SPM TRIAL EXAM 2010
                          MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2

                                      SECTION A (40 MARKS)
No.                                      Mark Scheme           Total
                                                               Marks

1     x = 1− 2y                                                 P1
      2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5
                  2      2
                                                                K1
      7y2 − 7y − 3 = 0

           − (− 7 ) ±        (− 7 )2 − 4(7 )(− 3)
      y=
                              2(7 )
                                                                K1
      y = 1.324 , − 0.324
                                                                N1
      x = −1.648 , 1.648
                                                                N1
      OR

           1− x
      y=
            2
                                                                P1
             1− x  1− x 
      2x 2 +       + x  =5
              2   2                                         K1

      7 x 2 − 19 = 0

           − (0 ) ±     (0)2 − 4(7 )(− 19)
      x=
                          2(7 )
                                                                K1
      x = −1.648 , 1.648
                                                                N1
      y = 1.324 , − 0.324
                                                                N1




                                                                 5
2   (a)
               (
     f ( x ) = − x 2 − 4 x − 21   )
                                                                         K1
                    −4 −4
                          2      2
                                     
    = − x 2 − 4 x +     −   − 21
       
                     2   2      
                                     
                                                                         N1
    = −( x − 2 ) + 25
                2




    (b) Max Value = 25                                                   N1

    (c)                         f (x )

                               25                   (2,25)


                               21



                                                                     x
                      -3                        2                7

                                        Shape graph                      N1
                                        Max point                        N1
                        f ( x ) intercept or point (0,21)                N1

    d) f ( x ) = ( x − 2 ) − 25                                          N1
                           2




                                                                         7

3                            1     1
    a) List of Areas ; xy,     xy, xy                                    K1
                             4    16
                             1
         T2 ÷ T1 = T3 ÷ T2 =
                             4
                                                             1
         This is Geometric Progression and r =                           N1
                                                             4
                               n −1
                     1                   25
    b)       12800 ×                =
                     4                  512
n −1                                                     K1
               1                  1
                           =
               4                262144
                      n −1           9
               1      1
                 = 
               4      4
                 n −1 = 9                                                      K1
                    n = 10

                        12800                                                  N1
     (c)       S∞ =
                           1
                        1−
                           4                                                   K1

                         2                                                     N1
                  = 17066 cm 2
                         3

                                                                               7

4   a)
    4 cos 2 − 1 − 1                                                            K1
    4 cos 2 − 2
     (
    2 2 cos 2 − 1 )                                                            N1
    2 cos 2θ

    b) i)
                             2

                             1


                                                       π                  2π
                             -1

                             -2
                                                                               P1
         -    shape of cos graph                                               P1
         -    amplitude (max = 2 and min = -2)                                 P1
         -    2 periodic/cycle in 0 ≤ θ ≤ 2π
                        θ
    b) ii) y = 1 −                   (equation of straight line)               K1
                        π

             Number of solution = 4               (without any mistake done)   N1


                                                                               7
5   a)
     Score        0–9         10 – 19   20 – 29   30 – 39   40 – 49
     Number        3             4         9         9        10      N1

                   1         
                    (35) − 7                                        P1
    b) Q1 = 19.5 +  4        10
                      9      
                                                                    K1
                             
          = 21.44

                3          
                 (35) − 25 
    Q3 = 39.5 +  4         10                                       K1
                   10      
                           
                           
       = 40.75

    Interquatile range                                                K1
    = 40.75 − 21.44
    = 19.31                                                           N1


                                                                      6

6   (a)    OQ = OA + AQ                                               K1
           OQ = (1 − m ) a + m b                                      N1
                          ~     ~



    (b)                   (
           PO + OQ = n PO + OR      )                                 K1

           OQ = (1 − n ) a + 3n b
                4                                                     N1
                5        ~      ~



    (c)
                  4 4                                               K1
           (i)     − n  = 1 − m or 3n = m
                  5 5 
                      3      1
                  m=    ,n=                                           N1
                     11     11                                        N1
                           8    3
           (ii)    OQ =      a+ b                                     N1
                          11 ~ 11 ~


