CEMEF. Sophia Antipolis, April 2005


       “The rheology and microstructure of structured fluids
                      at high shear rate.”
              ( Shear thinning and shear thinning mechanisms)

                                 By
                          Malcolm Mackley
                    Department of Chemical Engineering
                       University of Cambridge

With acknowledgment to;
                Members of Polymer Fluids Group.
Case study 1
    Alkyd Resin suspension.        Dr Martin Thompson
Case study 2
    Ice Cream.                     Dr Karine Odic
Case study 3
    Carbon Nanotubes.               Prof Alan Windle, Dr Simon Butler
                                   Sameer Rahatekar
Non Newtonian flow; Shear thinning equations

 Power law fluid.                           Carreau Equation.                                 Cross equation.
                                                                                                         (ηo - η ∞ )
                                                      [               ]
                        ⋅
                            n −1                                   2 −p
     ηa = k γ                              η a = η 0 1 + ( λγ )                           ηa = η∞ +
                                                                                                                ⋅n
                                                                                                         1 + α γ 
                                                                                                                  
                                                                                                                  
            10000




                                                 Power Law                                                  S1
                                                                                                            S2
             1000                                                                                           S3

Apparent                                                                                                    S4
                                                                              Carreau                       S5

viscosity                                                                                                   S6
                                                                                                            S7

 ηa Pas      100                                                                                            S8
                                                                                                            S9
                                                                                                            S10


                                   Cross
                                                                                                            S11
                                                                                                            S12
               10                                                                                           S13
                                                                                                            S14
                                                                                                            S15
                                                                                                            S16
                                                                                                            S17

               1                                                                                            S18
                    1               10     100            1000        10000       100000       1000000




                                                 Shear rate γ s -1
The Mechanisms for shear thinning

       Molten Polymers.
      10000




                                                                                                   Chain orientation         Doi and Edwards   1978
       1000




Apparent100
                       Entanglement
                                                         Carreau                             S7
                                                                                             S8    Chain stretch            Mcleish and Larson 1987
                                                                                             S9
viscosity                                                                                    S10
                       of chains                                                             S11
                                                                                             S12

         10


                                                                                                   Chain disentanglement           ?
          1
              1           10         100         1000     10000    100000    1000000




                                           Shear rate

       Particle suspensions.
       1000




                                Cross                                                               Effect of shear on number of interactions
         100
                                                                                                                       Moore and Chen 1967
                                                                                        C1
                                                                                        C2
Apparent              Interactions                                                      C3



                                                                                                          dm
                                                                                        C4
                                             Viscosity contribution due to interactions
                                                                                                             = - k 1m γ n + k 2 [ m 0 - m ]
viscosity             of particle                                                       C5
                                                                                        C6

          10


                                                                                                          dt
              1                      Matrix viscosity
                                                                                                                   ηi   m
                  1        10         100         1000     10000    100000    1000000




                                                                                                                      =
                                            Shear rate                                                             ηi o
                                                                                                                        mo
Viscosity modification in a simple shear flow
           due to presence of particles, drops or voidage

Spheres.
                                     η r = η 0 ( 1 + 2.5 φ )       Einstein
                    Flow                                           1911
                                                      − [ η ] φm
                                               φ                 Krieger Dougherty
                                     ηr =  1 -
                                           φ                    1959
                                               m
  Flow




Cylinders

             Flow



                                              ?????????


    Flow
Cambridge Multi-Pass Rheometer
Multi-Pass Rheometer (MPR)
                         top piston


                         heating jacket


                       pressure transducer

                         slit die or
                         capillary inserts




                         bottom piston
Data from MPR
            Pressure difference vs time                       Flow curve
                                                 10000
       differential pressure




                                                 1000


                                          time                   Predicted




                                                 η * (Pa.s)
                                                                 RDS
                                                                 MPR2, L/D=2.5
                                                                 MPR2, L/D=5
                                                                 MPR2, L/D=20
                                                                 MPR4, L/D=2.5
                                                                 MPR4, L/D=4
                                                                 MPR4, L/D=5

                                                    100
                                                       0.01        0.1           1    -1    10   100   1000   10000
                                                                          shear rate (s )




FLOW
Case Study 1. Martin Thompson

Alkyd resin suspension. Water drops in polymer resin matrix.
            Visualisation; Linkam CSS (Cambridge Shear System)




    M.J.Thompson, J.R.A Pearson and M.R.Mackley Journal of Rheology. 45(6) 1341-1358 (2001)
Bohlin concentric cylinder rheometer and MPR capillary data

