SlideShare a Scribd company logo
Process Migration & Allocation Paul Krzyzanowski [email_address] [email_address] Distributed Systems Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License.
Processor allocation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Allocation or migration? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Need transparency ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Migration strategies ,[object Object]
Migration strategies ,[object Object],[object Object],[object Object]
Migration strategies ,[object Object],[object Object],[object Object],[object Object]
Constructing process migration algorithms ,[object Object],[object Object],[object Object],[object Object],[object Object]
Up-down algorithm ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Hierarchical algorithm ,[object Object],[object Object],[object Object],[object Object]
Distributed algorithms ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Migrating a Virtual Machine ,[object Object],[object Object],[object Object],[object Object],[object Object]
The end.

More Related Content

What's hot

Fault tolerance in distributed systems
Fault tolerance in distributed systemsFault tolerance in distributed systems
Fault tolerance in distributed systemssumitjain2013
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
Kathirvel Ayyaswamy
 
Operating system support in distributed system
Operating system support in distributed systemOperating system support in distributed system
Operating system support in distributed system
ishapadhy
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
Kathirvel Ayyaswamy
 
Distributed Operating System_1
Distributed Operating System_1Distributed Operating System_1
Distributed Operating System_1
Dr Sandeep Kumar Poonia
 
Design issues of dos
Design issues of dosDesign issues of dos
Design issues of dos
vanamali_vanu
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
Kathirvel Ayyaswamy
 
Processes and Processors in Distributed Systems
Processes and Processors in Distributed SystemsProcesses and Processors in Distributed Systems
Processes and Processors in Distributed Systems
Dr Sandeep Kumar Poonia
 
Naming in Distributed System
Naming in Distributed SystemNaming in Distributed System
Naming in Distributed System
MNM Jain Engineering College
 
File models and file accessing models
File models and file accessing modelsFile models and file accessing models
File models and file accessing models
ishmecse13
 
Cpu scheduling in operating System.
Cpu scheduling in operating System.Cpu scheduling in operating System.
Cpu scheduling in operating System.
Ravi Kumar Patel
 
Distributed Operating System_4
Distributed Operating System_4Distributed Operating System_4
Distributed Operating System_4
Dr Sandeep Kumar Poonia
 
distributed shared memory
 distributed shared memory distributed shared memory
distributed shared memoryAshish Kumar
 
Deadlock in distribute system by saeed siddik
Deadlock in distribute system by saeed siddikDeadlock in distribute system by saeed siddik
Deadlock in distribute system by saeed siddikSaeed Siddik
 
distributed Computing system model
distributed Computing system modeldistributed Computing system model
distributed Computing system model
Harshad Umredkar
 
Design Goals of Distributed System
Design Goals of Distributed SystemDesign Goals of Distributed System
Design Goals of Distributed System
Ashish KC
 
File replication
File replicationFile replication
File replication
Klawal13
 
Process Management-Process Migration
Process Management-Process MigrationProcess Management-Process Migration
Process Management-Process Migration
MNM Jain Engineering College
 
Chorus - Distributed Operating System [ case study ]
Chorus - Distributed Operating System [ case study ]Chorus - Distributed Operating System [ case study ]
Chorus - Distributed Operating System [ case study ]
Akhil Nadh PC
 

What's hot (20)

Fault tolerance in distributed systems
Fault tolerance in distributed systemsFault tolerance in distributed systems
Fault tolerance in distributed systems
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
 
Operating system support in distributed system
Operating system support in distributed systemOperating system support in distributed system
Operating system support in distributed system
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
 
Distributed Operating System_1
Distributed Operating System_1Distributed Operating System_1
Distributed Operating System_1
 
Design issues of dos
Design issues of dosDesign issues of dos
Design issues of dos
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
 
Processes and Processors in Distributed Systems
Processes and Processors in Distributed SystemsProcesses and Processors in Distributed Systems
Processes and Processors in Distributed Systems
 
Naming in Distributed System
Naming in Distributed SystemNaming in Distributed System
Naming in Distributed System
 
File models and file accessing models
File models and file accessing modelsFile models and file accessing models
File models and file accessing models
 
Cpu scheduling in operating System.
Cpu scheduling in operating System.Cpu scheduling in operating System.
Cpu scheduling in operating System.
 
