Hong Kong 2009


The experimental validation of numerical simulation
          for precise polymer melt processing

                                          by

            Malcolm Mackley, David Hassell*
               Tim Lord and Lino Scelsi.

                  Department of Chemical Engineering and Biotechnology.
                               University of Cambridge. UK

        *School of Chemical and Environmental Engineering. University of Nottingham.
                              Selanger, Darul Ehsan, Malaysia
                                                                  1
Mission

• Carry out precise polymer processing
  experiments that can be compared with
  simulation.
• Characterise rheology of polymer and select
  constitutive equation.
• Numerically simulate viscoelastic flow and
  match result with experiment.

                                   2
The Cambridge Multipass Rheometer
              (MPR)




Rheo Optic slit flow mode   Cross-slot flow mode
                                          3
The Cambridge Multipass Rheometer (MPR)


                   Top
                   section


                   Test
                   section


                   Bottom
                   section




                              4
Test section geometries

          • Slit                               • Cross-Slot

                                                     0.75 mm


1.5 mm                              1.5 mm


                                                               10 mm
                     Depth =10, 7 and 1.5 mm     1.5 mm
         1.4 mm




                                                          5
The Geometries: Contraction Expansion Slit




                Depth =10, 7, and 1.5 mm
      10 mm




                                R = 0.375 mm
                                Z ~ 1.4 mm
                                           6
An example of Rheo optic slit flow for LDPE




                                     7
Visit MPR Slit Flow movie




                            8
The Cross-Slot


• Generates a hyperbolic
  pure shear flow pattern
  as shown.
• Near centre.
  Essentially uniform extensional
  flow with residence time, which
   is equivalent to strain, inversely
   dependant on distance from the
   exit symmetry axis




                                          9
MPR Cross-Slot Flow


 • The MPR
   action modified
   for cross-slot
   flow
 • Pistons force
   polymer melt
   through a cross-
   slot geometry




Kris Coventry and Collaborative project with Leeds University;
Tom Mcleish et al
                                                                 10
Typical Result
-Dow PS680E
-Piston velocity of 0.5
mm/s (maximum
extension rate =4.3/s).


-Inlet slit
width=1.5mm
-Section depth=10mm
- T=180°C.

                                           11
Visit MPR Cross Slot Flow movie




                              12
Rheology and Characterisation
•   Linear viscoelasticity
    Obtain spectrum of relaxation times
•   Non Linear response.
    Sentmanat Extensional Rheometry fixtures
    (SER)
•   Constitutive equations
    Pom Pom or Rolie Poly
•   Simulation
    Leeds 2D Flowsolve or 3D EUsolve
                                      13
Simulation

For linear polymer melts, “Rolie-Poly” theory is used
Constitutive equation;




                                                        14
Multimode Pom-Pom model
Viscoelastic stress:

Backbone orientation:

Stretch:

Time scales:



                        15
Vp = 0.44 mms-1




2D Flowsolve
And
3D EUsolve

Polystyrene (PS2)

10mm depth

Pom Pom

                    2D simulation   3D simulation
                    dP = 3.32 bar   dP = 3.76 bar
                                      16
Vp = 0.44 mms-1



3D EUsolve

Polystyrene (PS2)

10mm depth

LHS Pom Pom

RHS Experiment


                    3D simulation    Experiment
                    dP = 3.76 bar 17dP = 3.96 bar
Vp = 0.44 mms-1



3D EUsolve

Polystyrene (PS2)

7 mm depth

LHS Pom Pom

RHS Experiment


                    3D simulation     Experiment
                    dP = 5.46 bar18 dP = 5.18 bar
Vp = 0.07 mms-1




3D EUsolve

Polystyrene (PS2)

1.5 mm depth

LHS Pom Pom

RHS Experiment


                    3D simulation      Experiment
                    dP=17.24bar        dP=9.66bar
                                  19
Pom Pom vs Rolie Poly, 3D EUsolve



Pom
Pom




        t= 0.1 s                    t= 10 s              t= 18.9 s




Rolie
Poly




                                    t=8s
                                                 20      t = 12 s
         t = 0.1 s
Cross Slot   Pom Pom 3D EUsolve