                                                                      8
2
7
           =       ∫ ( 2 y − y )dy
                             2
    (a)(i) Area                                                                     K1
                    0
                                 2
                         y3 
                  =  y2 − 
                         3 0
                    4                                                               N1
                  = unit 2
                    3
                                     1        2
          (ii) Area region P =       ∫ y dy + ∫ ( 2 y − y )dy
                                                        2
                                                                                    K1
                                     0        1
                                                                2
                          1               y3 
                        =  × 1× 1 +  y 2 −                                      K1
                          2               3 1
                           7                                                        N1
                         = unit 2
                           6
                       4 7 1
    (b) Area region Q = − = unit 2
                       3 6 6                                                        K1
                       7 1
                      = :
                       6 6
                      =7:1                                                          N1
                        1
    (c) Volume π ∫ ( 2 y − y 2 ) dy
                                     2
         =
                        0                                                           K1
                                          1
                 4 y3       y5 
             = π      − y4 +                                                      K1
                 3          5 0
                8
              = π unit 3                                                            N1
               15



                                                                                    10



8   (a)             x       0.000         0.7071     1.000          1.414   1.732   N1
                 log10 y    1.000         1.330      1.477          1.672   1.826   N1

    Using the correct, uniform scale and axes                                       P1
    All points plotted correctly                                                    P1
    Line of best fit                                                                P1

                    1                                                               P1
    =
    (b) log10 y       x log10 p + log10 k
                    3
(i) use ∗ c = 10 k
                    log                                  K1
               k = 10.0                                  N1
                      1.83 − 1.0   1
       (ii) =
            use * m     = 0.47977= log10 p               K1
                       1.73 − 0    3
                                                         N1
                        p = 27.5

                                                         10


9
              1                                        K1
             2 π
    (a) ∠COD = 
              6 
                  1                                      N1
             =      π
                   = 1.047 rad
                  3
                          1       20                   K1
    (b) (i) Arc ABC =  π − π  or = π
                     10
                          3       3

                                        1      
    Length=
          AC        202 − 102 or 20 cos  π rad         K1
                                        6      
              20        1
    Perimeter = + 20 cos π = cm
                 π         38.267                        N1
              3         6

                     =
     (ii) Area of shaded region
                                   1
                                   2
                                     ( ) 2
                                         3
                                                  2 
                                     102  π − sin π 
                                                  3 
                                                         K1

                                 = 61.432cm2
                                                         N1
                  1
    (c) ∠CDE = =
             ∠CAD   π rad ( alternate segments )         K1
                  6

    Area =
             1
             2
              ( )  1 
               102  π 
                   6 
                                                         K1
                                                         N1
         = 26.183cm2




                                                         10
10   (a) T ( 4, 2 )                                                                      P1
     6+ x         6+ y
             = 4,      =2                                                                K1
       2           2
     S ( 2, −2 )                                                                         N1

     (b) y − 2 2 ( x − 4 )
             =                                                                          K1 K1
     = 2x − 6
     y                                                                                   N1

           3 x + 24        3 y + 24                                                      K1
     (c)            = 2 or          = −2
               7               7

        10 38                                                                          N1
     U − ,− 
        3   3 
                                                                                         K1
     (d)     ( x − 2) + ( y + 2) = 2
                      2          2
                                          ( x − 4) + ( y − 2)
                                                 2              2

                                                                                         N1
     3 x 2 + 3 y 2 − 28 x − 20 y + 72 =
                                      0



                                                                                         10


11   (a) (i) P ( X 0=
                 = )         C0 (0.6)0 (0.4)10 or P ( X 1=
                            10
                                                       = )          10
                                                                     C1 (0.6)1 (0.4)9    K1
              P ( X ≥ 2) = − [ P ( X = + P( X = ]
                          1           0)       1)
                      = 1 ─ 10C0 (0.6)0 (0.4)10 ─ 10C1 (0.6)1 (0.4)9                     K1
                      = 0.9983                                                           N1
                     2
          (ii) 800 ×                                                                     K1
                     5
                                                                                         N1
               = 320
     (b)(i) P ( −0.417 ≤ z ≤ 1.25 )                                                      K1
              = 1 − 0.3383 − 0.1057
              = 0.556                                                                    N1
           (ii) P ( X > t ) =0.7977
                     Z = −0.833                                                          P1
                                t − 4.5
                      −0.833 =                                                           K1
                                  1.2
                      t = 3.5004
                                                                                         N1

                                                                                         10
Sub    Total
 No                                Mark Scheme
                                                  Marks   Mark
         1
12a i)     (14) (5) sin θ = 21                     K1      3
         2
         θ = ° or 36° 52 '
             36.87

