Equations and Quadratic
functions
Objective
Solving quadratic equation by
Factorisation
Warm up
• Solve the given equation.
y
y
y
y
y





2
1
6
3
6
3
511
3
115
3
Explanation
11.6 – Solving Quadratic Equations by Factoring
A quadratic equation is written in the Standard
Form, 2
0ax bx c  
where a, b, and c are real numbers and .0a 
Examples:
2
7 12 0x x  
2
3 4 15x x 
 7 0x x 
(standard form)
Zero Factor Property:
If a and b are real numbers and if ,0ab 
Examples:
 7 0x x 
then or .0a  0b 
0x  7 0x  
7x  0x 
11.6 – Solving Quadratic Equations by Factoring
Zero Factor Property:
If a and b are real numbers and if ,0ab 
Examples:
  10 3 6 0x x  
then or .0a  0b 
10 0x   3 6 0x 
10x 
3 6x  2x 
10 10 01 0x    63 66 0x   
3 6
3 3
x

11.6 – Solving Quadratic Equations by Factoring
Solving Quadratic Equations:
1) Write the equation in standard form.
4) Solve each equation.
2) Factor the equation completely.
3) Set each factor equal to 0.
5) Check the solutions (in original equation).
11.6 – Solving Quadratic Equations by Factoring
2
3 18 0x x  
6 0x  3 0x  
 3x
6x 3x  
2
3 18x x 
18:Factors of
1,18 2, 9 3, 6
   
2
6 3 16 8 
36 18 18 
18 18
   
2
13 3 83  
9 9 18 
18 18
 6x 0
11.6 – Solving Quadratic Equations by Factoring
 3 18x x 
18x 
2
3 18x x 
   
2
18 13 18 8 
324 54 18 
270 18
   
2
21 23 11 8 
441 63 18 
378 18
3 18x 
3 183 3x  
21x 
If the Zero Factor
Property is not used,
then the solutions will
be incorrect
11.6 – Solving Quadratic Equations by Factoring
2
4 5x x 
1 0x  5 0x  
  1 5 0x x  
1x   5x 
 4 5x x  
2
4 5 0x x  
11.6 – Solving Quadratic Equations by Factoring
2
3 7 6x x  3 0x   3 2 0x 
  3 3 2 0x x  
3x  
2
3
x 
 3 7 6x x  
2
3 7 6 0x x   3 2x 
6:Factors of
2, 31, 6
3:Factors of
1, 3
11.6 – Solving Quadratic Equations by Factoring
2
9 24 16x x  
2
9 24 16 0x x  
3 4 0x 
  3 4 3 4 0x x  
4
3
x 
3 4x 
 9 16and are perfect squares
11.6 – Solving Quadratic Equations by Factoring
3
2 18 0x x 
2x
2 0x 
2x
3x  
3 0x   3 0x 
3x 0x 
 2
9x  0
 3x  3x 0
11.6 – Solving Quadratic Equations by Factoring
  2
3 3 20 7 0x x x   
 3x
3 0x  
7x 
7 0x   3 1 0x 
1
3
x  
3x   3 1x  
3:Factors of 1, 3 7:Factors of 1, 7
 7x  0 3 1x 
11.6 – Solving Quadratic Equations by Factoring
Continuous assessment
• Q1: Solve these equations by factorisation.
a) (x-2)(2x+1) = 0
b) 3x2 – 27x = 0
c) 2x2 – 7x + 6 = 0
Q2: a) 2(d2 – 3d +3) = d + 1
b) 3(e + 1)2= 1 – e
c) (g + 3)(2 – g) = g2
Answers
• Q1: a) x = 2, x = - ½ b) x = 0, x= 9 c) x = -4, x=3
• Q2: a) (a+3)(a-3) b) e = -2, e = -1/3
c) d = -2, d = 1 ½
Final assessment
• Solve by factorisation.
17x2 – 51x + 34 = 0
Hard Questions
0 
A cliff diver is 64 feet above the surface of the
water. The formula for calculating the height (h)
of the diver after t seconds is: 2
16 64.h t  
How long does it take for the diver to hit the
surface of the water?
0 
0 
2 0t   2 0t  
2t   2t  seconds
2
16 64t 
16  2
4t 
16  2t   2t 
11.7 – Quadratic Equations and Problem Solving
2
x
The square of a number minus twice the number
is 63. Find the number.
 7x 
7x  
x is the number.
2
2 63 0x x  
7 0x   9 0x  
9x 
2x 63
63:Factors of 1, 63 3, 21 7, 9
 9x 0
11.7 – Quadratic Equations and Problem Solving
 5 176w w 
The length of a rectangular garden is 5 feet more than
its width. The area of the garden is 176 square feet.
What are the length and the width of the garden?
 11w
The width is w.
11 0w 
11w
The length is w+5.l w A 
2
5 176w w 
2
5 176 0w w  
16 0w 
16w 
11w 11 5l  
16l 
feet
feet
176:Factors of
1,176 2, 88 4, 44
8, 22 11,16
 16w 0
11.7 – Quadratic Equations and Problem Solving
x
Find two consecutive odd numbers whose product is
23 more than their sum?
Consecutive odd numbers: x
5x   5x 2
2 2 25x x x  
2
25 0x  
 5x
5 0x   5 0x  
5, 3  5, 7
5 2 3    5 2 7 
2.x 
 2x   2x x  23
2
22 2 2 25xx x x x  
2
25 2525x  
2
25x 
 5x 0
11.7 – Quadratic Equations and Problem Solving
a x
The length of one leg of a right triangle is 7 meters less than
the length of the other leg. The length of the hypotenuse is
13 meters. What are the lengths of the legs?
12a 
 .Pythagorean Th
 
