SlideShare a Scribd company logo
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72
Low-Power High-Resolution CMOS
Switched-Capacitor Delta-Sigma
Analog-to-Digital Converters
for Sensor Applications
Stepan Sutula1
Directors: Dr. Michele Dei1, Dr. Carles Ferrer Ramis1,2, Dr. Francesc Serra Graells1,2
1Integrated Circuits and Systems (ICAS)
Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC)
2Dept. of Microelectronics and Electronic Systems (DEMISE)
Universitat Autònoma de Barcelona (UAB)
November 5, 2015
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 2/72
General ADC System
Interface between physical and digital worlds
Integration with the input sensor using low-cost CMOS technologies
Maximum precision required for target application
Low power consumption compatible with local energy storage, remote
power or energy harvesting
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 3/72
Quantization
Number of bits:
N = log2(M)
Quantization step:
∆ =
Vmax − Vmin
2N − 1
Quantization noise PSD:
Sε(f ) =
1
fs

 1
∆
∆/2
−∆/2
2
q d q


=
∆2
12fs
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 4/72
ADC State of the Art
20 30 40 50 60 70 80 90 100 110 120
100
101
102
103
104
105
106
107
FOMS = SNDR + 10 log BW
P
160 dB
170 dB
180 dB
SNDR = 10 log Ps
Pε
[dB]
P/fsnyq[pJ]
Flash
Folding
Pipeline
SAR
CT ΔΣ
SC ΔΣ
Schreier FOM
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 4/72
ADC State of the Art
20 30 40 50 60 70 80 90 100 110 120
100
101
102
103
104
105
106
107
FOMS = SNDR + 10 log BW
P
160 dB
170 dB
180 dB
SNDR = 10 log Ps
Pε
[dB]
P/fsnyq[pJ]
Flash
Folding
Pipeline
SAR
CT ΔΣ
SC ΔΣ
Schreier FOM
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 5/72
ADC State of the Art
Architecture Resolution Bandwidth Latency Area
Flash Low High Low High
Folding Medium Medium-high Low High
Pipeline Medium-high Medium-high High Medium
SAR Medium-high Low-medium Low Low
ΔΣ High Low High Medium
Lower bandwidth and higher latency allowed
ΔΣ-architecture simplicity and higher resolution preferred
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 5/72
ADC State of the Art
Architecture Resolution Bandwidth Latency Area
Flash Low High Low High
Folding Medium Medium-high Low High
Pipeline Medium-high Medium-high High Medium
SAR Medium-high Low-medium Low Low
ΔΣ High Low High Medium
Lower bandwidth and higher latency allowed
ΔΣ-architecture simplicity and higher resolution preferred
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 6/72
Objectives and Scope
Working hypotheses:
• Low-cost calibration-free high-resolution ADCs can be obtained in
standard CMOS technologies
• Low-current circuits are preferred over low-voltage design
techniques for higher power savings
• Competitive mixed-signal IC design frameworks can be conducted
using open-source tools
Low-power high-resolution ΔΣ-ADC demonstrator to verify the
hypotheses
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 6/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 7/72
General ΔΣ-ADC Architecture
Oversampling ratio:
OSR =
fs
fN
=
fs
2 · BW
Quantization-noise in-band power:
Pε =
BW
−BW
Sε(f ) df =
∆2
12 · OSR
Antialiasing filtering relaxed
Overclocking needed
ΔΣ-modulator noise shaping
Reduced impact of the block
imperfections on the ADC
performance
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 8/72
First-Order ΔΣ Modulator
One-sample-delay integrator:
H1(z) =
z−1
1 − z−1
Non-linear system due to the
quantization effects
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 8/72
First-Order ΔΣ Modulator
Equivalent linear-model simplification
Signal and noise transfer functions:
STF(z) =
Vout(z)
Vin(z)
=
1
1 + (aqH1(z))−1
NTF(z) =
Vout(z)
Vqn(z)
=
1
1 + aqH1(z)
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 9/72
Lth
-Order ΔΣ Modulator
Resolution-vs-OSR (L + 0.5)-bit/octave increase
Integrator overload prevention
Weakened loop stability
Careful robustness verification needed
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 10/72
First-Order Feedforward ΔΣ-Modulator
Quantization-error processing
only
Integrator-output
signal-headroom relaxation
Signal and noise transfer functions:
STF(z) =
Vout(z)
Vin(z)
= 1
NTF(z) =
Vout(z)
Vqn(z)
=
1
1 + aqH1(z)
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 11/72
Lth
-Order Feedforward ΔΣ Modulator
Single negative-feedback path
Power efficiency
Extra adder circuit
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 12/72
Multi-Bit Quantization
Resolution increase
OSR reduction
Quantizer non-linearity
Calibration/DEM
needed
Feedforward-ΔΣM-
implementation issues
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 13/72
Single-Bit Quantization
Inherent linearity
Quantizer-design
simplification
Benefits for the
feedforward-ΔΣM
implementation:
• Reduced
quantization time
• Passive adder
Oversampling
First-stage
instantaneous error
amplitude
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 14/72
High-Level Modeling
CPU-simulation-time
reduction
Solution to the
mathematical-analysis
difficulties
Number of samples to
simulate:
nsamp = np · OSR
2 · BW
fin
Signal-to-quantization-
noise ratio:
SQNR = 10 log
Ps
Pε
103 104 105 106
−200
−150
−100
−50
0
40 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 14/72
High-Level Modeling
CPU-simulation-time
reduction
Solution to the
mathematical-analysis
difficulties
Number of samples to
simulate:
nsamp = np · OSR
2 · BW
fin
Signal-to-quantization-
noise ratio:
SQNR = 10 log
Ps
Pε
103 104 105 106
−200
−150
−100
−50
0
40 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 15/72
High-Level Modeling
Input-amplitude
sweep
Input-full-scale
adjustment
Model covering
signal-quantization
error and overloading
only
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 16/72
Circuit Non-Idealities
Sampling thermal noise:
Pn =
2kBT
Cs1 · OSR
Component technology
mismatch
Integrator settling error
Jitter noise:
Pj =
V 2
s
8
(2π · BW · σj)2
OSR
Reference noise
103 104 105 106
−200
−150
−100
−50
0
40 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
No thermal noise
With thermal noise
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 17/72
Demonstrator Target Specifications
50-kHz bandwidth
16-bit resolution
Standard CMOS technology
No supply bootstrapping
No analog calibration
No digital compensation
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 17/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 18/72
Low-Power Switched-Capacitor Design
Low-Voltage Approach
Bulk-driven OpAmps
Internal supply multipliers
Inverter-based OpAmps
Switched OpAmps
Nominal-voltage downscaling,
one-cell-battery compatibility
Moderate power savings
Low-Current Approach
Telescopic diff. pairs with
LCMFB
Dynamic biasing by RC bias
tees
Hybrid-Class-A/AB
Adaptive biasing
Higher power savings
Process and temperature
sensitivity
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 18/72
Low-Power Switched-Capacitor Design
Low-Voltage Approach
Bulk-driven OpAmps
Internal supply multipliers
Inverter-based OpAmps
Switched OpAmps
Nominal-voltage downscaling,
one-cell-battery compatibility
Moderate power savings
Low-Current Approach
Telescopic diff. pairs with
LCMFB
Dynamic biasing by RC bias
tees
Hybrid-Class-A/AB
Adaptive biasing
Higher power savings
Process and temperature
sensitivity
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 19/72
Variable-Mirror Amplifier Family
Two complementary diff. pairs
Dynamic current mirrors
Separate Class-AB control
Partial positive feedback
CMFB control through the
NMOS-pair tail
Gain improvement by the
output cascode transistors
No need for the Miller
compensation capacitors
High-peak Class-AB currents
only in the output transistors
[1] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Class-AB Single-Stage
OpAmp for Low-Power Switched-Capacitor Circuits,”ISCAS 2015 Awarded.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 20/72
Variable-Mirror Amplifier Family
In strong inversion:
Ionp =
B
A + B
Anβ
2
Vcp + Iinp
2
In weak inversion:
Ionp =
B
A + B
e
Vcp
UT Iinp
Desired Class-AB behavior:



Ioutp ≡ 0 Vcp ≡ Vxp Ionp ≡ Iinp
Ioutp ≡ 0 Vcp ≡ Vxp
Ionp Iinp
Ionp Iinp
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 21/72
Type I
Positive-feedback cross-coupled B-B pair for the Class-AB operation
Negative-feedback crossing transistor C as a Class-AB limiter
D
.
=
A · B
A + B
E
.
=
A · B · C
A + B + C
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 21/72
Type I
Positive-feedback cross-coupled B-B pair for the Class-AB operation
Negative-feedback crossing transistor C as a Class-AB limiter
D
.
=
A · B
A + B
E
.
=
A · B · C
A + B + C
Imax 1 +
D
C
Itail
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 22/72
Type-I Analysis: Insensitivity to n and β
In strong inversion:



Iinp =B 2
Ionn
D
−
Ionp
D
+
Iinp
A
Ionp
D
−
Iinp
A
+ C 2
Itail
E
−
Ionp
D
−
Ionn
D
+
Iinp
A
+
Iinn
A
Ionp
D
−
Ionn
D
−
Iinp
A
+
Iinn
A
Iinn =B 2
Ionp
D
−
Ionn
D
+
Iinn
A
Ionn
D
−
Iinn
A
+ C 2
Itail
E
−
Ionn
D
−
Ionp
D
+
Iinn
A
+
Iinp
A
Ionn
D
−
Ionp
D
−
Iinn
A
+
Iinp
A
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 23/72
Type-I Analysis: Insensitivity to UT
In weak inversion:



Iinp =
B
D
Ionn 1 −
D
A
Iinp
Ionp
+
C · D
A · E
Itail
Iinp
Ionp
−
Iinn
Ionn
Iinn =
B
D
Ionp 1 −
D
A
Iinn
Ionn
+
C · D
A · E
Itail
Iinn
Ionn
−
Iinp
Ionp
Independence from technology and temperature
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 24/72
Type I with Class-AB Smoother
Low-level
common-mode
current injection
Instability prevention
under a high
Class-AB modulation
Need for extra current
sources
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 25/72
Type II
Auto-biased Class-AB limiter
Self-latch prevention
Simple sizing procedure
F
.
=
A(B+C)
A+B+C
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 25/72
Type II
Auto-biased Class-AB limiter
Self-latch prevention
Simple sizing procedure
F
.
=
A(B+C)
A+B+C
Imax
1+ A
C
1+ A
B+C
Itail > Itail
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 26/72
Type-II Analysis: Insensitivity to n and β
In strong inversion:



Iinp = 2 B
Ionn
F
+ C
Ionp
F
− (B + C)
Ionp
F
−
Iinp
A
Ionp
F
−
Iinp
A
Iinn = 2 B
Ionp
F
+ C
Ionn
F
− (B + C)
Ionn
F
−
Iinn
A
Ionn
F
−
Iinn
A
Independence from technology and temperature
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 27/72
Type-II Analysis: Insensitivity to UT
In weak inversion:



Iinp =
B
F
Ionn +
C
F
Ionp 1 −
F
A
Iinp
Ionp
Iinn =
B
F
Ionp +
C
F
Ionn 1 −
F
A
Iinn
Ionn
Independence from technology and temperature
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 28/72
Type-II DC Transfer Curve
Parameterized
B/C for A=8
Matching between
analytical and
simulated results
Strong inversion
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 28/72
Type-II DC Transfer Curve
Parameterized
B/C for A=8
Matching between
analytical and
simulated results
Weak inversion
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 29/72
Cascode Biasing
Series/parallel
association
Saturation-edge
biasing
Valid for all MOSFET
inversion levels
Optimum output full
scale for a given
supply voltage
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 30/72
SC-Integrators
Traditional OpAmp use
OpAmp in interleaving
Switched OpAmp
• critical switches
• 50-% duty cycle
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 31/72
SOA-Integrator Operation
Sampling
phase
Integration
phase
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 32/72
Charge-Injection Minimization
Delayed disconnection in the
signal-dependent paths
Signal-independent charge
injection
Rejected by CMFB
Extra switching phases
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72
SVMA Operation
Reduced set of
transistor matching
groups
Full CMOS
implementation
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72
SVMA Operation
Reduced set of
transistor matching
groups
Off-state network
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72
SVMA Operation
Reduced set of
transistor matching
groups
On-state network
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 34/72
IC Design Environment
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 35/72
High-Level Model
Coefficient a1 a2 a3 a4 c1 c2 c3 c4
Value 0.2 0.4 0.1 0.1 1 1 1 2
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 36/72
High-Level Simulation
103 104 105 106
−200
−150
−100
−50
0
80 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
−100 −50 0
0
20
40
60
80
100
120
Input Amplitude [dBFS]
SQNR[dB]
136 OSR, 13.6 MS/s
13.28-kHz input frequency
117-dB maximum SQNR
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 37/72
Non-Idealities
0 5 10 15
0
20
40
60
80
100
120
mism [%]
SQNRmax,worst[dB]
0 0.05 0.1 0.15 0.2
80
90
100
110
120
sett [%]SQNRmax[dB]
8.25-% maximum coefficient
mismatch
0.035-% maximum settling error
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 38/72
ΔΣM SC Scheme
Fully-differential No bootstrapping No output switches
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 38/72
ΔΣM SC Scheme
Capacitance Value [pF] Capacitance Value [pF] Capacitance Value [pF]
Cfb 21.16 Cff0 0.92
Cs1 42.32 Ci1 211.6 Cff1 0.92
Cs2 3.68 Ci2 9.2 Cff2 0.92
Cs3 0.92 Ci3 9.2 Cff3 0.92
Cs4 0.92 Ci4 9.2 Cff4 1.84
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 39/72
ΔΣM Clock Generation
Digital masking scheme to minimize the number of analog switches
Delayed-phase generation
14 outputs
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72
ΔΣM Operation
Integrator initialization
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72
ΔΣM Operation
Regular operation (phase A)
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72
ΔΣM Operation
Regular operation (phase B)
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 41/72
SVMA Design
Equivalent-condition
extraction
Design-time minimization
Parameter SVMA1 SVMA2 SVMA3,4 Units
Cssi 63.48 3.68 0.92 pF
Cii 211.6 9.2 9.2 pF
Cli 4.6 1.84 1.84 pF
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 42/72
SVMA Design
Basic-parameter analytical estimation
Parameter SVMA1 SVMA2 SVMA3,4 Units
βfb = Cii
Cssi +Cii
0.77 0.71 0.91
Cleffi = Cli + (1 − βfb)Cii 53.4 4.47 2.68 pF
Cleffi/Cli 11.6 2.43 1.46
Aopen = 1
βfb sett
71.4 72 69.9 dB
SR =
Vstep
tslew
46 61.3 15.3 V
µs
Imax = SR · Cleffi 2.46 0.274 0.041 mA
GBW =
ln −1
sett
2πβfbtsett
77.9 83.9 65.9 MHz
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 43/72
Optimization Flow
Automated
variable sweep
Increased
productivity
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 44/72
Sized SVMA1
Optimum values:
kb 4
kz 3
ICin 2
ICtail 4
ICmirr 6
Itail 950 µA
Minimum-channel-
length devices used
Bias for cascode
transistors optimized
for maximum output
full scale
1.8-V nominal voltage
supply of the CMOS
technology
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 45/72
SVMA1 DC Transfer Curve
Minimal deviation under
different process and
temperature conditions
Class-AB achieves about
×4 bias current
−1 −0.5 0 0.5 1
0
0.5
1
1.5
2
Ionn
kb
Ionp
kb
(Iinp − Iinn) /Itail [Itail]
[Itail]
typical at 20 °C
fast at -40 °C
slow at 80 °C
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 46/72
SVMA1-Parameter Extraction
Open-loop-gain and settling-time compliance with specifications
Parameter
typical
20 °C
fast
-40 °C
slow
80 °C
Units
Aopen 74.1 74.7 73.9 dB
SR 139 146 133 V
µs
Imax 7.41 7.8 7.1 mA
GBW 221 250 206 MHz
PM1 54 46.9 60.7 °
PMβ 55.8 48.9 62.8 °
tint 16.41 14.24 19.57 ns
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 47/72
All-SVMA-Parameter Extraction
Open-loop-gain and settling-time compliance with specifications
Parameter SVMA1 SVMA2 SVMA3,4 Units
Aopen 74.1 72.1 70.5 dB
SR 139 36.2 26 V
µs
Imax 7.41 0.162 0.07 mA
GBW 221 95.4 70.9 MHz
PM1 54 77.8 83.1 °
PMβ 55.8 80.2 83.6 °
tint 16.41 25.75 19.82 ns
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 48/72
SVMA Device Sizes
Parameter SVMA1 SVMA2 SVMA3,4 Units
Ccmfb 8050 437 218 fF
Ia1 250 50 50 µA
Ia2 237.5 50 50 µA
Ib 200 50 50 µA
(W/L)MA1 7.48/0.24 1.58/0.24 1.58/0.24 µm/µm
(W/L)MA2 2.7/0.24 0.57/0.24 0.57/0.24 µm/µm
(W/L)MB1,2 28.48/0.48 7.12/0.48 7.12/0.48 µm/µm
(W/L)MB3 154.24/0.48 38.56/0.48 38.56/0.48 µm/µm
(W/L)MC1,2 478.72/0.24 12.64/0.24 6.32/0.24 µm/µm
(W/L)MC3,4 172.8/0.24 4.56/0.24 2.28/0.24 µm/µm
(W/L)MD1,2 59.84/0.24 3.15/0.24 3.16/0.24 µm/µm
(W/L)MD3,4 21.6/0.24 1.14/0.24 1.14/0.24 µm/µm
(W/L)MG1,2 957.44/0.24 25.2/0.24 12.64/0.24 µm/µm
(W/L)MG3,4 345.6/0.24 9.12/0.24 4.56/0.24 µm/µm
(W/L)MI1,2 129.6/0.24 6.8/0.24 3.4/0.24 µm/µm
(W/L)MI3,4 359.04/0.24 18.96/0.24 9.44/0.24 µm/µm
(W/L)ML1,2 957.44/0.24 25.2/0.24 12.64/0.24 µm/µm
(W/L)ML3,4 345.6/0.24 9.12/0.24 4.56/0.24 µm/µm
(W/L)MSN
16/0.18 0.96/0.18 0.48/0.18 µm/µm
(W/L)MSP
144/0.18 8.64/0.18 4.32/0.18 µm/µm
(W/L)MT1 270.56/0.48 14.24/0.48 7.12/0.48 µm/µm
(W/L)MT2 732.64/0.48 38.56/0.48 19.28/0.48 µm/µm
(W/L)MU1,2 239.36/0.24 12.6/0.24 6.32/0.24 µm/µm
(W/L)MU3,4 86.4/0.24 4.56/0.24 2.28/0.24 µm/µm
(W/L)MZ1,2 179.52/0.24 9.45/0.24 3.16/0.24 µm/µm
(W/L)MZ3,4 64.8/0.24 3.42/0.24 1.14/0.24 µm/µm
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 49/72
Feedforward-Switch Optimization
Equivalent switching scheme
Trade-off between the switch conductor capabilities and parasitics
Design-time reduction
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 50/72
Feedforward-Switch Optimization
126-dB SDR
reached for the
worst-case corner
103 104 105 106
0
−50
−100
−150
−200
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
typical at 20 °C
fast at -40 °C
slow at 80 °C
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 51/72
Full-ΔΣM Simulation
105.7-dB SQNDR
reached in the
worst case
16.5-hour
simulation time
for 64 input-signal
sine periods
on Intel ®
CoreTM
CPU i7-2600 @
3.40 GHz
103 104 105 106
0
−20
−40
−60
−80
−100
−120
−140
−160
80 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
typical at 20 °C
fast at -40 °C
slow at 80 °C
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 52/72
CMOS Physical Design
Standard analog layout-design techniques
Gate noise:
V 2
n,g =
4kBT
3m2
W
L
R
Input-referred channel noise:
V 2
n,ch =
8kBT
3gm
Minimum finger number for wide-channel
devices (Vn,ch/Vg,ch = 5):
m = 3.5
W
L
R gm
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 53/72