                                     25

                                                                                       φ = 0.000
                                                                                       φ = 0.020
                                     20
                                                                                       φ = 0.048
            Apparent viscosity Pas




                                                                                       φ = 0.091
                                     15
                                                                                       φ = 0.167
                                                                                       φ = 0.286

                                     10


                                                Concentric
                                     5          cylinders                      MPR



                                     0
                                          10       100           1000          10000               100000

                                                             Shear stress Pa



Remarkably; High shear viscosity of deformed drop suspension is lower than the base viscosity of matrix
MPR slit flow optical scattering data
                             Flow
(a)




                                                                  CCD camera



  670nm
   laser
focussable                              Translucent
                                           paper




(b)




      At rest before shear           4kPa during shear        19kPa during shear




      60kPa during shear            144kPa during shear       Repeat of 4kPa after
                                                              144kPa experiment
                    Results show that drops are deformed at high shear
Modelling high shear viscosity reduction
                  (a)                                                                                                          (b)
                                                                          Flow
                                                                                                                                                                r



                                                                                                                                        d
                                                                                                                                               θ




                                                                                                                                              b

                                                                                              Filament
                                           Flow                                                                                                             Cell boundary
                                                                                                                                                            at r = d




                  (c)                                                                                 (d)
                            Flow                                                                                    1.20
                                                       5                                                                                 Experiment, and empirical
                                                                r/b                                                 1.00                 fit to ηe = (1 − φ )
                   water




                                                                                               Relative viscosity
                                                       4

                                                       3
                                                                                                                    0.80
                   resin                               2
                                                                                  d
                                                       1                                                            0.60
                                 b
                   water    -5   -4   -3    -2    -1
                                                       0
                                                            0   1     2     3     4       5
                                                                                                                    0.40
                                                       -1                                                                                     (1 − φ )
                                                                                u z / Gb                                       Model   ηe =
                   resin                               -2
                                                                                                                    0.20                      (1 + φ )
                                                       -3

                   water                               -4                                                             0
                                                                                                                           0   0.05    0.10       0.15   0.20   0.25   0.30
                                                       -5
                                                                                 Flow                                                   Volume fraction


                                                                2π d                                                                                                     2
Ratio of perturbed                                                                                                                                                  1 − b 
                                                       ∫ ∫ηm ( ∇uz ) rdrdθ
                                                                                                      2
                                                 ηe                                                                                                             η e  d 2  (1 − φ )
To unperturbed                                      = 20 d
                                                         b                                                                                                         =       =

                                                                                      (        )                                                                ηm 
                                                       π                                                                                                                  2  (1 + φ )
                                                 ηm
dissipation                                                      0 2
                                                       ∫ ∫ηm ∇uz rdrdθ                                                                                              1 + b 
                                                                                                                                                                        d2 
                                                                    0 0                                                                                                    

      M.J.Thompson, J.R.A Pearson and M.R.Mackley Journal of Rheology. 45(6) 1341-1358 (2001)
25

                                                                                          φ = 0.000
                                                                                          φ = 0.020
                         20
                                                                                          φ = 0.048
Apparent viscosity Pas




                                                                                          φ = 0.091
                         15
                                                                                          φ = 0.167
                                                                                          φ = 0.286

                         10


                                           Concentric
                         5                 cylinders                             MPR



                         0
                              10               100              1000              10000               100000

                                                            Shear stress Pa

                               High shear viscosity reduction is result of drop deformation
Case Study 2 Karine Odic
                            Ice cream
                    a complex composite material:
Ice cream is a 3 phase material:              diameter range       -5°c
   –ice crystals                             25µm to 40 µm         15%
   –air bubbles                               20µm to 60 µm         50%
   –matrix                                                         35%
       Conventional ice cream microstructure:


     Air cells
                                                    Ice Crystals


       Matrix



                   100µm          x300
The ice cream manufacturing process




                           Rheology at this stage
Ice cream matrix, Bohlin rheometer data
Air cells

                           Ice Crystals



  Matrix




            100µm   x300
Ice cream matrix and ballotini glass spheres!