          Vp = 0.04 mms-1                    Vp = 0.09 mms-1




3D simulation      MPR experiment    3D simulation    MPR experiment

                                                     21
Cross Slot   1.5mm depth. Pom Pom 3D EUsolve

                    Vp = 0.07 mms




       Simulation                   Experiment   22
Cross Slot   Pom Pom vs Rolie poly 3D EUsolve



Pom
Pom



        t = .1 s               t = 8.5 s           t = 37 s




Rolie
Poly




        t = 0.1 s              t =17 s             t =37 s

                                             23
Tim Lord, David Hassell and Dietmar Auhl 2008




EPSRC Microscale Polymer Processing project
                                              24
Stagnation Point flows as rheometers
                                         Dr Dietmar Auhl et al,
                                         Leeds University 2008


                                    6
elongational viscosityµ(t), Pas    10
                                                                              0.3
                                                  . -1               1              0.1        0.03   0.01
                                                  ε0 [s ]
   shear viscosity η(t), Pas


                                                              3                                         0.003

                                                     10                                                 0.001
                                    5
                                   10                                                                        .       -1
                                                                                                             γ0 [s ]

                                                                                                            0.001
                                                                                                            0.01
                                                                                                             0.1

                                    4                                                                        0.5
                                   10                                                                         1
                                                                                                                 2
                                                                                                                 5
                                                    LDPE
                                                  T = 150°C                                                  10
                                    3
                                   10
                                             -1                  0            1            2            3
                                        10                  10           10           10              10
                                                                         time t, s

                                                                                                                 25
η E ,st (ε) = (σ xx − σ yy ) st / εst      steady-state elongational viscosity
                                             at the stagnation point


                                                                                            0




   ε
      =




                                                                                       principle
                    ε
                    

                                                                                            0




                                          ∆ n = SOC (σX xx − σ yy ) + 4σ xy
       •                                                               2           2
       ε st = A x V piston                    -4    -2     0     2      4



                                                           26
Dr Dietmar Auhl et al , Leeds University




                                    27
Conclusions
• MPR experiments provide precise processing data.

• Both Rolie Poly and Pom Pom models can be simulated to
  give good experimental matching.

• Simulation can be sensitive to both constitutive equations,
  relaxation spectra and non linear fit.

    Acknowledgements. Tom Mcleish for masterminding
    Microscale Polymer Processing project and EPSRC for
    providing most of the funds
                                                   28