SVMA1 Post-Layout Simulation Results
Open-loop
frequency
response
200-pF load
capacitance
103 104 105 106 107 108 109
0
−60
−120
−180
Frequency [Hz]
Phase[°]
Phase
Gain
0
10
20
30
40
50
60
70
80
72 dB
50 °
DifferentialGain[dB]
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 54/72
SVMA1 Post-Layout Simulation Results
Step response for several load conditions
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1
0
1
2
Time × Input Frequency [-]
DifferentialOutputVoltage[V]
650 µF at 1 Hz, 650 nF at 1 kHz 650 pF at 1 MHz
Hz, 650 nF at 1 kHz 6
Stability robustness
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 55/72
ΔΣM Post-Layout Simulation
Spectre
transient-noise
mode
2-month
simulation time
for 64 input-signal
sine periods
on Intel®
Xeon®
CPU E5-2640 @
2.50 GHz
103-dB SNDR
108.7-dB DR
103 104 105 106
0
−20
−40
−60
−80
−100
−120
−140
−160
80 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
Without transient noise
With transient noise
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 56/72
Test-Vehicle Integration
Standard 0.18-µm 1P6M MIM CMOS technology
4.9-mm2
area
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 57/72
SVMA1
0.07-mm2
area
Additional input
for the external
CMFB control
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 58/72
Full-ΔΣM
1.8-mm2
area
No need for
global symmetry
Separate analog
and digital 1.8-V
supplies
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 58/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 59/72
SVMA Measurement Setup
Unity-gain transient-response measurement
Continuous-time operation
External CMFB control
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 60/72
SVMA Step Response
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 61/72
SVMA Full-Scale Evaluation
0 20 40 60 80 100 120 140 160 180 200
−2
−1
0
1
2
Time [ms]
DifferentialOutputVoltage[V]
Ideal
Simulated
Measured
0
1
2
utputVoltage[V]
3.3-Vpp differential full scale at 1.8-V voltage supply
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 62/72
SVMA Figure-of-Merit Comparison
Parameter [10] [11] [12] [13] [14]
This
work
Units
Technology 0.5 0.5 0.25 0.13 0.18 0.18 µm
Supply 2 2 1.2 1.2 0.8 1.8 V
DC gain 43 45 69 70 51 72 dB
Cload 80 25 4 5.5 8 200 pF
GBW 0.725 11 165 35 0.057 86.5 MHz
Phase margin 89.5 N/A 65 45 60 50 °
Slew rate, SR 89 20 329 19.5 0.14 74.1 V/µs
Static power, P 0.12 0.04 5.8 0.11 0.0012 11.9 mW
Area 0.024 0.012 N/A 0.012 0.057 0.07 mm2
Resistor-free No No Yes Yes Yes Yes mm2
FOM 59.33 12.50 0.28 0.98 0.93 1.25 V
µs
pF
µW
FOM =
SR·Cload
P
V
µs
pF
µW
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 63/72
ΔΣM-DUT Packaging
Dual-in-line 16-pin
ceramic packaging
Top and bottom
shielding layers
In-package
noise-decoupling
capacitors
Interference and noise
reduction
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 64/72
ΔΣM Measurement
Setup
Ultra-low-distortion
function generator as
a input-signal
generator
Low-jitter pulse
generator as a input
clock timebase
Low-noise
battery-based power
supplies and
references
Flexible FPGA-based
readout system
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 65/72
ΔΣM Measurement Results
2.4-Vpp
differential full
scale
-2-dBFS input
amplitude
80-dB/decade
noise-shaping
slope observed
103 104 105 106
0
−20
−40
−60
−80
−100
−120
−140
−160
80 dB/dec
Frequency [Hz]
Powerspectraldensity[dBFS/bin]
Simulated
Measured
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 66/72
ΔΣM Measurement Results
96.6-dB SNDR
105.3-dB SFDR
97-dB DR
SNDR
degradation at
high amplitudes is
avoided
−100 −80 −60 −40 −20 0
0
20
40
60
80
100
Input Amplitude [dBFS]
SNR,SFDR,SNDR[dB]
SNDR
SFDR
SNR
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 67/72
ADC Performance Comparison
[15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]
This
work
Architecture
ΔΣ
SC
ΔΣ
CT,SC
ΔΣ
SC
ΔΣ
CT,SC
ΔΣ
CT
ΔΣ
SRC
ΔΣ
SC
ΔΣ
SC
ΔΣ
SC
INC
ΔΣ
CT
Pipe+
SAR
ΔΣ
SC
ΔΣ
SC
Technology 0.35 0.35 0.25 0.18 0.18 0.13 0.18 0.18 0.35 0.16 0.18 0.18 0.18 0.18 µm
Supply voltage 5 3.3 1.8 0.9 1.8 0.7 1.5 1.8 5, 1.8 5 1.8 V
Diff. full scale 6.6 5.7 1.4 1.1 1.8 10 4.4 2.4 Vpp
Sampling rate 5.12 6.14 20 6.14 41.7 6.14 45.2 5 2.4 0.05 57.5 5 0.15 13.6 MS
s
Bandwidth 20 20 1000 20 200 24 500 25 20 0.0125 600 2500 0.1 50 kHz
Supply power 55 18 475 37 210 1.5 38 0.87 0.14 0.0063 21 30.5 0.505 7.9 mW
Area 5.6 0.82 20.2 0.65 6 1.44 3.5 2.16 0.21 0.38 0.99 5.74 0.8 1.8 mm2
DR 111 106 103 102 98 92 90.1 100 92.6 100.2 97 dB
SFDRmax 97 90 100.8 105.3 dB
SNDRmax 105 97 95 90 89 86.3 95 87.9 98.6 100.6 96.6 dB
FOMW 9458 7776 2057 20122 20311 1357 2251 378.5 173 314.8 678.2 87.7 28825 1429 fJ
conv
FOMS 160.6 157.5 166.2 152.3 149.8 161.0 157.5 169.6 169.5 182.8 164.6 177.7 153.6 164.6 dB
Bootstrap-free Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes
Calibration-free Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72
Performance Comparison
20 30 40 50 60 70 80 90 100 110 120
100
101
102
103
104
105
106
107
SNDR [dB]
P/fsnyq[pJ]
Flash
Folding
Pipeline
SAR
CT ΔΣ
SC ΔΣ
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72
Performance Comparison
85 90 95 100 105 110 115 120
104
105
106
107
FOMS = SNDR + 10 log BW
P
[28]
[29]
[15]
[18]
[19]
[20]
[27]
[30]
[17] [24]
[25]
[31]
[32]
[33]
[16]
[21]
[22]
[23]
[26]
This
work
SNDR [dB]
P/fsnyq[pJ]
Feature-compliant
Others
FOMS of this work
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72
1 Introduction
2 ΔΣ-Modulator Architectures
3 Low-Power CMOS Switched-Capacitor Circuits
4 Practical ΔΣM Design in a 0.18-µm CMOS Technology
5 Experimental Results
6 Conclusions
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 69/72
Contributions
Initial working hypotheses successively tested and confirmed:
• High-resolution and low-power state-of-the-art ADC
• Integrated in a low-cost standard CMOS technology
• Using novel analog design techniques at the system and circuit
levels
• No bootstrapping, analog calibration or digital
post-compensation
Selection guide of SC ΔΣM ADCs
Efficient framework based on open-source EDA tools
New family of single-stage Class-AB OpAmps: VMAs
SVMA- and ΔΣM-demonstrator implementation and measurements
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 70/72
Research Funding
2007-2011: Chemical Warfare Agents Analyzer Based on
Low Cost Dual Band IR Microsystem (CANARIO)
EDA-B-DO61-IAP2-ERG:
32-channel read-out low-power IC
2009-2012: Perishable Monitoring through Short Tracking of
Lifetime and Quality by RFID (PASTEUR)
CATRENE CT204:
Low-power smart sensor with integrated
potentiostatic ΔΣ ADC
2011-2015: ESA Cosmic Vision MF ASIC
ESTEC 40000101556/10/NL/AF:
4 low-power ΔΣ ADCs with multiple BWs and SNDRs
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 71/72
Publications
11 papers:
• 9 published (2 awarded)
• 2 being disseminated:
[+] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Variable-Mirror
Amplifier: A New Family of Process-Independent Class-AB
Single-Stage OpAmps for Low-Power SC Circuits,” submitted to the
IEEE Transactions on Circuits and Systems I.
[+] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “A
Calibration-Free 96.6-dB-SNDR Non-Bootstrapped 1.8-V 7.9-mW
Delta-Sigma Modulator with Class-AB Single-Stage
Switched-OpAmps,” submitted to the IEEE International
Symposium on Circuits and Systems, Montreal, 2016.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
Future Work
Integration on the same die with the sensor array
LVDS-bus implementation
Decoupling-capacitor increase
Multi-bit-ΔΣM exploration
Reuse of low-current design techniques in the low-voltage realm
Thank you!
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
References
[1] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Class-AB Single-Stage
OpAmp for Low-Power Switched-Capacitor Circuits,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, pp. 2081–2084, 2015,