         ∠ BAC 180° − 36.87°
             =                                     K1
               = ° or 143° 8'
               143.13
                                                   N1

 ii)     BC 2 = 142 + 52 − 2(14)(5) cos 143.13°    K1      2
         BC 2 = 333
         BC = 18.25 cm                             N1

 iii)    sin θ sin 143.13°
               =                                   K1      2
           5      18.25
         θ = ° or 9° 28'
             9.46                                  N1

 b i)                                A'

                 14 cm                             N1      1
                                   5 cm

         B'                   C'

 ii)     ∠ ACB 180° − 143.13° − 9.46°
             =                                     K1      2
           = 27.41°

         ∠ A ' C ' B ' 180° − 27.41°
                    =
                      = ° or 152° 35'
                       152.59                      N1      10
Sub    Total
No                                 Mark Scheme
                                                             Marks   Mark
13 a)        4.55                      n                              3
        =
        m         × 100       or         × 100 =
                                               112            K1
             3.50                      4
        m = 130                        n = RM 4.48           N1 N1


 b)     110(70) + * 130( x) + 120( x + 1) + 112(2)            K1      2
                                                   = 116.5
                     7 + x + x +1+ 2
        x=3                                                   N1


c i)    See 140                                               P1      3
        x (116.5)
                  = 140                                       K1
           100
                  x = 120.17 / 120.2                          N1

 ii)     x
           × 100 =
                 140                                          K1      2
        25
                  x = RM 35                                   N1      10
Sub    Total
No                                    Mark Scheme
                                                         Marks   Mark
15 a)   v 0 = − 30 ms −1                                  N1      1

 b)     − 3t 2 + 21t − 30 > 0                             K1      2
        ( t − 5)( t − 2 ) < 0
        2<t<5                                             N1


 c)     a = 6t + 21
           −                                              K1      3
        a 5 = + 21
            − 6(5)                                        K1
        a 5 = − 9 ms − 2                                  N1

 d)        − 3t 3    21t 2                                K1      4
        S =       +         − 30t
             3         2
                   21t 2
        S =t +
           −  3
                          − 30t
                    2

                   21(3) 2
        S3 = 3 +
           − (3)           − 30(3) =
                                   − 22.5           or    K1
                     2
                   21(5) 2
        S5 = +
           − (5) 3
                           − 30(5) =
                                   −12.5
                     2

        Total distance = − 22.5 + (− 22.5) − (−12.5)      K1

                           = 32.5 m                       N1      10
Answer for question 14

                                        (a)       I.      x + y ≤ 70      N1

          y                                       II.     x ≤ 2y          N1

                                                  III.    y − 2 x ≤ 10    N1

                                        (b)       Refer to the graph,
                                                                          K1
                                                  1 graph correct
                                                  3 graphs correct               N1

 90                                               Correct area
                                                                          N1

                                        (c) i) 15 ≤ y ≤ 40                N1

 80                                           ii) k = 10x + 20y

                                                  max point ( 20,50 )       N1

 70                                               Max fees         = 10(20) + 20(50)        K1


                         (20,50)                                   = RM 1,200          N1
                                                                                                 10
 60


 50


 40


 30


 20


 10


                                                                                                      x
      0          10      20        30    40              50          60          70         80
log10 y    Answer for question 8