Hong Kong MPR -09

  • 1.
    Hong Kong 2009 Theexperimental validation of numerical simulation for precise polymer melt processing by Malcolm Mackley, David Hassell* Tim Lord and Lino Scelsi. Department of Chemical Engineering and Biotechnology. University of Cambridge. UK *School of Chemical and Environmental Engineering. University of Nottingham. Selanger, Darul Ehsan, Malaysia 1
  • 2.
    Mission • Carry outprecise polymer processing experiments that can be compared with simulation. • Characterise rheology of polymer and select constitutive equation. • Numerically simulate viscoelastic flow and match result with experiment. 2
  • 3.
    The Cambridge MultipassRheometer (MPR) Rheo Optic slit flow mode Cross-slot flow mode 3
  • 4.
    The Cambridge MultipassRheometer (MPR) Top section Test section Bottom section 4
  • 5.
    Test section geometries • Slit • Cross-Slot 0.75 mm 1.5 mm 1.5 mm 10 mm Depth =10, 7 and 1.5 mm 1.5 mm 1.4 mm 5
  • 6.
    The Geometries: ContractionExpansion Slit Depth =10, 7, and 1.5 mm 10 mm R = 0.375 mm Z ~ 1.4 mm 6
  • 7.
    An example ofRheo optic slit flow for LDPE 7
  • 8.
    Visit MPR SlitFlow movie 8
  • 9.
    The Cross-Slot • Generatesa hyperbolic pure shear flow pattern as shown. • Near centre. Essentially uniform extensional flow with residence time, which is equivalent to strain, inversely dependant on distance from the exit symmetry axis 9
  • 10.
    MPR Cross-Slot Flow • The MPR action modified for cross-slot flow • Pistons force polymer melt through a cross- slot geometry Kris Coventry and Collaborative project with Leeds University; Tom Mcleish et al 10
  • 11.
    Typical Result -Dow PS680E -Pistonvelocity of 0.5 mm/s (maximum extension rate =4.3/s). -Inlet slit width=1.5mm -Section depth=10mm - T=180°C. 11
  • 12.
    Visit MPR CrossSlot Flow movie 12
  • 13.
    Rheology and Characterisation • Linear viscoelasticity Obtain spectrum of relaxation times • Non Linear response. Sentmanat Extensional Rheometry fixtures (SER) • Constitutive equations Pom Pom or Rolie Poly • Simulation Leeds 2D Flowsolve or 3D EUsolve 13
  • 14.
    Simulation For linear polymermelts, “Rolie-Poly” theory is used Constitutive equation; 14
  • 15.
    Multimode Pom-Pom model Viscoelasticstress: Backbone orientation: Stretch: Time scales: 15
  • 16.
    Vp = 0.44mms-1 2D Flowsolve And 3D EUsolve Polystyrene (PS2) 10mm depth Pom Pom 2D simulation 3D simulation dP = 3.32 bar dP = 3.76 bar 16
  • 17.
    Vp = 0.44mms-1 3D EUsolve Polystyrene (PS2) 10mm depth LHS Pom Pom RHS Experiment 3D simulation Experiment dP = 3.76 bar 17dP = 3.96 bar
  • 18.
    Vp = 0.44mms-1 3D EUsolve Polystyrene (PS2) 7 mm depth LHS Pom Pom RHS Experiment 3D simulation Experiment dP = 5.46 bar18 dP = 5.18 bar
  • 19.
    Vp = 0.07mms-1 3D EUsolve Polystyrene (PS2) 1.5 mm depth LHS Pom Pom RHS Experiment 3D simulation Experiment dP=17.24bar dP=9.66bar 19
  • 20.
    Pom Pom vsRolie Poly, 3D EUsolve Pom Pom t= 0.1 s t= 10 s t= 18.9 s Rolie Poly t=8s 20 t = 12 s t = 0.1 s
  • 21.
    Cross Slot Pom Pom 3D EUsolve Vp = 0.04 mms-1 Vp = 0.09 mms-1 3D simulation MPR experiment 3D simulation MPR experiment 21
  • 22.
    Cross Slot 1.5mm depth. Pom Pom 3D EUsolve Vp = 0.07 mms Simulation Experiment 22
  • 23.
    Cross Slot Pom Pom vs Rolie poly 3D EUsolve Pom Pom t = .1 s t = 8.5 s t = 37 s Rolie Poly t = 0.1 s t =17 s t =37 s 23
  • 24.
    Tim Lord, DavidHassell and Dietmar Auhl 2008 EPSRC Microscale Polymer Processing project 24
  • 25.
    Stagnation Point flowsas rheometers Dr Dietmar Auhl et al, Leeds University 2008 6 elongational viscosityµ(t), Pas 10 0.3 . -1 1 0.1 0.03 0.01 ε0 [s ] shear viscosity η(t), Pas 3 0.003 10 0.001 5 10 . -1 γ0 [s ] 0.001 0.01 0.1 4 0.5 10 1 2 5 LDPE T = 150°C 10 3 10 -1 0 1 2 3 10 10 10 10 10 time t, s 25
  • 26.
    η E ,st(ε) = (σ xx − σ yy ) st / εst steady-state elongational viscosity at the stagnation point 0 ε  = principle ε  0 ∆ n = SOC (σX xx − σ yy ) + 4σ xy • 2 2 ε st = A x V piston -4 -2 0 2 4 26
  • 27.
    Dr Dietmar Auhlet al , Leeds University 27
  • 28.
    Conclusions • MPR experimentsprovide precise processing data. • Both Rolie Poly and Pom Pom models can be simulated to give good experimental matching. • Simulation can be sensitive to both constitutive equations, relaxation spectra and non linear fit. Acknowledgements. Tom Mcleish for masterminding Microscale Polymer Processing project and EPSRC for providing most of the funds 28