Student Best Paper Award Honorable Mention.
[2] S. Sutula, F. Vila, J. Pallarès, K. Sabine, L. Terés, and F. Serra-Graells,
“Teaching Mixed-Mode Full-Custom VLSI Design with gaf, SpiceOpus and
Glade,” in Proceedings of the 10th European Workshop on Microelectronics
Education, pp. 43–48, 2014.
[3] J. Pallarès, F. Vila, S. Sutula, K. Sabine, L. Terés, and F. Serra-Graells, “A
Freeware EDA Framework for Teaching Mixed-Mode Full-Custom VLSI Design,”
in Proceedings of the XIX Conference on Design of Circuits and Integrated
Systems, 2014.
[4] S. Sutula, J. Pallarès Cuxart, J. Gonzalo-Ruiz, F. Xavier Munoz-Pascual,
L. Terés, and F. Serra-Graells, “A 25-uW All-MOS Potentiostatic Delta-Sigma
ADC for Smart Electrochemical Sensors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, pp. 671–679, 2014.
[5] J. Pallarès, S. Sutula, J. Gonzalo-Ruiz, F. X. Muñoz-Pascual, L. Terés, and
F. Serra-Graells, “A Low-Power MOS-Only Potentiostatic Delta-Sigma ADC
Architecture for Electrochemical Sensors,” in Proceedings of the XIX Conference
on Design of Circuits and Integrated Systems, 2014, Best Paper Award.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
[6] S. Sutula, C. Ferrer, and F. Serra-Graells, “Design and Modeling of a Low-Power
Multi-Channel Integrated Circuit for Infrared Gas Recognition,” Elsevier
Microprocessors and Microsystems, vol. 36, pp. 355–364, 2012.
[7] S. Sutula, C. Ferrer, and F. Serra-Graells, “A 400 µW Hz-Range Lock-In A/D
Frontend Channel for Infrared Spectroscopic Gas Recognition,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 1561–1568,
2011.
[8] S. Sutula, C. Ferrer, and F. Serra-Graells, “A 100µA/Ch Fully-Integrable Lock-in
Multi-Channel Frontend for Infrared Spectroscopic Gas Recognition,” in
Proceedings of the IEEE International Symposium on Circuits and Systems,
pp. 2267–2270, 2010.
[9] S. Sutula, C. Ferrer, and F. Serra-Graells, “Design and Modeling of a 0.4mW/Ch
Multi-Channel Integrated Circuit for Infrared Gas Recognition,” in Proceedings of
the XXV Conference on Design of Circuits and Integrated Systems, pp. 226–271,
2010.
[10] A. J. López-Martín, S. Baswa, J. Ramirez-Angulo, and R. G. Carvajal,
“Low-Voltage Super Class AB CMOS OTA Cells With Very High Slew Rate and
Power Efficiency,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1068–1077,
2005.
[11] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan, and A. Lopez-Martin, “A Free
But Efficient Low-Voltage Class-AB Two-Stage Operational Amplifier,” IEEE
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
Transactions on Circuits and Systems II: Expressed Briefs, vol. 53, pp. 568–571,
2006.
[12] M. Yavary and O. Shoaei, “Very Low-Voltage, Low-Power and Fast-Settling OTA
for Switched-Capacitor Applications,” in Proceedings of the International
Conference on Microelectronics, pp. 10–13, 2002.
[13] M. Figueiredo, R. Santos-Tavares, E. Santin, J. Ferreira, G. Evans, and J. Goes,
“A Two-Stage Fully Differential Inverter-Based Self-Biased CMOS Amplifier
With High Efficiency,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 58, pp. 1591–1603, 2011.
[14] M. R. Valero, S. Celma, N. Medrano, B. Calvo, and C. Azcona, “An Ultra
Low-Power Low-Voltage Class AB CMOS Fully Differential OpAmp,” in
Proceedings of the IEEE International Symposium on Circuits and Systems,
pp. 1967–1970, 2012.
[15] Y. Yang, A. Chokhawala, M. Alexander, J. Melanson, and D. Hester, “A 114-dB
68-mW Chopper-Stabilized Stereo Multi-bit Audio A/D Converter,” in
Proceedings of the IEEE International Solid-State Circuits Conference,
pp. 56–477, 2003.
[16] K. Nguyen, B. Adams, K. Sweetland, H. Chen, and K. McLaughlin, “A 106dB
SNR Hybrid Oversampling ADC for Digital Audio,” in Proceedings of the IEEE
International Solid-State Circuits Conference, pp. 176–591, 2005.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
[17] R. Brewer, J. Gorbold, P. Hurrell, C. Lyden, R. Maurino, and M. Vickery, “A
100dB SNR 2.5MS/s Output Data Rate ΔΣ ADC,” in Proceedings of the IEEE
International Solid-State Circuits Conference, pp. 172–173, 2005.
[18] P. Morrow, M. Chamarro, C. Lyden, P. Ventura, A. Abo, A. Matamura,
M. Keane, R. O’Brien, P. Minogue, J. Mansson, N. McGuinness,
M. McGranaghan, and I. Ryan, “A 0.18µm 102dB-SNR Mixed CT SC
Audio-Band ΔΣ ADC,” in Proceedings of the IEEE International Solid-State
Circuits Conference, pp. 178–592, 2005.
[19] P. Silva, L. Breems, K. Makinwa, R. Roovers, and J. Huijsing, “An 118dB DR
CT IF-to-Baseband ΣΔ Modulator for AM/FM/IBOC Radio Receivers,” in
Proceedings of the IEEE International Solid-State Circuits Conference,
pp. 151–160, 2006.
[20] M. Kim, G. Ahn, P. Hanumolu, S. Lee, S. Kim, S. You, J. Kim, G. Temes, and
U. Moon, “A 0.9V 92dB Double-Sampled Switched-RC ΔΣ Audio ADC,” in
Symposium on VLSI Circuits Digest of Technical Papers, pp. 160–161, 2006.
[21] A. Agah, K. Vleugels, P. Griffin, M. Ronaghi, J. Plummer, and B. Wooley, “A
High-Resolution Low-Power Oversampling ADC with Extended-Range for
Bio-Sensor Arrays,” in Symposium on VLSI Circuits Digest of Technical Papers,
pp. 244–245, 2007.
[22] H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley, “A 0.7-V 100-dB
870-µW Digital Audio ΔΣ Modulator,” in Symposium on VLSI Circuits Digest of
Technical Papers, pp. 178–179, 2008.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
[23] T. Christen, “A 15bit 140µW Scalable-Bandwidth Inverter-Based Audio ΔΣ
Modulator with >78dB PSRR,” in Proceedings of the European Solid-State
Circuits Conference, pp. 209–212, 2012.
[24] Y. Chae, K. Souri, and K. Makinwa, “A 6.3µW 20b Incremental Zoom-ADC with
6ppm INL and 1µV Offset,” in Proceedings of the IEEE International Solid-State
Circuits Conference, pp. 276–277, 2013.
[25] A. Bandyopadhyay, R. Adams, N. Khiem, P. Baginski, D. Lamb, and T. Tansley,
“A 97.3 dB SNR, 600 kHz BW, 31mW Multibit Continuous Time ΔΣ ADC,” in
Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2, 2014.
[26] A. Bannon, C. Hurrell, D. Hummerston, and C. Lyden, “An 18 b 5 MS/s SAR
ADC with 100.2 dB Dynamic Range,” in Symposium on VLSI Circuits Digest of
Technical Papers, pp. 1–2, 2014.
[27] L. Xu, B. Gönen, Q. Fan, J. Huijsing, and K. A. A. Makinwa, “A 110dB SNR
ADC with ±30V Input Common-Mode Range and 8µV Offset for Current
Sensing Applications,” in Proceedings of the IEEE International Solid-State
Circuits Conference, pp. 90–91, 2015.
[28] Y. Matsuya and J. Terada, “1.2-V, 16-bit Audio A/D Converter With Suppressed
Latch Error Noise,” in Symposium on VLSI Circuits Digest of Technical Papers,
pp. 19–20, 1997.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
[29] Y. Geerts, M. Steyaert, and W. Sansen, “A 2.5MSample/s Multi-Bit ΔΣ CMOS
ADC with 95dB SNR,” in Proceedings of the IEEE International Solid-State
Circuits Conference, pp. 336–337, 2000.
[30] E. Zwan, “A 2.3 mW CMOS ΣΔ Modulator for Audio Applications,” in
Proceedings of the IEEE International Solid-State Circuits Conference,
pp. 220–221, 1997.
[31] K. Y. Leung, E. J. Swanson, K. Leung, and S. S. Zhu, “A 5V, 118dB ΔΣ
Analog-to-Digital Converter for Wideband Digital Audio,” in Proceedings of the
IEEE International Solid-State Circuits Conference, pp. 218–219, 1997.
[32] A. L. Coban and P. E. Allen, “A 1.5V 1.0mW Audio Σ∆ Modulator with 98dB
Dynamic Range,” in Proceedings of the International Solid-State Circuits
Conference, pp. 50–51, IEEE, 1999.
[33] K. Vleugels, S. Rabii, and B. A. Wooley, “A 2.5V Broadband Multi-Bit ΔΣ
Modulator with 95dB Dynamic Range,” in Proceedings of the IEEE International
Solid-State Circuits Conference, pp. 50–51, 2001.
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
Design Variables
Reduced set of input variables
Simplified SVMA-optimization process
Automated result back-annotation
Stepan Sutula
Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72
SVMA1 DC Transfer Curve versus kz
b03v02
Stepan Sutula