2.0



1.9

                                                                       X
1.8


1.7
                                                           X


1.6


1.5
                                               X


1.4

                                     X
1.3



1.2


1.1


1.0 X


                                                                                 x
  0        0.2       0.4       0.6       0.8   1.0   1.2   1.4   1.6       1.8

5 marks scheme for add maths paper 2 trial spm

  • 1.
    SPM TRIAL EXAM2010 MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2 SECTION A (40 MARKS) No. Mark Scheme Total Marks 1 x = 1− 2y P1 2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5 2 2 K1 7y2 − 7y − 3 = 0 − (− 7 ) ± (− 7 )2 − 4(7 )(− 3) y= 2(7 ) K1 y = 1.324 , − 0.324 N1 x = −1.648 , 1.648 N1 OR 1− x y= 2 P1 1− x  1− x  2x 2 +   + x =5  2   2  K1 7 x 2 − 19 = 0 − (0 ) ± (0)2 − 4(7 )(− 19) x= 2(7 ) K1 x = −1.648 , 1.648 N1 y = 1.324 , − 0.324 N1 5
  • 2.
    2 (a) ( f ( x ) = − x 2 − 4 x − 21 ) K1  −4 −4 2 2  = − x 2 − 4 x +   −  − 21    2   2    N1 = −( x − 2 ) + 25 2 (b) Max Value = 25 N1 (c) f (x ) 25 (2,25) 21 x -3 2 7 Shape graph N1 Max point N1 f ( x ) intercept or point (0,21) N1 d) f ( x ) = ( x − 2 ) − 25 N1 2 7 3 1 1 a) List of Areas ; xy, xy, xy K1 4 16 1 T2 ÷ T1 = T3 ÷ T2 = 4 1 This is Geometric Progression and r = N1 4 n −1 1 25 b) 12800 ×   = 4 512
  • 3.
    n −1 K1 1 1   = 4 262144 n −1 9 1 1   =  4 4 n −1 = 9 K1 n = 10 12800 N1 (c) S∞ = 1 1− 4 K1 2 N1 = 17066 cm 2 3 7 4 a) 4 cos 2 − 1 − 1 K1 4 cos 2 − 2 ( 2 2 cos 2 − 1 ) N1 2 cos 2θ b) i) 2 1 π 2π -1 -2 P1 - shape of cos graph P1 - amplitude (max = 2 and min = -2) P1 - 2 periodic/cycle in 0 ≤ θ ≤ 2π θ b) ii) y = 1 − (equation of straight line) K1 π Number of solution = 4 (without any mistake done) N1 7
  • 4.
    5 a) Score 0–9 10 – 19 20 – 29 30 – 39 40 – 49 Number 3 4 9 9 10 N1 1   (35) − 7  P1 b) Q1 = 19.5 +  4 10  9    K1   = 21.44 3   (35) − 25  Q3 = 39.5 +  4 10 K1  10      = 40.75 Interquatile range K1 = 40.75 − 21.44 = 19.31 N1 6 6 (a) OQ = OA + AQ K1 OQ = (1 − m ) a + m b N1 ~ ~ (b) ( PO + OQ = n PO + OR ) K1 OQ = (1 − n ) a + 3n b 4 N1 5 ~ ~ (c) 4 4  K1 (i)  − n  = 1 − m or 3n = m 5 5  3 1 m= ,n= N1 11 11 N1 8 3 (ii) OQ = a+ b N1 11 ~ 11 ~ 8
  • 5.
    2 7 = ∫ ( 2 y − y )dy 2 (a)(i) Area K1 0 2  y3  =  y2 −   3 0 4 N1 = unit 2 3 1 2 (ii) Area region P = ∫ y dy + ∫ ( 2 y − y )dy 2 K1 0 1 2 1   y3  =  × 1× 1 +  y 2 −  K1 2   3 1 7 N1 = unit 2 6 4 7 1 (b) Area region Q = − = unit 2 3 6 6 K1 7 1 = : 6 6 =7:1 N1 1 (c) Volume π ∫ ( 2 y − y 2 ) dy 2 = 0 K1 1  4 y3 y5  = π − y4 +  K1  3 5 0 8 = π unit 3 N1 15 10 8 (a) x 0.000 0.7071 1.000 1.414 1.732 N1 log10 y 1.000 1.330 1.477 1.672 1.826 N1 Using the correct, uniform scale and axes P1 All points plotted correctly P1 Line of best fit P1 1 P1 = (b) log10 y x log10 p + log10 k 3
