adaptive Integral Backstepping   Adaptive Integral Backstepping
          Control Scheme                       Control Scheme
Conclusion

 The system response always closely follows the given
  reference signal, while the maximum tracking error is less
  than 0.1rad.

 Robust Adaptive Controller reduce the parameter
  estimation error.

 This robust adaptive controller offers a smart estimation of
  the parameters variation. Sudden variations in parameter is
  not able to affect the estimation of the other parameter.
Questions




Polygonia interrogationis known as Question Mark
References

 Y.Tan, J. Hu, J.Chang, H. Tan,”Adaptive Integral Backstepping
  Motion Control and Experiment Implementation”, IEEE
  Conference on Industry Applications, pp 1081-1088, vol-2,
  2000.
 M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear
  and Adaptive Control Design, New York : Wiley Interscience,
  1995.
 J. Jhou and C. Wen, Adaptive Backstepping Control of
  Uncertain System, Springer-verlag, Berlin, Heidelbarg 2008.
References

 H.Tan and J. Chang, “Adaptive Position Control of Induction
  Motor Systems under Mechanical Uncertainties”,
  Proceedings of the IEEE 1999 International Conference on
  Power Electronics and Drive Systems, pp 597-602 Hong
  Kong, July 1999.
 Y.Tan, J.Chang and H.Tan,” Adaptive backstepping control
  and friction compensation for AC servo with inertia and load
  uncertainties,” IEEE Transaction on Industrial Electronics,
  vol-50, pp944-952, 2003.
 Ioannou PA and Sun J, Robust Adaptive Control. Prentice
  Hall, Englewood Cliff, 1996.
List of Design Parameters

Name of the Parameters       Parameters Value
          C1                        4
          C2                        4
          Λ1                       1.25
          γ1                        6
          γ2                        6
          J0                       0.9
          h0                       0.25

More Related Content

What's hot

Computation of the marginal likelihood
Computation of the marginal likelihoodComputation of the marginal likelihood
Computation of the marginal likelihoodBigMC
 
"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of Hawaii"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of HawaiiWilliam J Farrell III
 
State Space Model
State Space ModelState Space Model
State Space ModelCdiscount
 
Classification of systems : Part 2
Classification of systems  :  Part 2Classification of systems  :  Part 2
Classification of systems : Part 2Dr.SHANTHI K.G
 
Paris2012 session2
Paris2012 session2Paris2012 session2
Paris2012 session2Cdiscount
 
Classification of Systems: Part 1
Classification of Systems:  Part 1Classification of Systems:  Part 1
Classification of Systems: Part 1Dr.SHANTHI K.G
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systemstaha25
 
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...bermudez_jcm
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1Cdiscount
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentalsLalit Kanoje
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasirymmanz86
 

What's hot (18)

Computation of the marginal likelihood
Computation of the marginal likelihoodComputation of the marginal likelihood
Computation of the marginal likelihood
 
"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of Hawaii"Modern Tracking" Short Course Taught at University of Hawaii
"Modern Tracking" Short Course Taught at University of Hawaii
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Table 7a,7b kft 131
Table 7a,7b  kft 131Table 7a,7b  kft 131
Table 7a,7b kft 131
 
State Space Model
State Space ModelState Space Model
State Space Model
 
Classification of systems : Part 2
Classification of systems  :  Part 2Classification of systems  :  Part 2
Classification of systems : Part 2
 
Paris2012 session2
Paris2012 session2Paris2012 session2
Paris2012 session2
 
Classification of Systems: Part 1
Classification of Systems:  Part 1Classification of Systems:  Part 1
Classification of Systems: Part 1
 
Financial mgt
Financial mgtFinancial mgt
Financial mgt
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Ch07s
Ch07sCh07s
Ch07s
 
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR  SPARSE IMPULSE RESPONSE IDENTIFI...
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Asymptotic Notation
Asymptotic NotationAsymptotic Notation
Asymptotic Notation
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentals
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
Steveliz
StevelizSteveliz
Steveliz
 

Similar to Robust adaptive integral backstepping control and its implementation on