Distributed Operating System_4
Distributed Operating System_4Distributed Operating System_4
Distributed Operating System_4
 
distributed shared memory
 distributed shared memory distributed shared memory
distributed shared memory
 
Deadlock in distribute system by saeed siddik
Deadlock in distribute system by saeed siddikDeadlock in distribute system by saeed siddik
Deadlock in distribute system by saeed siddik
 
distributed Computing system model
distributed Computing system modeldistributed Computing system model
distributed Computing system model
 
Design Goals of Distributed System
Design Goals of Distributed SystemDesign Goals of Distributed System
Design Goals of Distributed System
 
File replication
File replicationFile replication
File replication
 
Process Management-Process Migration
Process Management-Process MigrationProcess Management-Process Migration
Process Management-Process Migration
 
Chorus - Distributed Operating System [ case study ]
Chorus - Distributed Operating System [ case study ]Chorus - Distributed Operating System [ case study ]
Chorus - Distributed Operating System [ case study ]
 

Viewers also liked

Open Book Management
Open Book ManagementOpen Book Management
Open Book Management
Zweig Group
 
Threads
ThreadsThreads
Threads
Shivam Singh
 
CS6601 DISTRIBUTED SYSTEMS
CS6601 DISTRIBUTED SYSTEMSCS6601 DISTRIBUTED SYSTEMS
CS6601 DISTRIBUTED SYSTEMS
Kathirvel Ayyaswamy
 
Election algorithms
Election algorithmsElection algorithms
Election algorithmsAnkush Kumar
 
Processes and threads
Processes and threadsProcesses and threads
Process scheduling
Process schedulingProcess scheduling
Process scheduling
Prasunjeet Soni
 
Process Scheduling
Process SchedulingProcess Scheduling
Process Scheduling
Abhishek Nagar
 

Viewers also liked (8)

Chapter00000000
Chapter00000000Chapter00000000
Chapter00000000
 
Open Book Management
Open Book ManagementOpen Book Management
Open Book Management
 
Threads
ThreadsThreads
Threads
 
CS6601 DISTRIBUTED SYSTEMS
CS6601 DISTRIBUTED SYSTEMSCS6601 DISTRIBUTED SYSTEMS
CS6601 DISTRIBUTED SYSTEMS
 
Election algorithms
Election algorithmsElection algorithms
Election algorithms
 
Processes and threads
Processes and threadsProcesses and threads
Processes and threads
 
Process scheduling
Process schedulingProcess scheduling
Process scheduling
 
Process Scheduling
Process SchedulingProcess Scheduling
Process Scheduling
 

Similar to Processor Allocation (Distributed computing)

17. Computer System Configuration And Methods
17. Computer System   Configuration And Methods17. Computer System   Configuration And Methods
17. Computer System Configuration And MethodsNew Era University
 
operating system for computer engineering ch3.ppt
operating system for computer engineering ch3.pptoperating system for computer engineering ch3.ppt
operating system for computer engineering ch3.ppt
gezaegebre1
 
Communication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed SystemsCommunication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed Systemsguest61205606
 
Distributed Systems
Distributed SystemsDistributed Systems
Distributed Systems
guest0f5a7d
 
Communication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed SystemsCommunication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed Systems
guest61205606
 
Os
OsOs
OS - Ch1
OS - Ch1OS - Ch1
OS - Ch1sphs
 
Operating systems. replace ch1 with numbers for next chapters
Operating systems. replace ch1 with numbers for next chaptersOperating systems. replace ch1 with numbers for next chapters
Operating systems. replace ch1 with numbers for next chapterssphs
 
Chapter 1 - Introduction
Chapter 1 - IntroductionChapter 1 - Introduction
Chapter 1 - IntroductionWayne Jones Jnr
 
Parallel and Distributed Computing Chapter 7
Parallel and Distributed Computing Chapter 7Parallel and Distributed Computing Chapter 7
Parallel and Distributed Computing Chapter 7
AbdullahMunir32
 
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.pptModule-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
KAnurag2
 
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
ssuser4a97d3
 
Vanmathy distributed operating system
Vanmathy distributed operating system Vanmathy distributed operating system
Vanmathy distributed operating system
PriyadharshiniVS
 
Distributed systems and scalability rules
Distributed systems and scalability rulesDistributed systems and scalability rules
Distributed systems and scalability rules
Oleg Tsal-Tsalko
 
