SlideShare a Scribd company logo
Projectile Motion Created by: Derek Zokoe ED 205 06 Click picture to enter
Index 1. About me 2. Concept Map 3. What is Projectile Motion? 4. Why is PM important? 5. Projectile motion Problem 6. Resources
About the Author My name is Derek Zokoe. I was born in Jenison Michigan. I am currently attending Grand Valley State University. I plan to graduate with a Major in physics and a Minor in Mathematics. I will also have a teaching degree. Feel free to email me. [email_address] Exit
Concept Map Exit
Exit What is Projectile Motion? In a normal sense projectile motion is just what the name says; the motion of a projectile. In a physics sense projectile motion is the study of how an object moves. You can study how water moves in the ocean, how an airplane flies in the sky, or even how a bullet flies out of the gun.
Exit Why is Projectile Motion Important? You may ask why is projectile motion important. There are many practical  uses of projectile motion. Most of the real life examples are very complex. You can shoot a rocket to the moon, or study the path of a quarterbacks football throw. Not everyone needs to be an expert at projectile motion, but it is good for everyone to have a basic knowledge of how a motion will fly. Everyone knows that if an object is throw up into the air that it will come back down eventually. Well how long will it take? This is something that we can figure out quite easily using projectile motion.
Exit Projectile Motion Problem Suppose a student wants to figure out how far away an ball would land if launched off the table at an angle of 30 degrees from the horizon. The table is exactly 1 meter off the ground. The student first decides to shoot the ball straight up and tests to find how high the ball goes and how long it takes the ball to get there. He calculates that the ball travels at 10 m/s right when the ball is launched from the gun. Watch  the video  and then Calculate the following (use 10 m/ss for gravity) The x and y components of the initial velocity The velocity of the ball in the y direction when it is .75 above the initial height How high above the ground the ball is when it reaches its maximum How high the ball will be if traveling at 6 m/s down How fast the ball is moving just before hitting the ground Shortcut using conservation of energy
Here is a link to a video that was made. It resembles our situation very very closely. In the video the ball is launched at different angles. You do only need to calculate each value for when the ball is being launched at 30 degrees. http://paer.rutgers.edu/PT3/movies/Projectile1.mov Exit Problem
Exit Problem Initial If we use our knowledge of  trigonometry we know that  cos(30) is equal to the Adjacent (V x ) divided by the hypotenuse (V) and also that sin(30) is equal to the opposite (V y ) divided by the hypotenuse (V). If we use this knowledge we can derive the following equations. To calculate the initial velocity in the x direction and in the y direction.
Exit Problem On its way up We were asked to calculate the vertical velocity of ball when the ball is .75 meters above the starting point. Remember that the ball is initially being launched from 1 meter. Here is the work that will be done in solving this problem.
Exit Problem At the Top We are now supposed to find the maximum height that the ball will reach. To do so we will need to remember that the ball will have no vertical velocity when it is at its maximum point. Here is the work for this problem.
Exit Problem Coming down We are now going to be finding the height of the ball when it is traveling at a vertical speed if 6 meters per second down.  Here is the work. NOTE: The initial velocity of the ball is 5 meters per second. What does this mean for the vertical position of the ball relative to the starting height?
Exit Problem At the Bottom We will finally calculate the velocity of the ball when it reaches the bottom. Remember we want the total velocity not just the vertical velocity. We will have to add the vertical velocity vector with the horizontal velocity vector. Here is the work for this problem. Now that we have the new vertical velocity we can calculate the final velocity
Back Proceed Exit Warning: The following pages will ruin your experiences of Projectile Motion
Exit Conservation of Energy Conservation of Energy can be used in every one of these problems, all of which become very easy. Since we know that the only force acting upon the ball after it is launched is gravity we know that energy will be conserved. We need to be very careful when we are calculating the height of the ball because we need to remember that potential energy is calculated from the wherever we decide our origin is. I suggest setting your origin to be the ground. Since there is not any air friction the horizontal speed will not be changing so when calculating the energy we can ignore that. Also remember when we find the final velocity of the ball just before it reaches the ground that we have calculated the velocity in the vertical direction. What is the velocity of the ball in the horizontal direction? The next page will be all of the work using conservation of energy.
Exit Problem
Resources The opening picture: The Video I found using Yahoo video search Airplane All information and equations I learned in my Physics Class at  GVSU Exit http://library.thinkquest.org/TQ0312826/index.php?chapter=3&page=2 http://paer.rutgers.edu/PT3/movies/Projectile1.mov http://www.flickr.com/photos/caribb/80279502/

More Related Content

What's hot

Introduction to physics
Introduction to physicsIntroduction to physics
Introduction to physics
marjerin
 