More Related Content

What's hot

Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Chih-Chan Tu
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
Anil Yadav
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
Jonathan Chik
 
H0534248
H0534248H0534248
H0534248
IOSR Journals
 
ComNet FDX55S1 Data Sheet
ComNet FDX55S1 Data SheetComNet FDX55S1 Data Sheet
ComNet FDX55S1 Data Sheet
JMAC Supply
 
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMSDESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
VLSICS Design
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos ota
ijmpict
 
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate BlocksPhysical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
eInfochips (An Arrow Company)
 
Low power embedded system design
Low power embedded system designLow power embedded system design
Low power embedded system design
Sri Manakula Vinayagar Engineering College
 
Ju3417721777
Ju3417721777Ju3417721777
Ju3417721777
IJERA Editor
 
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
IRJET Journal
 
Tvlm add-2011n
Tvlm add-2011nTvlm add-2011n
Tvlm add-2011nC-Tec
 
Webinar: Practical DDR Testing for Compliance, Validation and Debug
Webinar: Practical DDR Testing for Compliance, Validation and DebugWebinar: Practical DDR Testing for Compliance, Validation and Debug
Webinar: Practical DDR Testing for Compliance, Validation and Debug
teledynelecroy
 
Profile
ProfileProfile
Profile
ananthch
 
sub.net substation monitor
sub.net substation monitorsub.net substation monitor
sub.net substation monitor
rk_at_emsni
 
Low Power System on chip based design methodology
Low Power System on chip based design methodologyLow Power System on chip based design methodology
Low Power System on chip based design methodologyAakash Patel
 
ComNet FDC1M Data Sheet
ComNet FDC1M Data SheetComNet FDC1M Data Sheet
ComNet FDC1M Data Sheet
JMAC Supply
 
Milan Product Solutions Version 1.4
Milan Product Solutions Version 1.4Milan Product Solutions Version 1.4
Milan Product Solutions Version 1.4
Gianluca Musetti
 

What's hot (20)

SigmaDeltaADC
SigmaDeltaADCSigmaDeltaADC
SigmaDeltaADC
 
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
Design of Energy- and Area-Efficient Sensor Readout Circuits (Chih-Chan Tu)
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
H0534248
H0534248H0534248
H0534248
 
ComNet FDX55S1 Data Sheet
ComNet FDX55S1 Data SheetComNet FDX55S1 Data Sheet
ComNet FDX55S1 Data Sheet
 
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMSDESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
DESIGN AND ASIC IMPLEMENTATION OF DUC/DDC FOR COMMUNICATION SYSTEMS
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos ota
 
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate BlocksPhysical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
 
Low power embedded system design
Low power embedded system designLow power embedded system design
Low power embedded system design
 
Ju3417721777
Ju3417721777Ju3417721777
Ju3417721777
 
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
IRJET- Proposing a RTD-Based Block for On-Chip GPU Caches to Reduce Static Po...
 
Tvlm add-2011n
Tvlm add-2011nTvlm add-2011n
Tvlm add-2011n
 
Webinar: Practical DDR Testing for Compliance, Validation and Debug
Webinar: Practical DDR Testing for Compliance, Validation and DebugWebinar: Practical DDR Testing for Compliance, Validation and Debug
Webinar: Practical DDR Testing for Compliance, Validation and Debug
 
Profile
ProfileProfile
Profile
 
42
4242
42
 
sub.net substation monitor
sub.net substation monitorsub.net substation monitor
sub.net substation monitor
 
Low Power System on chip based design methodology
Low Power System on chip based design methodologyLow Power System on chip based design methodology
Low Power System on chip based design methodology
 
ComNet FDC1M Data Sheet
ComNet FDC1M Data SheetComNet FDC1M Data Sheet
ComNet FDC1M Data Sheet
 
Milan Product Solutions Version 1.4
Milan Product Solutions Version 1.4Milan Product Solutions Version 1.4
Milan Product Solutions Version 1.4
 

Similar to PhD presentation Stepan Sutula

5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
Silicon Labs
 
Slides are thereanyrulesofthumb_brener
Slides are thereanyrulesofthumb_brenerSlides are thereanyrulesofthumb_brener
Slides are thereanyrulesofthumb_brenerJacov Brener
 
Optical Networking Trends & Evolution
Optical Networking Trends & EvolutionOptical Networking Trends & Evolution
Optical Networking Trends & EvolutionADVA
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
imranbashir
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Analog to digital converters, adc
Analog to digital converters, adcAnalog to digital converters, adc
Analog to digital converters, adc
Saumya Ranjan Behura
 
Chapter12.pdf
Chapter12.pdfChapter12.pdf
Chapter12.pdf
ssuser9cd262
 
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Analog Devices, Inc.
 
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
Javed G S, PhD
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
Cedric Lam
 
12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip
Sheila Sinclair
 
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPSHIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
VLSICS Design
 
ADDA_Lecture_P1. digital techniques lecture
ADDA_Lecture_P1. digital techniques lectureADDA_Lecture_P1. digital techniques lecture
ADDA_Lecture_P1. digital techniques lecture
Sindhu Mani
 
ADDA_Lecture_P1.ppt
ADDA_Lecture_P1.pptADDA_Lecture_P1.ppt
ADDA_Lecture_P1.ppt
ssuserf2cc17
 
Sigma-Delta Analog to Digital Converters
Sigma-Delta Analog to Digital ConvertersSigma-Delta Analog to Digital Converters
Sigma-Delta Analog to Digital Converters
Satish Patil
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issue
criterion123
 
Assign2 aw
Assign2 awAssign2 aw

Similar to PhD presentation Stepan Sutula (20)

5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
5 Clock Tree Design Techniques to Optimize SerDes Performance for Networking ...
 