2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Modelspinchung
 
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...Shubhobrata Rudra
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1Iwan Pranoto
 
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...Shubhobrata Rudra
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...yigalbt
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandyLoren Schwappach
 
State description of digital processors,sampled continous systems,system with...
State description of digital processors,sampled continous systems,system with...State description of digital processors,sampled continous systems,system with...
State description of digital processors,sampled continous systems,system with...manish5289
 
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...P singh
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptxUmme habiba
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dftmikeproud
 
LAB05ex1.mfunction LAB05ex1m = 1; .docx
LAB05ex1.mfunction LAB05ex1m = 1;                          .docxLAB05ex1.mfunction LAB05ex1m = 1;                          .docx
LAB05ex1.mfunction LAB05ex1m = 1; .docxsmile790243
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Designtaha25
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabRavi Jindal
 

Similar to Robust adaptive integral backstepping control and its implementation on (20)

2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
08 fouri
08 fouri08 fouri
08 fouri
 
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1
 
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
 
State description of digital processors,sampled continous systems,system with...
State description of digital processors,sampled continous systems,system with...State description of digital processors,sampled continous systems,system with...
State description of digital processors,sampled continous systems,system with...
 
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
 
LAB05ex1.mfunction LAB05ex1m = 1; .docx
LAB05ex1.mfunction LAB05ex1m = 1;                          .docxLAB05ex1.mfunction LAB05ex1m = 1;                          .docx
LAB05ex1.mfunction LAB05ex1m = 1; .docx
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlab
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Formula
FormulaFormula
Formula
 

