This document discusses generalized divergences and comparative convexity. It introduces Jensen divergences, Bregman divergences, and their generalizations to quasi-arithmetic and weighted means. Quasi-arithmetic Bregman divergences are defined for strictly (ρ,τ)-convex functions using two strictly monotone functions ρ and τ. Power mean Bregman divergences are obtained as a subfamily when ρ(x)=xδ1 and τ(x)=xδ2. A criterion is given to check (ρ,τ)-convexity by testing the ordinary convexity of the transformed function G=Fρ,τ.