Chapter 07 impulse and momentum
Chapter 07 impulse and momentumChapter 07 impulse and momentum
Chapter 07 impulse and momentum
Darwin Quinsaat
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 class
FC Barcelona
 
Kinetic and Potential Energy
Kinetic and Potential EnergyKinetic and Potential Energy
Kinetic and Potential Energy
Lumen Learning
 
Ppt Conservation Of Energy
Ppt Conservation Of EnergyPpt Conservation Of Energy
Ppt Conservation Of Energy
ffiala
 

What's hot (20)

Introduction to physics
Introduction to physicsIntroduction to physics
Introduction to physics
 
Current Electricity
Current ElectricityCurrent Electricity
Current Electricity
 
Chapter 07 impulse and momentum
Chapter 07 impulse and momentumChapter 07 impulse and momentum
Chapter 07 impulse and momentum
 
Circular motion
Circular motionCircular motion
Circular motion
 
Work and power
Work and powerWork and power
Work and power
 
Energy, work and power
Energy, work and powerEnergy, work and power
Energy, work and power
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 class
 
Center of mass
Center of massCenter of mass
Center of mass
 
Work and Energy
Work and EnergyWork and Energy
Work and Energy
 
Work,Energy and Power
Work,Energy and PowerWork,Energy and Power
Work,Energy and Power
 
5.1 - Potential Difference, Current & Resistance
5.1 - Potential Difference, Current & Resistance5.1 - Potential Difference, Current & Resistance
5.1 - Potential Difference, Current & Resistance
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Kinetic and Potential Energy
Kinetic and Potential EnergyKinetic and Potential Energy
Kinetic and Potential Energy
 
Momentum ppt physics grade 11
Momentum ppt physics grade 11Momentum ppt physics grade 11
Momentum ppt physics grade 11
 
Topic 2: Structure of matter
Topic 2: Structure of matterTopic 2: Structure of matter
Topic 2: Structure of matter
 
Ppt Conservation Of Energy
Ppt Conservation Of EnergyPpt Conservation Of Energy
Ppt Conservation Of Energy
 
Heat and temperature
Heat and temperatureHeat and temperature
Heat and temperature
 
Wave Motion
Wave Motion Wave Motion
Wave Motion
 
Physics conservation of momentum
Physics conservation of momentumPhysics conservation of momentum
Physics conservation of momentum
 
Waves and Vibrations
Waves and VibrationsWaves and Vibrations
Waves and Vibrations
 

Similar to Physics Ppt

Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 reg
ZBTHS
 
Honors methods of motion
Honors methods of motionHonors methods of motion
Honors methods of motion
stephm32
 
Projectile Motion Part 1
Projectile Motion Part 1Projectile Motion Part 1
Projectile Motion Part 1
Jan Parker
 
Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4
stephm32
 
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdfphysics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
AbigaelSantos2
 

Similar to Physics Ppt (20)

Physics/Notes 6.1
Physics/Notes 6.1Physics/Notes 6.1
Physics/Notes 6.1
 
Gravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmeGravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programme
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched Projectiles
 
projectile-motion.ppt
projectile-motion.pptprojectile-motion.ppt
projectile-motion.ppt
 
projectile-motion.ppt
projectile-motion.pptprojectile-motion.ppt
projectile-motion.ppt
 
takevbooklet
takevbooklettakevbooklet
takevbooklet
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched Projectiles
 
Introduction to Kinematics
Introduction to KinematicsIntroduction to Kinematics
Introduction to Kinematics
 
Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 reg
 
Honors methods of motion
Honors methods of motionHonors methods of motion
Honors methods of motion
 
Law of Inertia and Running Starts
Law of Inertia and Running StartsLaw of Inertia and Running Starts
Law of Inertia and Running Starts
 
Projectile Motion Part 1
Projectile Motion Part 1Projectile Motion Part 1
Projectile Motion Part 1
 
Maths and Physics
Maths and PhysicsMaths and Physics
Maths and Physics
 
Lecture14motion2 d
Lecture14motion2 dLecture14motion2 d
Lecture14motion2 d
 
Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7
 
Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4
 
Law of Inertia and Frames of Reference
Law of Inertia and Frames of ReferenceLaw of Inertia and Frames of Reference
Law of Inertia and Frames of Reference
 
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdfphysics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
 
Physics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional MotionPhysics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional Motion
 
Vertical Straight Line Motion
Vertical Straight Line Motion Vertical Straight Line Motion
Vertical Straight Line Motion
 

Recently uploaded

Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
YibeltalNibretu
 

Recently uploaded (20)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
NLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptxNLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptx
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
 
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptxslides CapTechTalks Webinar May 2024 Alexander Perry.pptx
slides CapTechTalks Webinar May 2024 Alexander Perry.pptx
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 