                            100000
                                                                 τc1                   +, + φ = 0.6
                                                                                       ×, × φ = 0.5
                            10000                              τc1                     ∗, ∗ φ = 0.4
Apparent Viscosity (Pa.s)




                                                         τc1                          ,  φ = 0.3
                                                   τc1                                 ,  φ = 0.2
                             1000
                                                                                      ,  φ = 0.1
                                                                                      ,  φ = 0.0

                              100
                                                                                            τc2
                                                                                      τc2
                               10                                         τc2   τc2


                                1
                                                        Parallel Plates                 MPR-3

                               0.1
                                  0.01      0.1     1         10     100     1000           10000 100000
                                                           Shear Stress (Pa)
Ice Cream matrix and hard spheres. Low shear viscosity enhancement


                       100

                                 Experiments
                                 Thomas
                                 Kitano
  Relative Viscosity




                                 Krieger-Dougherty


                       10




                        1
                             0     0.2         0.4         0.6   0.8
                                         Volume Fraction
Ice cream matrix with foam inclusion




                       100000

                            10000                                               φ = 0.6
Apparent viscosity (Pa.s)




                                                                            
                                                                               φ = 0.5
                            1000                                             φ = 0.4

                                                                            φ = 0.0
                             100

                              10

                                1
                                                Parallel Plates                   MPR-3

                                0
                                 0.01     0.1      1         10   100       1000     10000 100000
                                                        Shear stress (Pa)
Ice cream matrix and foam inclusion
Visualisation; Linkam CSS (Cambridge Shear System)
Ice cream matrix and foam inclusion


                       100000
                                                                   Foam
                            10000
Apparent Viscosity (Pa.s)




                             1000

                              100
                                              Matrix
                                        continuous phase
                               10

                                1

                                0
                                 0.01   0.1          1        10          100   1000   10000 100000
                                                           Shear Stress (Pa)
Model fluids vs the real thing!
Case Study 3 Sameer Rahatekar


 Carbon Nanotubes




             Multi-walled carbon nanotubes
Nanotube loading, Ares parallel plate rheometer.


                           1000
                                                                                  S 0.5 %
                                                                                    old
                                                                                  S1 %
                                                                                    0.35
                                                                                  S2 %
                                                                                    0.15
                                                                                  S3 %
                                                                                    0.07
Apparent viscosity /Pa.s




                            100                                                   S6
                                                                                  0.009%
                                                                                  Epoxy




                             10




                              1
                                  0.1          1              10            100             1000
                                                                       -1
                                                      Shear rate / s
Effect of Temperature

                            1000
                                                                         Epoxy 25C
                                                                         CNT/Epoxy 25C
                                                                         Epoxy 80C
                            100                                          CNT/Epoxy 80C
Apparent viscosity / Pa.s




                             10




                              1




                             0.1




                            0.01
                                   0.1     1          10           100             1000

                                                Shear rate / s-1
Low concentration alignment
              Visualisation; Linkam CSS (Cambridge Shear System)




40 μm                                         40 μm




    Volume % = 0.02                                   Volume % = 0.02
      Shear = 0 s-1                                    Shear = 20 s-1
Nanotube loading, Ares parallel plate rheometer.


                           1000
                                                                                  S 0.5 %
                                                                                    old
                                                                                  S1 %
                                                                                    0.35
                                                                                  S2 %
                                                                                    0.15
                                                                                  S3 %
                                                                                    0.07
Apparent viscosity /Pa.s




                            100                                                   S6
                                                                                  0.009%
                                                                                  Epoxy




                             10




                              1
                                  0.1          1              10            100             1000
                                                                       -1
                                                      Shear rate / s
High concentration aggregation




200 μm                                          200 μm



    Volume % of CNTs = 0.02                          Volume % CNTs = 0.04




                                                200 μm


                              Volume % CNTs = 0.2
Nanotube loading, Ares parallel plate rheometer.


                           1000
                                                                                  S 0.5 %
                                                                                    old
                                                                                  S1 %
                                                                                    0.35
                                                                                  S2 %
                                                                                    0.15
                                                                                  S3 %
                                                                                    0.07
Apparent viscosity /Pa.s




                            100                                                   S6
                                                                                  0.009%
                                                                                  Epoxy




                             10




                              1
                                  0.1          1              10            100             1000
                                                                       -1
                                                      Shear rate / s
Conclusions

Material      Low shear          High shear rate
              enhancement.       thinning.

Alkyd resin   Water drops.       Deformed
water                            filaments of
suspension.                      water.
Ice cream.    Polymer matrix.    Polymer.
              Ice crystals.      Foam filaments.
              Foam inclusion.
Carbon        Nanotube cluster   Nanotube cluster
nanotubes.    interaction.       break up.
Shear thinning of complex fluids-2005