UNIT II.pptx
UNIT II.pptxUNIT II.pptx
UNIT II.pptx
YogapriyaJ1
 
Unit 2 part 2(Process)
Unit 2 part 2(Process)Unit 2 part 2(Process)
Unit 2 part 2(Process)
WajeehaBaig
 
Understanding operating systems 5th ed ch12
Understanding operating systems 5th ed ch12Understanding operating systems 5th ed ch12
Understanding operating systems 5th ed ch12BarrBoy
 

Similar to Processor Allocation (Distributed computing) (20)

17. Computer System Configuration And Methods
17. Computer System   Configuration And Methods17. Computer System   Configuration And Methods
17. Computer System Configuration And Methods
 
An Introduction to Operating Systems
An Introduction to Operating SystemsAn Introduction to Operating Systems
An Introduction to Operating Systems
 
operating system for computer engineering ch3.ppt
operating system for computer engineering ch3.pptoperating system for computer engineering ch3.ppt
operating system for computer engineering ch3.ppt
 
Communication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed SystemsCommunication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed Systems
 
Distributed Systems
Distributed SystemsDistributed Systems
Distributed Systems
 
Communication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed SystemsCommunication And Synchronization In Distributed Systems
Communication And Synchronization In Distributed Systems
 
Os
OsOs
Os
 
Os
OsOs
Os
 
OS - Ch1
OS - Ch1OS - Ch1
OS - Ch1
 
Operating systems. replace ch1 with numbers for next chapters
Operating systems. replace ch1 with numbers for next chaptersOperating systems. replace ch1 with numbers for next chapters
Operating systems. replace ch1 with numbers for next chapters
 
Chapter 1 - Introduction
Chapter 1 - IntroductionChapter 1 - Introduction
Chapter 1 - Introduction
 
Parallel and Distributed Computing Chapter 7
Parallel and Distributed Computing Chapter 7Parallel and Distributed Computing Chapter 7
Parallel and Distributed Computing Chapter 7
 
Operating system
Operating systemOperating system
Operating system
 
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.pptModule-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
Module-6 process managedf;jsovj;ksdv;sdkvnksdnvldknvlkdfsment.ppt
 
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
Operating-System-(1-3 group) Case study on windows Mac and linux among variou...
 
Vanmathy distributed operating system
Vanmathy distributed operating system Vanmathy distributed operating system
Vanmathy distributed operating system
 
Distributed systems and scalability rules
Distributed systems and scalability rulesDistributed systems and scalability rules
Distributed systems and scalability rules
 
UNIT II.pptx
UNIT II.pptxUNIT II.pptx
UNIT II.pptx
 
Unit 2 part 2(Process)
Unit 2 part 2(Process)Unit 2 part 2(Process)
Unit 2 part 2(Process)
 
Understanding operating systems 5th ed ch12
Understanding operating systems 5th ed ch12Understanding operating systems 5th ed ch12
Understanding operating systems 5th ed ch12
 

More from Sri Prasanna

Qr codes para tech radar
Qr codes para tech radarQr codes para tech radar
Qr codes para tech radarSri Prasanna
 
Qr codes para tech radar 2
Qr codes para tech radar 2Qr codes para tech radar 2
Qr codes para tech radar 2Sri Prasanna
 
Network and distributed systems
Network and distributed systemsNetwork and distributed systems
Network and distributed systemsSri Prasanna
 
Introduction & Parellelization on large scale clusters
Introduction & Parellelization on large scale clustersIntroduction & Parellelization on large scale clusters
Introduction & Parellelization on large scale clustersSri Prasanna
 
Mapreduce: Theory and implementation
Mapreduce: Theory and implementationMapreduce: Theory and implementation
Mapreduce: Theory and implementationSri Prasanna
 
Other distributed systems
Other distributed systemsOther distributed systems
Other distributed systemsSri Prasanna
 

More from Sri Prasanna (20)

Qr codes para tech radar
Qr codes para tech radarQr codes para tech radar
Qr codes para tech radar
 
Qr codes para tech radar 2
Qr codes para tech radar 2Qr codes para tech radar 2
Qr codes para tech radar 2
 