  • 6.
    (i) use ∗c = 10 k log K1 k = 10.0 N1 1.83 − 1.0 1 (ii) = use * m = 0.47977= log10 p K1 1.73 − 0 3 N1 p = 27.5 10 9 1  K1 2 π (a) ∠COD =  6  1 N1 = π = 1.047 rad 3  1  20 K1 (b) (i) Arc ABC =  π − π  or = π 10  3  3 1  Length= AC 202 − 102 or 20 cos  π rad  K1 6  20 1 Perimeter = + 20 cos π = cm π 38.267 N1 3 6 = (ii) Area of shaded region 1 2 ( ) 2 3 2  102  π − sin π  3  K1 = 61.432cm2 N1 1 (c) ∠CDE = = ∠CAD π rad ( alternate segments ) K1 6 Area = 1 2 ( ) 1  102  π  6  K1 N1 = 26.183cm2 10
  • 7.
    10 (a) T ( 4, 2 ) P1 6+ x 6+ y = 4, =2 K1 2 2 S ( 2, −2 ) N1 (b) y − 2 2 ( x − 4 ) = K1 K1 = 2x − 6 y N1 3 x + 24 3 y + 24 K1 (c) = 2 or = −2 7 7  10 38  N1 U − ,−   3 3  K1 (d) ( x − 2) + ( y + 2) = 2 2 2 ( x − 4) + ( y − 2) 2 2 N1 3 x 2 + 3 y 2 − 28 x − 20 y + 72 = 0 10 11 (a) (i) P ( X 0= = ) C0 (0.6)0 (0.4)10 or P ( X 1= 10 = ) 10 C1 (0.6)1 (0.4)9 K1 P ( X ≥ 2) = − [ P ( X = + P( X = ] 1 0) 1) = 1 ─ 10C0 (0.6)0 (0.4)10 ─ 10C1 (0.6)1 (0.4)9 K1 = 0.9983 N1 2 (ii) 800 × K1 5 N1 = 320 (b)(i) P ( −0.417 ≤ z ≤ 1.25 ) K1 = 1 − 0.3383 − 0.1057 = 0.556 N1 (ii) P ( X > t ) =0.7977 Z = −0.833 P1 t − 4.5 −0.833 = K1 1.2 t = 3.5004 N1 10
  • 8.
    Sub Total No Mark Scheme Marks Mark 1 12a i) (14) (5) sin θ = 21 K1 3 2 θ = ° or 36° 52 ' 36.87 ∠ BAC 180° − 36.87° = K1 = ° or 143° 8' 143.13 N1 ii) BC 2 = 142 + 52 − 2(14)(5) cos 143.13° K1 2 BC 2 = 333 BC = 18.25 cm N1 iii) sin θ sin 143.13° = K1 2 5 18.25 θ = ° or 9° 28' 9.46 N1 b i) A' 14 cm N1 1 5 cm B' C' ii) ∠ ACB 180° − 143.13° − 9.46° = K1 2 = 27.41° ∠ A ' C ' B ' 180° − 27.41° = = ° or 152° 35' 152.59 N1 10
  • 9.
    Sub Total No Mark Scheme Marks Mark 13 a) 4.55 n 3 = m × 100 or × 100 = 112 K1 3.50 4 m = 130 n = RM 4.48 N1 N1 b) 110(70) + * 130( x) + 120( x + 1) + 112(2) K1 2 = 116.5 7 + x + x +1+ 2 x=3 N1 c i) See 140 P1 3 x (116.5) = 140 K1 100 x = 120.17 / 120.2 N1 ii) x × 100 = 140 K1 2 25 x = RM 35 N1 10
  • 10.
    Sub Total No Mark Scheme Marks Mark 15 a) v 0 = − 30 ms −1 N1 1 b) − 3t 2 + 21t − 30 > 0 K1 2 ( t − 5)( t − 2 ) < 0 2<t<5 N1 c) a = 6t + 21 − K1 3 a 5 = + 21 − 6(5) K1 a 5 = − 9 ms − 2 N1 d) − 3t 3 21t 2 K1 4 S = + − 30t 3 2 21t 2 S =t + − 3 − 30t 2 21(3) 2 S3 = 3 + − (3) − 30(3) = − 22.5 or K1 2 21(5) 2 S5 = + − (5) 3 − 30(5) = −12.5 2 Total distance = − 22.5 + (− 22.5) − (−12.5) K1 = 32.5 m N1 10
  • 11.
    Answer for question14 (a) I. x + y ≤ 70 N1 y II. x ≤ 2y N1 III. y − 2 x ≤ 10 N1 (b) Refer to the graph, K1 1 graph correct 3 graphs correct N1 90 Correct area N1 (c) i) 15 ≤ y ≤ 40 N1 80 ii) k = 10x + 20y max point ( 20,50 ) N1 70 Max fees = 10(20) + 20(50) K1 (20,50) = RM 1,200 N1 10 60 50 40 30 20 10 x 0 10 20 30 40 50 60 70 80
  • 12.
    log10 y Answer for question 8 2.0 1.9 X 1.8 1.7 X 1.6 1.5 X 1.4 X 1.3 1.2 1.1 1.0 X x 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8