22 2
7 13x x  
5x  
5
meters
7b x  13c 
2 2
14 49 169x x x   
2
2 14 120 0x x  
 2
2 7 60 0x x  
2
5 0x   12 0x 
12x 
12 7b   meters
2 2 2
a b c 
60:Factors of 1, 60 2, 30
3, 20 4,15 5,12
 5x  12x 0
6,10
11.7 – Quadratic Equations and Problem Solving

Solving quadratic equations

  • 1.
    Equations and Quadratic functions Objective Solvingquadratic equation by Factorisation
  • 2.
    Warm up • Solvethe given equation. y y y y y      2 1 6 3 6 3 511 3 115 3
  • 3.
  • 4.
    11.6 – SolvingQuadratic Equations by Factoring A quadratic equation is written in the Standard Form, 2 0ax bx c   where a, b, and c are real numbers and .0a  Examples: 2 7 12 0x x   2 3 4 15x x   7 0x x  (standard form)
  • 5.
    Zero Factor Property: Ifa and b are real numbers and if ,0ab  Examples:  7 0x x  then or .0a  0b  0x  7 0x   7x  0x  11.6 – Solving Quadratic Equations by Factoring
  • 6.
    Zero Factor Property: Ifa and b are real numbers and if ,0ab  Examples:   10 3 6 0x x   then or .0a  0b  10 0x   3 6 0x  10x  3 6x  2x  10 10 01 0x    63 66 0x    3 6 3 3 x  11.6 – Solving Quadratic Equations by Factoring
  • 7.
    Solving Quadratic Equations: 1)Write the equation in standard form. 4) Solve each equation. 2) Factor the equation completely. 3) Set each factor equal to 0. 5) Check the solutions (in original equation). 11.6 – Solving Quadratic Equations by Factoring
  • 8.
    2 3 18 0xx   6 0x  3 0x    3x 6x 3x   2 3 18x x  18:Factors of 1,18 2, 9 3, 6     2 6 3 16 8  36 18 18  18 18     2 13 3 83   9 9 18  18 18  6x 0 11.6 – Solving Quadratic Equations by Factoring
  • 9.
     3 18xx  18x  2 3 18x x      2 18 13 18 8  324 54 18  270 18     2 21 23 11 8  441 63 18  378 18 3 18x  3 183 3x   21x  If the Zero Factor Property is not used, then the solutions will be incorrect 11.6 – Solving Quadratic Equations by Factoring
  • 10.
    2 4 5x x 1 0x  5 0x     1 5 0x x   1x   5x   4 5x x   2 4 5 0x x   11.6 – Solving Quadratic Equations by Factoring
  • 11.
    2 3 7 6xx  3 0x   3 2 0x    3 3 2 0x x   3x   2 3 x   3 7 6x x   2 3 7 6 0x x   3 2x  6:Factors of 2, 31, 6 3:Factors of 1, 3 11.6 – Solving Quadratic Equations by Factoring
  • 12.
    2 9 24 16xx   2 9 24 16 0x x   3 4 0x    3 4 3 4 0x x   4 3 x  3 4x   9 16and are perfect squares 11.6 – Solving Quadratic Equations by Factoring
  • 13.
    3 2 18 0xx  2x 2 0x  2x 3x   3 0x   3 0x  3x 0x   2 9x  0  3x  3x 0 11.6 – Solving Quadratic Equations by Factoring