Test
TestTest
Test
 
Test
TestTest
Test
 
assds
assdsassds
assds
 
assds
assdsassds
assds
 
asdsa
asdsaasdsa
asdsa
 
dsd
dsddsd
dsd
 
About stacks
About stacksAbout stacks
About stacks
 
About Stacks
About  StacksAbout  Stacks
About Stacks
 
About Stacks
About  StacksAbout  Stacks
About Stacks
 
About Stacks
About  StacksAbout  Stacks
About Stacks
 
About Stacks
About  StacksAbout  Stacks
About Stacks
 
About Stacks
About  StacksAbout  Stacks
About Stacks
 
About Stacks
About StacksAbout Stacks
About Stacks
 
About Stacks
About StacksAbout Stacks
About Stacks
 
Network and distributed systems
Network and distributed systemsNetwork and distributed systems
Network and distributed systems
 
Introduction & Parellelization on large scale clusters
Introduction & Parellelization on large scale clustersIntroduction & Parellelization on large scale clusters
Introduction & Parellelization on large scale clusters
 
Mapreduce: Theory and implementation
Mapreduce: Theory and implementationMapreduce: Theory and implementation
Mapreduce: Theory and implementation
 
Other distributed systems
Other distributed systemsOther distributed systems
Other distributed systems
 

Recently uploaded

LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 

Recently uploaded (20)

LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 

Processor Allocation (Distributed computing)

  • 1. Process Migration & Allocation Paul Krzyzanowski [email_address] [email_address] Distributed Systems Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