Slides are thereanyrulesofthumb_brener
Slides are thereanyrulesofthumb_brenerSlides are thereanyrulesofthumb_brener
Slides are thereanyrulesofthumb_brener
 
Optical Networking Trends & Evolution
Optical Networking Trends & EvolutionOptical Networking Trends & Evolution
Optical Networking Trends & Evolution
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Resume201411
Resume201411Resume201411
Resume201411
 
Analog to digital converters, adc
Analog to digital converters, adcAnalog to digital converters, adc
Analog to digital converters, adc
 
Chapter12.pdf
Chapter12.pdfChapter12.pdf
Chapter12.pdf
 
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013
 
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
 
DDR31
DDR31DDR31
DDR31
 
12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip
 
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPSHIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
HIGH SPEED CONTINUOUS-TIME BANDPASS Σ∆ ADC FOR MIXED SIGNAL VLSI CHIPS
 
ADDA_Lecture_P1. digital techniques lecture
ADDA_Lecture_P1. digital techniques lectureADDA_Lecture_P1. digital techniques lecture
ADDA_Lecture_P1. digital techniques lecture
 
ADDA_Lecture_P1.ppt
ADDA_Lecture_P1.pptADDA_Lecture_P1.ppt
ADDA_Lecture_P1.ppt
 
Sigma-Delta Analog to Digital Converters
Sigma-Delta Analog to Digital ConvertersSigma-Delta Analog to Digital Converters
Sigma-Delta Analog to Digital Converters
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Receiver Desense Common Issue
Receiver Desense Common IssueReceiver Desense Common Issue
Receiver Desense Common Issue
 