Robust adaptive integral backstepping control and its implementation on

  • 1. Robust Adaptive Integral Backstepping Control and its Implementation on Motion Control System Presented By Shubhobrata Rudra Assistant Professor Department of Electrical Engineering Calcutta Institute of Engineering and Management
  • 2. Content  State Model of the Motion Control System  Control Objective  Integral Backstepping Control Design  Adaptation Scheme  Robustification of the Adaptive Design  Simulation Results and Discussion  Conclusion
  • 3. State Model of the Motion Control System  Differential Equations of the Motion Control System dθ =ω dt dω J = Tq − TL dt  State model: state variables z1 = θ and z 2 = θ z1 = z 2  J ( z 2 + h ) = Tq  TL h= J
  • 4. State Model of the Motion Control System Tq 1 ω θ + - J ∫ ∫ TL State Model
  • 5. Objective of the Control Design: i) The primary objective of the motion control system is to track a continuous bounded reference signal θref. ii) Design a suitable parameter adaptation algorithm to estimate the variation of Inertia and Load Toque. iii)Explore the concept of continuous switching function to design a robust adaptive law for parameter adaptation.
  • 6. Integral Backstepping Control Design.  Equation of Control Input : Tq = J ( z 2 + h)   Definition of 1st error variable: e1 = θ - θ ref ω is acting as a virtual control input for the  Modified Stabilizing Function Stabilizing Function: first integrator z refz ref c1 c1e1 + θref + λ 1 χ 1 = = e + θ ref t  Choice of 2nd error variable: χ 1 = ∫ e1 ( t ) dt e 2 = z ref - z 2 0  Control Lyapunov Function: 1 2 1 2 1 2 V2 = λ1 χ 1 + e1 + e2 2 2 2
  • 7. Contd.  Derivative of the error variable e2: de2 T  + λ χ − q + h = z ref − z 2 = c1e1 + θ ref    1 1 dt J ( = c1 ( − c1e1 + e2 − λ 1 χ 1 ) + θ ref )  + λ e − q + h 1 1 T J  Derivative of Lyapunov Function:  = λ χ χ + e e + e e = λ χ e + e ( − c e + e − λ χ ) + e  c ( − c e + e − λ χ ) + θ + λ e − q + h ( ) T V2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 2  1 1 1 2 1 1 ref 1 1   J  2 2 (   2 )  + h − q  = − c1e1 − c2 e2 + e2  1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θ ref T J  Incomplete Design    Control Input: ˆ 2 (( ) Tq = J 1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θref + h  ˆ )
  • 8. Adaptation Scheme 2 2 1 2 1 1 1 1  Augmented Lyapunov Function:Va = λ1 χ 1 + e1 + e 2 + J2 + h2 2 2 2 2γ 1 J 2γ 2  Derivative of the Lyapunov function: ˆ  = -c e 2 - c e 2 + J { e (( 1 − c 2 + λ )e − c λ χ + ( c + c )e + θ + h ) - 1 dJ } + h ( e - 1 dh ) Va  ˆ 1 1 2 2 2 1 1 1 1 1 1 1 2 2 ref 2 J γ 1 dt γ 2 dt  Parameter Update Law: ˆ dJ 2  ˆ = γ 1e2 (( 1 − c1 + λ1 )e1 − c1λ1 χ1 + ( c1 + c2 )e2 + θref + h ) dt ˆ dh = γ 2e2 dt
  • 9. Robust Adaptive Backstepping  Difficulties for the designer of Adaptive Control  Mathematical Models are not free from Un modeled Dynamics  Parameter Drift may occur in the time of real world implementation  Noises are unavoidable in real time application.  Bounded disturbances may cause a high rate of adaptation which leads to an unstable/undesirable system performance .
  • 10. Contd.  A continuous Switching function is use to implement the Robustification Different type of switching measures : techniques can be used to  J 1 2 ( ˆ = γ e ( 1 − c 2 + λ )e − c λ χ + ( c + c )Adaptiveˆ − γ σ J 1 1 1 prevent the abnormal 1 1 1 Robust e2 + θref + h 1  2 the rate of variation of 1 Js ˆ )  ˆ ˆ h = γ 2 e 2 − γ 2σ sh h Control!!!!! adaptation where  0 ˆ if J < J 0  ˆ  0 if h < h0    J −J  ˆ   h−h ˆ   0 ˆ   0 σ Js = σ J 0  if J 0 ≤ J ≤ 2J 0 σ hs = σ h0  ˆ if h 0 ≤ h ≤ 2h0    J  ˆ    h  ˆ        σ J0 ˆ if J ≥ 2J 0  σ h0 ˆ if h ≥ 2h0  
  • 11. Simulation Results and Discussion Reference Trajectory and Response of the System t  t  Reference Signal θ ref = 10 sin( pi ) sin pi  2  50 
  • 12. Simulation Results and Discussion Estimation of Inertia Variation Robust Adaptive Integral Backstepping Adaptive Integral Backstepping Control Scheme Control Scheme
  • 13. Simulation Results and Discussion Estimation of Load Torque Variation Robust Adaptive Integral Backstepping Adaptive Integral Backstepping Control Scheme Control Scheme
  • 14. Conclusion  The system response always closely follows the given reference signal, while the maximum tracking error is less than 0.1rad.  Robust Adaptive Controller reduce the parameter estimation error.  This robust adaptive controller offers a smart estimation of the parameters variation. Sudden variations in parameter is not able to affect the estimation of the other parameter.
  • 16. References  Y.Tan, J. Hu, J.Chang, H. Tan,”Adaptive Integral Backstepping Motion Control and Experiment Implementation”, IEEE Conference on Industry Applications, pp 1081-1088, vol-2, 2000.  M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear and Adaptive Control Design, New York : Wiley Interscience, 1995.  J. Jhou and C. Wen, Adaptive Backstepping Control of Uncertain System, Springer-verlag, Berlin, Heidelbarg 2008.
  • 17. References  H.Tan and J. Chang, “Adaptive Position Control of Induction Motor Systems under Mechanical Uncertainties”, Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, pp 597-602 Hong Kong, July 1999.  Y.Tan, J.Chang and H.Tan,” Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties,” IEEE Transaction on Industrial Electronics, vol-50, pp944-952, 2003.  Ioannou PA and Sun J, Robust Adaptive Control. Prentice Hall, Englewood Cliff, 1996.
  • 18.
  • 19.
  • 20. List of Design Parameters Name of the Parameters Parameters Value C1 4 C2 4 Λ1 1.25 γ1 6 γ2 6 J0 0.9 h0 0.25