Shear thinning of complex fluids-2005

  • 1.
    CEMEF. Sophia Antipolis,April 2005 “The rheology and microstructure of structured fluids at high shear rate.” ( Shear thinning and shear thinning mechanisms) By Malcolm Mackley Department of Chemical Engineering University of Cambridge With acknowledgment to; Members of Polymer Fluids Group. Case study 1 Alkyd Resin suspension. Dr Martin Thompson Case study 2 Ice Cream. Dr Karine Odic Case study 3 Carbon Nanotubes. Prof Alan Windle, Dr Simon Butler Sameer Rahatekar
  • 2.
    Non Newtonian flow;Shear thinning equations Power law fluid. Carreau Equation. Cross equation. (ηo - η ∞ ) [ ] ⋅ n −1 2 −p ηa = k γ η a = η 0 1 + ( λγ ) ηa = η∞ +  ⋅n 1 + α γ      10000 Power Law S1 S2 1000 S3 Apparent S4 Carreau S5 viscosity S6 S7 ηa Pas 100 S8 S9 S10 Cross S11 S12 10 S13 S14 S15 S16 S17 1 S18 1 10 100 1000 10000 100000 1000000 Shear rate γ s -1
  • 3.
    The Mechanisms forshear thinning Molten Polymers. 10000 Chain orientation Doi and Edwards 1978 1000 Apparent100 Entanglement Carreau S7 S8 Chain stretch Mcleish and Larson 1987 S9 viscosity S10 of chains S11 S12 10 Chain disentanglement ? 1 1 10 100 1000 10000 100000 1000000 Shear rate Particle suspensions. 1000 Cross Effect of shear on number of interactions 100 Moore and Chen 1967 C1 C2 Apparent Interactions C3 dm C4 Viscosity contribution due to interactions = - k 1m γ n + k 2 [ m 0 - m ] viscosity of particle C5 C6 10 dt 1 Matrix viscosity ηi m 1 10 100 1000 10000 100000 1000000 = Shear rate ηi o mo
  • 4.
    Viscosity modification ina simple shear flow due to presence of particles, drops or voidage Spheres. η r = η 0 ( 1 + 2.5 φ ) Einstein Flow 1911 − [ η ] φm  φ  Krieger Dougherty ηr =  1 -  φ   1959  m Flow Cylinders Flow ????????? Flow
  • 5.
  • 6.
    Multi-Pass Rheometer (MPR) top piston heating jacket pressure transducer slit die or capillary inserts bottom piston
  • 7.
    Data from MPR Pressure difference vs time Flow curve 10000 differential pressure 1000 time Predicted η * (Pa.s) RDS MPR2, L/D=2.5 MPR2, L/D=5 MPR2, L/D=20 MPR4, L/D=2.5 MPR4, L/D=4 MPR4, L/D=5 100 0.01 0.1 1 -1 10 100 1000 10000 shear rate (s ) FLOW
  • 8.
    Case Study 1.Martin Thompson Alkyd resin suspension. Water drops in polymer resin matrix. Visualisation; Linkam CSS (Cambridge Shear System) M.J.Thompson, J.R.A Pearson and M.R.Mackley Journal of Rheology. 45(6) 1341-1358 (2001)
  • 9.
    Bohlin concentric cylinderrheometer and MPR capillary data 25 φ = 0.000 φ = 0.020 20 φ = 0.048 Apparent viscosity Pas φ = 0.091 15 φ = 0.167 φ = 0.286 10 Concentric 5 cylinders MPR 0 10 100 1000 10000 100000 Shear stress Pa Remarkably; High shear viscosity of deformed drop suspension is lower than the base viscosity of matrix
  • 10.
    MPR slit flowoptical scattering data Flow (a) CCD camera 670nm laser focussable Translucent paper (b) At rest before shear 4kPa during shear 19kPa during shear 60kPa during shear 144kPa during shear Repeat of 4kPa after 144kPa experiment Results show that drops are deformed at high shear
  • 11.
    Modelling high shearviscosity reduction (a) (b) Flow r d θ b Filament Flow Cell boundary at r = d (c) (d) Flow 1.20 5 Experiment, and empirical r/b 1.00 fit to ηe = (1 − φ ) water Relative viscosity 4 3 0.80 resin 2 d 1 0.60 b water -5 -4 -3 -2 -1 0 0 1 2 3 4 5 0.40 -1 (1 − φ ) u z / Gb Model ηe = resin -2 0.20 (1 + φ ) -3 water -4 0 0 0.05 0.10 0.15 0.20 0.25 0.30 -5 Flow Volume fraction 2π d  2 Ratio of perturbed 1 − b  ∫ ∫ηm ( ∇uz ) rdrdθ 2 ηe η e  d 2  (1 − φ ) To unperturbed = 20 d b = = ( ) ηm  π 2  (1 + φ ) ηm dissipation 0 2 ∫ ∫ηm ∇uz rdrdθ 1 + b   d2  0 0   M.J.Thompson, J.R.A Pearson and M.R.Mackley Journal of Rheology. 45(6) 1341-1358 (2001)