Physics Ppt

  • 1. Projectile Motion Created by: Derek Zokoe ED 205 06 Click picture to enter
  • 2. Index 1. About me 2. Concept Map 3. What is Projectile Motion? 4. Why is PM important? 5. Projectile motion Problem 6. Resources
  • 3. About the Author My name is Derek Zokoe. I was born in Jenison Michigan. I am currently attending Grand Valley State University. I plan to graduate with a Major in physics and a Minor in Mathematics. I will also have a teaching degree. Feel free to email me. [email_address] Exit
  • 5. Exit What is Projectile Motion? In a normal sense projectile motion is just what the name says; the motion of a projectile. In a physics sense projectile motion is the study of how an object moves. You can study how water moves in the ocean, how an airplane flies in the sky, or even how a bullet flies out of the gun.
  • 6. Exit Why is Projectile Motion Important? You may ask why is projectile motion important. There are many practical uses of projectile motion. Most of the real life examples are very complex. You can shoot a rocket to the moon, or study the path of a quarterbacks football throw. Not everyone needs to be an expert at projectile motion, but it is good for everyone to have a basic knowledge of how a motion will fly. Everyone knows that if an object is throw up into the air that it will come back down eventually. Well how long will it take? This is something that we can figure out quite easily using projectile motion.
  • 7. Exit Projectile Motion Problem Suppose a student wants to figure out how far away an ball would land if launched off the table at an angle of 30 degrees from the horizon. The table is exactly 1 meter off the ground. The student first decides to shoot the ball straight up and tests to find how high the ball goes and how long it takes the ball to get there. He calculates that the ball travels at 10 m/s right when the ball is launched from the gun. Watch the video and then Calculate the following (use 10 m/ss for gravity) The x and y components of the initial velocity The velocity of the ball in the y direction when it is .75 above the initial height How high above the ground the ball is when it reaches its maximum How high the ball will be if traveling at 6 m/s down How fast the ball is moving just before hitting the ground Shortcut using conservation of energy
  • 8. Here is a link to a video that was made. It resembles our situation very very closely. In the video the ball is launched at different angles. You do only need to calculate each value for when the ball is being launched at 30 degrees. http://paer.rutgers.edu/PT3/movies/Projectile1.mov Exit Problem
  • 9. Exit Problem Initial If we use our knowledge of trigonometry we know that cos(30) is equal to the Adjacent (V x ) divided by the hypotenuse (V) and also that sin(30) is equal to the opposite (V y ) divided by the hypotenuse (V). If we use this knowledge we can derive the following equations. To calculate the initial velocity in the x direction and in the y direction.
  • 10. Exit Problem On its way up We were asked to calculate the vertical velocity of ball when the ball is .75 meters above the starting point. Remember that the ball is initially being launched from 1 meter. Here is the work that will be done in solving this problem.
  • 11. Exit Problem At the Top We are now supposed to find the maximum height that the ball will reach. To do so we will need to remember that the ball will have no vertical velocity when it is at its maximum point. Here is the work for this problem.
  • 12. Exit Problem Coming down We are now going to be finding the height of the ball when it is traveling at a vertical speed if 6 meters per second down. Here is the work. NOTE: The initial velocity of the ball is 5 meters per second. What does this mean for the vertical position of the ball relative to the starting height?
  • 13. Exit Problem At the Bottom We will finally calculate the velocity of the ball when it reaches the bottom. Remember we want the total velocity not just the vertical velocity. We will have to add the vertical velocity vector with the horizontal velocity vector. Here is the work for this problem. Now that we have the new vertical velocity we can calculate the final velocity
  • 14. Back Proceed Exit Warning: The following pages will ruin your experiences of Projectile Motion
  • 15. Exit Conservation of Energy Conservation of Energy can be used in every one of these problems, all of which become very easy. Since we know that the only force acting upon the ball after it is launched is gravity we know that energy will be conserved. We need to be very careful when we are calculating the height of the ball because we need to remember that potential energy is calculated from the wherever we decide our origin is. I suggest setting your origin to be the ground. Since there is not any air friction the horizontal speed will not be changing so when calculating the energy we can ignore that. Also remember when we find the final velocity of the ball just before it reaches the ground that we have calculated the velocity in the vertical direction. What is the velocity of the ball in the horizontal direction? The next page will be all of the work using conservation of energy.
  • 17. Resources The opening picture: The Video I found using Yahoo video search Airplane All information and equations I learned in my Physics Class at GVSU Exit http://library.thinkquest.org/TQ0312826/index.php?chapter=3&page=2 http://paer.rutgers.edu/PT3/movies/Projectile1.mov http://www.flickr.com/photos/caribb/80279502/