  • 14.
      2 33 20 7 0x x x     3x 3 0x   7x  7 0x   3 1 0x  1 3 x   3x   3 1x   3:Factors of 1, 3 7:Factors of 1, 7  7x  0 3 1x  11.6 – Solving Quadratic Equations by Factoring
  • 15.
    Continuous assessment • Q1:Solve these equations by factorisation. a) (x-2)(2x+1) = 0 b) 3x2 – 27x = 0 c) 2x2 – 7x + 6 = 0 Q2: a) 2(d2 – 3d +3) = d + 1 b) 3(e + 1)2= 1 – e c) (g + 3)(2 – g) = g2
  • 16.
    Answers • Q1: a)x = 2, x = - ½ b) x = 0, x= 9 c) x = -4, x=3 • Q2: a) (a+3)(a-3) b) e = -2, e = -1/3 c) d = -2, d = 1 ½
  • 17.
    Final assessment • Solveby factorisation. 17x2 – 51x + 34 = 0
  • 18.
  • 19.
    0  A cliffdiver is 64 feet above the surface of the water. The formula for calculating the height (h) of the diver after t seconds is: 2 16 64.h t   How long does it take for the diver to hit the surface of the water? 0  0  2 0t   2 0t   2t   2t  seconds 2 16 64t  16  2 4t  16  2t   2t  11.7 – Quadratic Equations and Problem Solving
  • 20.
    2 x The square ofa number minus twice the number is 63. Find the number.  7x  7x   x is the number. 2 2 63 0x x   7 0x   9 0x   9x  2x 63 63:Factors of 1, 63 3, 21 7, 9  9x 0 11.7 – Quadratic Equations and Problem Solving
  • 21.
     5 176ww  The length of a rectangular garden is 5 feet more than its width. The area of the garden is 176 square feet. What are the length and the width of the garden?  11w The width is w. 11 0w  11w The length is w+5.l w A  2 5 176w w  2 5 176 0w w   16 0w  16w  11w 11 5l   16l  feet feet 176:Factors of 1,176 2, 88 4, 44 8, 22 11,16  16w 0 11.7 – Quadratic Equations and Problem Solving
  • 22.
    x Find two consecutiveodd numbers whose product is 23 more than their sum? Consecutive odd numbers: x 5x   5x 2 2 2 25x x x   2 25 0x    5x 5 0x   5 0x   5, 3  5, 7 5 2 3    5 2 7  2.x   2x   2x x  23 2 22 2 2 25xx x x x   2 25 2525x   2 25x   5x 0 11.7 – Quadratic Equations and Problem Solving
  • 23.
    a x The lengthof one leg of a right triangle is 7 meters less than the length of the other leg. The length of the hypotenuse is 13 meters. What are the lengths of the legs? 12a   .Pythagorean Th   22 2 7 13x x   5x   5 meters 7b x  13c  2 2 14 49 169x x x    2 2 14 120 0x x    2 2 7 60 0x x   2 5 0x   12 0x  12x  12 7b   meters 2 2 2 a b c  60:Factors of 1, 60 2, 30 3, 20 4,15 5,12  5x  12x 0 6,10 11.7 – Quadratic Equations and Problem Solving