  • 12.
    25 φ = 0.000 φ = 0.020 20 φ = 0.048 Apparent viscosity Pas φ = 0.091 15 φ = 0.167 φ = 0.286 10 Concentric 5 cylinders MPR 0 10 100 1000 10000 100000 Shear stress Pa High shear viscosity reduction is result of drop deformation
  • 13.
    Case Study 2Karine Odic Ice cream a complex composite material: Ice cream is a 3 phase material: diameter range -5°c –ice crystals 25µm to 40 µm 15% –air bubbles 20µm to 60 µm 50% –matrix 35% Conventional ice cream microstructure: Air cells Ice Crystals Matrix 100µm x300
  • 14.
    The ice creammanufacturing process Rheology at this stage
  • 15.
    Ice cream matrix,Bohlin rheometer data
  • 16.
    Air cells Ice Crystals Matrix 100µm x300
  • 17.
    Ice cream matrixand ballotini glass spheres! 100000 τc1 +, + φ = 0.6 ×, × φ = 0.5 10000 τc1 ∗, ∗ φ = 0.4 Apparent Viscosity (Pa.s) τc1 ,  φ = 0.3 τc1  ,  φ = 0.2 1000 ,  φ = 0.1 ,  φ = 0.0 100 τc2 τc2 10 τc2 τc2 1 Parallel Plates MPR-3 0.1 0.01 0.1 1 10 100 1000 10000 100000 Shear Stress (Pa)
  • 18.
    Ice Cream matrixand hard spheres. Low shear viscosity enhancement 100 Experiments Thomas Kitano Relative Viscosity Krieger-Dougherty 10 1 0 0.2 0.4 0.6 0.8 Volume Fraction
  • 19.
    Ice cream matrixwith foam inclusion 100000 10000 φ = 0.6 Apparent viscosity (Pa.s)   φ = 0.5 1000  φ = 0.4 φ = 0.0 100 10 1 Parallel Plates MPR-3 0 0.01 0.1 1 10 100 1000 10000 100000 Shear stress (Pa)
  • 20.
    Ice cream matrixand foam inclusion Visualisation; Linkam CSS (Cambridge Shear System)
  • 21.
    Ice cream matrixand foam inclusion 100000 Foam 10000 Apparent Viscosity (Pa.s) 1000 100 Matrix continuous phase 10 1 0 0.01 0.1 1 10 100 1000 10000 100000 Shear Stress (Pa)
  • 22.
    Model fluids vsthe real thing!
  • 23.
    Case Study 3Sameer Rahatekar Carbon Nanotubes Multi-walled carbon nanotubes
  • 24.
    Nanotube loading, Aresparallel plate rheometer. 1000 S 0.5 % old S1 % 0.35 S2 % 0.15 S3 % 0.07 Apparent viscosity /Pa.s 100 S6 0.009% Epoxy 10 1 0.1 1 10 100 1000 -1 Shear rate / s
  • 25.
    Effect of Temperature 1000 Epoxy 25C CNT/Epoxy 25C Epoxy 80C 100 CNT/Epoxy 80C Apparent viscosity / Pa.s 10 1 0.1 0.01 0.1 1 10 100 1000 Shear rate / s-1
  • 26.
    Low concentration alignment Visualisation; Linkam CSS (Cambridge Shear System) 40 μm 40 μm Volume % = 0.02 Volume % = 0.02 Shear = 0 s-1 Shear = 20 s-1
  • 27.
    Nanotube loading, Aresparallel plate rheometer. 1000 S 0.5 % old S1 % 0.35 S2 % 0.15 S3 % 0.07 Apparent viscosity /Pa.s 100 S6 0.009% Epoxy 10 1 0.1 1 10 100 1000 -1 Shear rate / s
  • 28.
    High concentration aggregation 200μm 200 μm Volume % of CNTs = 0.02 Volume % CNTs = 0.04 200 μm Volume % CNTs = 0.2
  • 30.
    Nanotube loading, Aresparallel plate rheometer. 1000 S 0.5 % old S1 % 0.35 S2 % 0.15 S3 % 0.07 Apparent viscosity /Pa.s 100 S6 0.009% Epoxy 10 1 0.1 1 10 100 1000 -1 Shear rate / s
  • 31.
    Conclusions Material Low shear High shear rate enhancement. thinning. Alkyd resin Water drops. Deformed water filaments of suspension. water. Ice cream. Polymer matrix. Polymer. Ice crystals. Foam filaments. Foam inclusion. Carbon Nanotube cluster Nanotube cluster nanotubes. interaction. break up.