Editor's Notes

  1. Processor allocation was not a serious problem when we examined multiprocessor systems (shared memory). In those systems, all processors had access to the same image of the operating system and grabbed jobs from a common job queue. When a quantum expired or a process blocked, it could be restarted by any available processor. In multicomputer systems, things get more complex. We may not be able to use shared memory segments or message queues to communicate with other processes. The file system may look different on different machines. The overhead of dispatching a process on another system may be high compared to the run time of the process.
  2. Most of today’s environments have a nonmigratory model of processor allocation. A processor is chosen by the user (e.g. by the workstation being used or by an rsh command) or else the system makes an initial decision on a system on which the process will execute. Once it starts, it will continue running on that processor. An alternative is to support process migration , where processes can move dynamically during their lifetime. The hope in such a system is that it will allow for better system-wide utilization of resources (e.g. as one computer becomes too heavily loaded, some of the processes can migrate to a less loaded system). When we discuss implementing processor allocation, we are talking about one of two types of processes: nonmigratory processes remain on the processor on which they were created (the decision is where to create them); migratory processes can be moved after creation, which allows for better load balancing but is more complex.
  3. If we are to run a process on an arbitrary system, it is important that all systems present the same execution environment. Certainly system binaries must be capable of executing on a different machine (unless we use interpreted pseudocode such as Java). Processes typically do not run in a vacuum but read input and write output. Even if a process will never migrate to another machine during execution it should have predictable access to a file system name space (it would be hard to debug a program that opens a different file or fails to open a file depending on what system it was assigned to). To accomplish this, any of the files that a program will read/write should be on a distributed file system that is set up to provide a uniform name space across all participating machines. Moreover, the process may have to forward operations on the standard input and standard output file descriptors to the originating machine. This may be done during the creation of those file descriptors on the remote machine using a mechanism such as sockets (this is what rsh does). With migratory processes, things get more complicated. If a running process is to continue execution on a different system, any existing descriptors to open files must continue to operate on those files (this includes stdin, stdout, stderr as well as other files). If a process expects to catch signals, the signal mask for the process should be migrated. If there are any pending signals for the process, they also must be migrated. Shared memory should continue to work if it was in use (this will most likely necessitate a DSM system). Any existing network connections should also continue to be active. Since a process may rely on a service such as system time (to time latencies, for example), clocks should be synchronized.
  4. Three strategies for migration can be adopted. The most thorough, and most complicated, is to move the entire system state. This means that open file descriptors have to be reconstructed on the remote system and the state of kernel objects such as signals, message queues and semaphores has to be propagated. Mechanisms should also exist for shared memory (if the os supports it) and sending signals/messages across different machines. To implement this requires a kernel that is capable of migrating this information as well as a global process ID space.
  5. A somewhat easier design, still requiring operating system kernel modifications, is to maintain a concept of a “home” system. This is the approach taken by the Berkeley Sprite operating system (which is built from Berkeley Unix). The system on which a process is created is considered its “home”. The operating system supports the invocation of system calls through an operating-system-level remote procedure call mechanism. When a process that has migrated issues a system call (e.g. read, write, ioctl, get time of day ), the operating system checks whether this machine is the process’ home system or whether it has migrated here. If it’s the home system, the call is processed locally. If the process migrated from another system, any system call that needs kernel state (such as file system operations) is forwarded to the home system (which maintains state on behalf of that process). The system call is processed on the home machine and results are returned to the requestor via the remote procedure call.
  6. Finally, the easiest design is to assume that there is little or no state that deserves to be preserved. This is an approach taken by Condor , a software package that provides process migration for Unix systems without kernel changes. The assumption here is that there is no need for any inter-process communication mechanism: processes know they are running on a foreign system.
  7. There are a number of different issues in constructing processes migration algorithms: deterministic vs. heuristic if we know all the resource usage up front, we can create a deterministic algorithm. This data is usually unknown and heuristic techniques often have to be employed. Centralized, hierarchical, or distributed a centralized algorithm allows all the information necessary for making scheduling decisions to reside in one place but it can also put a heavy load on the central machine. With a hierarchical system, we can have a number of load managers, organized in a hierarchy. Managers make process allocation decisions as far down the tree as possible, but may transfer processes from one to another via a common ancester. optimal vs. suboptimal do we really want the best allocation or simply an acceptable one? If we want the best allocation, we'll have to pay a price in the computation and data needed to make that decision. Quite often it's not worth it. local or global? Does a machine decide whether a process stays on the local machine using local information (its system load, for example) or does it rely on global system state information? This is known as the transfer policy . location policy Does the machine send requests asking for help or does it send requests for work to perform?
  8. The up-down algorithm (Mutka and Livny, 1987) relies on a centralized coordinator which maintains a usage table . This table contains one entry per workstation. Workstations send messages containing updates to this coordinator. All allocation decisions are based on the data in this table. The goal of the up-down algorithm is to give each workstation owner a fair share of the available compute power (and not allow the user to monopolize the environment). When a system has to create a process, it first decides whether it should run it locally or seek help. This is generally done in most migration algorithms as an optimization (why seek help when you don't need it?). If it decides to ask for help, it sends a message to the coordinator asking for a processor. The coordinator's table keeps points per workstation. If you run a process on another machine, you get penalty points which are added ( n /second) to your entry in the usage table. If you have unsatisfied requests pending, then points are subtracted from your entry. If no requests are pending and no processors are used, your entry gradually erodes to zero. Looking at the points for a given workstation, a positive amount indicates that the workstation is a net user of resources and a negative amount indicates that the workstation needs resources. The coordinator simply chooses to process the request from the workstation with the lowest score.
  9. The centralized algorithm has the same pitfall that all centralized algorithms share: scalability. A hierarchical processor allocation algorithm attempts to overcome scalability while still maintaining efficiency. In this algorithm, every group of k workers gets a "manager" - a coordinator responsible for processor allocation to machines within its group. Each manager keeps track of the approximate number of workers below it that are available for work. In this case, it behaves like a centralized algorithm. If, for some job, the manager does not have enough workers (worker CPU cycles), it then passes the request to its manager (up the hierarchy). The upper manager checks with its subordinates (the pool of up to k managers under it) for available workers. If the request can be satisfied, it is parceled among the managers and, ultimitely, among the workers. If it cannot be satisfied, the second-level manager may contact a third-level manager. The hierarchy can be extended ad infinitum.
  10. Sender initiated distributed heuristic This algorithm requires no coordinator whatsoever. If a machine decides that it should not run its job locally, it picks a machine at random and sends it a probe message ( "can you run my job?" ). If the randomly selected machine cannot run the job, another machine is picked at random and a probe sent to it. The process is repeated until a willing machine is located or after n tries. This algorithm has been shown to behave well and is stable. Its failing is when the overall system load gets heavy. At those times, many machines in the network are looping n times, sending requests to machines too busy to service them. Receiver initiated distributed heuristic To overcome the problem of traffic in loaded systems, we can do the opposite of a sender initiated algorithm and have machines advertise themselves as being available for work. In this algorithm, when a processor is done with a process, it picks some random machine and sends it a message: "do you have any work for me?” If the machine responds in the affirmative, the sender gets a job. If the machine has no work, the sender picks another machine and tries again, doing this n times. Eventually, the sender will go to sleep and then start the whole process again until it gets work. While this creates a lot of messages, there is no extra load on the system during critical times.