Assign2 aw
Assign2 awAssign2 aw
Assign2 aw
 

PhD presentation Stepan Sutula

  • 1. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72 Low-Power High-Resolution CMOS Switched-Capacitor Delta-Sigma Analog-to-Digital Converters for Sensor Applications Stepan Sutula1 Directors: Dr. Michele Dei1, Dr. Carles Ferrer Ramis1,2, Dr. Francesc Serra Graells1,2 1Integrated Circuits and Systems (ICAS) Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC) 2Dept. of Microelectronics and Electronic Systems (DEMISE) Universitat Autònoma de Barcelona (UAB) November 5, 2015 Stepan Sutula
  • 2. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 3. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 1/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 4. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 2/72 General ADC System Interface between physical and digital worlds Integration with the input sensor using low-cost CMOS technologies Maximum precision required for target application Low power consumption compatible with local energy storage, remote power or energy harvesting Stepan Sutula
  • 5. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 3/72 Quantization Number of bits: N = log2(M) Quantization step: ∆ = Vmax − Vmin 2N − 1 Quantization noise PSD: Sε(f ) = 1 fs   1 ∆ ∆/2 −∆/2 2 q d q   = ∆2 12fs Stepan Sutula
  • 6. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 4/72 ADC State of the Art 20 30 40 50 60 70 80 90 100 110 120 100 101 102 103 104 105 106 107 FOMS = SNDR + 10 log BW P 160 dB 170 dB 180 dB SNDR = 10 log Ps Pε [dB] P/fsnyq[pJ] Flash Folding Pipeline SAR CT ΔΣ SC ΔΣ Schreier FOM Stepan Sutula
  • 7. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 4/72 ADC State of the Art 20 30 40 50 60 70 80 90 100 110 120 100 101 102 103 104 105 106 107 FOMS = SNDR + 10 log BW P 160 dB 170 dB 180 dB SNDR = 10 log Ps Pε [dB] P/fsnyq[pJ] Flash Folding Pipeline SAR CT ΔΣ SC ΔΣ Schreier FOM Stepan Sutula
  • 8. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 5/72 ADC State of the Art Architecture Resolution Bandwidth Latency Area Flash Low High Low High Folding Medium Medium-high Low High Pipeline Medium-high Medium-high High Medium SAR Medium-high Low-medium Low Low ΔΣ High Low High Medium Lower bandwidth and higher latency allowed ΔΣ-architecture simplicity and higher resolution preferred Stepan Sutula
  • 9. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 5/72 ADC State of the Art Architecture Resolution Bandwidth Latency Area Flash Low High Low High Folding Medium Medium-high Low High Pipeline Medium-high Medium-high High Medium SAR Medium-high Low-medium Low Low ΔΣ High Low High Medium Lower bandwidth and higher latency allowed ΔΣ-architecture simplicity and higher resolution preferred Stepan Sutula
  • 10. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 6/72 Objectives and Scope Working hypotheses: • Low-cost calibration-free high-resolution ADCs can be obtained in standard CMOS technologies • Low-current circuits are preferred over low-voltage design techniques for higher power savings • Competitive mixed-signal IC design frameworks can be conducted using open-source tools Low-power high-resolution ΔΣ-ADC demonstrator to verify the hypotheses Stepan Sutula
  • 11. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 6/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 12. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 7/72 General ΔΣ-ADC Architecture Oversampling ratio: OSR = fs fN = fs 2 · BW Quantization-noise in-band power: Pε = BW −BW Sε(f ) df = ∆2 12 · OSR Antialiasing filtering relaxed Overclocking needed ΔΣ-modulator noise shaping Reduced impact of the block imperfections on the ADC performance Stepan Sutula
  • 13. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 8/72 First-Order ΔΣ Modulator One-sample-delay integrator: H1(z) = z−1 1 − z−1 Non-linear system due to the quantization effects Stepan Sutula
  • 14. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 8/72 First-Order ΔΣ Modulator Equivalent linear-model simplification Signal and noise transfer functions: STF(z) = Vout(z) Vin(z) = 1 1 + (aqH1(z))−1 NTF(z) = Vout(z) Vqn(z) = 1 1 + aqH1(z) Stepan Sutula
  • 15. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 9/72 Lth -Order ΔΣ Modulator Resolution-vs-OSR (L + 0.5)-bit/octave increase Integrator overload prevention Weakened loop stability Careful robustness verification needed Stepan Sutula
  • 16. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 10/72 First-Order Feedforward ΔΣ-Modulator Quantization-error processing only Integrator-output signal-headroom relaxation Signal and noise transfer functions: STF(z) = Vout(z) Vin(z) = 1 NTF(z) = Vout(z) Vqn(z) = 1 1 + aqH1(z) Stepan Sutula
  • 17. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 11/72 Lth -Order Feedforward ΔΣ Modulator Single negative-feedback path Power efficiency Extra adder circuit Stepan Sutula
  • 18. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 12/72 Multi-Bit Quantization Resolution increase OSR reduction Quantizer non-linearity Calibration/DEM needed Feedforward-ΔΣM- implementation issues Stepan Sutula
  • 19. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 13/72 Single-Bit Quantization Inherent linearity Quantizer-design simplification Benefits for the feedforward-ΔΣM implementation: • Reduced quantization time • Passive adder Oversampling First-stage instantaneous error amplitude Stepan Sutula
  • 20. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 14/72 High-Level Modeling CPU-simulation-time reduction Solution to the mathematical-analysis difficulties Number of samples to simulate: nsamp = np · OSR 2 · BW fin Signal-to-quantization- noise ratio: SQNR = 10 log Ps Pε 103 104 105 106 −200 −150 −100 −50 0 40 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] Stepan Sutula
  • 21. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 14/72 High-Level Modeling CPU-simulation-time reduction Solution to the mathematical-analysis difficulties Number of samples to simulate: nsamp = np · OSR 2 · BW fin Signal-to-quantization- noise ratio: SQNR = 10 log Ps Pε 103 104 105 106 −200 −150 −100 −50 0 40 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] Stepan Sutula
  • 22. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 15/72 High-Level Modeling Input-amplitude sweep Input-full-scale adjustment Model covering signal-quantization error and overloading only Stepan Sutula
  • 23. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 16/72 Circuit Non-Idealities Sampling thermal noise: Pn = 2kBT Cs1 · OSR Component technology mismatch Integrator settling error Jitter noise: Pj = V 2 s 8 (2π · BW · σj)2 OSR Reference noise 103 104 105 106 −200 −150 −100 −50 0 40 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] No thermal noise With thermal noise Stepan Sutula
  • 24. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 17/72 Demonstrator Target Specifications 50-kHz bandwidth 16-bit resolution Standard CMOS technology No supply bootstrapping No analog calibration No digital compensation Stepan Sutula
  • 25. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 17/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 26. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 18/72 Low-Power Switched-Capacitor Design Low-Voltage Approach Bulk-driven OpAmps Internal supply multipliers Inverter-based OpAmps Switched OpAmps Nominal-voltage downscaling, one-cell-battery compatibility Moderate power savings Low-Current Approach Telescopic diff. pairs with LCMFB Dynamic biasing by RC bias tees Hybrid-Class-A/AB Adaptive biasing Higher power savings Process and temperature sensitivity Stepan Sutula
  • 27. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 18/72 Low-Power Switched-Capacitor Design Low-Voltage Approach Bulk-driven OpAmps Internal supply multipliers Inverter-based OpAmps Switched OpAmps Nominal-voltage downscaling, one-cell-battery compatibility Moderate power savings Low-Current Approach Telescopic diff. pairs with LCMFB Dynamic biasing by RC bias tees Hybrid-Class-A/AB Adaptive biasing Higher power savings Process and temperature sensitivity Stepan Sutula
  • 28. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 19/72 Variable-Mirror Amplifier Family Two complementary diff. pairs Dynamic current mirrors Separate Class-AB control Partial positive feedback CMFB control through the NMOS-pair tail Gain improvement by the output cascode transistors No need for the Miller compensation capacitors High-peak Class-AB currents only in the output transistors [1] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits,”ISCAS 2015 Awarded. Stepan Sutula
  • 29. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 20/72 Variable-Mirror Amplifier Family In strong inversion: Ionp = B A + B Anβ 2 Vcp + Iinp 2 In weak inversion: Ionp = B A + B e Vcp UT Iinp Desired Class-AB behavior:    Ioutp ≡ 0 Vcp ≡ Vxp Ionp ≡ Iinp Ioutp ≡ 0 Vcp ≡ Vxp Ionp Iinp Ionp Iinp Stepan Sutula
  • 30. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 21/72 Type I Positive-feedback cross-coupled B-B pair for the Class-AB operation Negative-feedback crossing transistor C as a Class-AB limiter D . = A · B A + B E . = A · B · C A + B + C Stepan Sutula
  • 31. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 21/72 Type I Positive-feedback cross-coupled B-B pair for the Class-AB operation Negative-feedback crossing transistor C as a Class-AB limiter D . = A · B A + B E . = A · B · C A + B + C Imax 1 + D C Itail Stepan Sutula
  • 32. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 22/72 Type-I Analysis: Insensitivity to n and β In strong inversion:    Iinp =B 2 Ionn D − Ionp D + Iinp A Ionp D − Iinp A + C 2 Itail E − Ionp D − Ionn D + Iinp A + Iinn A Ionp D − Ionn D − Iinp A + Iinn A Iinn =B 2 Ionp D − Ionn D + Iinn A Ionn D − Iinn A + C 2 Itail E − Ionn D − Ionp D + Iinn A + Iinp A Ionn D − Ionp D − Iinn A + Iinp A Stepan Sutula
  • 33. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 23/72 Type-I Analysis: Insensitivity to UT In weak inversion:    Iinp = B D Ionn 1 − D A Iinp Ionp + C · D A · E Itail Iinp Ionp − Iinn Ionn Iinn = B D Ionp 1 − D A Iinn Ionn + C · D A · E Itail Iinn Ionn − Iinp Ionp Independence from technology and temperature Stepan Sutula
  • 34. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 24/72 Type I with Class-AB Smoother Low-level common-mode current injection Instability prevention under a high Class-AB modulation Need for extra current sources Stepan Sutula
  • 35. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 25/72 Type II Auto-biased Class-AB limiter Self-latch prevention Simple sizing procedure F . = A(B+C) A+B+C Stepan Sutula
  • 36. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 25/72 Type II Auto-biased Class-AB limiter Self-latch prevention Simple sizing procedure F . = A(B+C) A+B+C Imax 1+ A C 1+ A B+C Itail > Itail Stepan Sutula
  • 37. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 26/72 Type-II Analysis: Insensitivity to n and β In strong inversion:    Iinp = 2 B Ionn F + C Ionp F − (B + C) Ionp F − Iinp A Ionp F − Iinp A Iinn = 2 B Ionp F + C Ionn F − (B + C) Ionn F − Iinn A Ionn F − Iinn A Independence from technology and temperature Stepan Sutula
  • 38. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 27/72 Type-II Analysis: Insensitivity to UT In weak inversion:    Iinp = B F Ionn + C F Ionp 1 − F A Iinp Ionp Iinn = B F Ionp + C F Ionn 1 − F A Iinn Ionn Independence from technology and temperature Stepan Sutula
  • 39. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 28/72 Type-II DC Transfer Curve Parameterized B/C for A=8 Matching between analytical and simulated results Strong inversion Stepan Sutula
  • 40. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 28/72 Type-II DC Transfer Curve Parameterized B/C for A=8 Matching between analytical and simulated results Weak inversion Stepan Sutula
  • 41. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 29/72 Cascode Biasing Series/parallel association Saturation-edge biasing Valid for all MOSFET inversion levels Optimum output full scale for a given supply voltage Stepan Sutula
  • 42. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 30/72 SC-Integrators Traditional OpAmp use OpAmp in interleaving Switched OpAmp • critical switches • 50-% duty cycle Stepan Sutula
  • 43. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 31/72 SOA-Integrator Operation Sampling phase Integration phase Stepan Sutula
  • 44. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 32/72 Charge-Injection Minimization Delayed disconnection in the signal-dependent paths Signal-independent charge injection Rejected by CMFB Extra switching phases Stepan Sutula
  • 45. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72 SVMA Operation Reduced set of transistor matching groups Full CMOS implementation Stepan Sutula
  • 46. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72 SVMA Operation Reduced set of transistor matching groups Off-state network Stepan Sutula
  • 47. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72 SVMA Operation Reduced set of transistor matching groups On-state network Stepan Sutula
  • 48. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 33/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 49. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 34/72 IC Design Environment Stepan Sutula
  • 50. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 35/72 High-Level Model Coefficient a1 a2 a3 a4 c1 c2 c3 c4 Value 0.2 0.4 0.1 0.1 1 1 1 2 Stepan Sutula
  • 51. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 36/72 High-Level Simulation 103 104 105 106 −200 −150 −100 −50 0 80 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] −100 −50 0 0 20 40 60 80 100 120 Input Amplitude [dBFS] SQNR[dB] 136 OSR, 13.6 MS/s 13.28-kHz input frequency 117-dB maximum SQNR Stepan Sutula
  • 52. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 37/72 Non-Idealities 0 5 10 15 0 20 40 60 80 100 120 mism [%] SQNRmax,worst[dB] 0 0.05 0.1 0.15 0.2 80 90 100 110 120 sett [%]SQNRmax[dB] 8.25-% maximum coefficient mismatch 0.035-% maximum settling error Stepan Sutula
  • 53. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 38/72 ΔΣM SC Scheme Fully-differential No bootstrapping No output switches Stepan Sutula
  • 54. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 38/72 ΔΣM SC Scheme Capacitance Value [pF] Capacitance Value [pF] Capacitance Value [pF] Cfb 21.16 Cff0 0.92 Cs1 42.32 Ci1 211.6 Cff1 0.92 Cs2 3.68 Ci2 9.2 Cff2 0.92 Cs3 0.92 Ci3 9.2 Cff3 0.92 Cs4 0.92 Ci4 9.2 Cff4 1.84 Stepan Sutula
  • 55. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 39/72 ΔΣM Clock Generation Digital masking scheme to minimize the number of analog switches Delayed-phase generation 14 outputs Stepan Sutula
  • 56. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72 ΔΣM Operation Integrator initialization Stepan Sutula
  • 57. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72 ΔΣM Operation Regular operation (phase A) Stepan Sutula
  • 58. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 40/72 ΔΣM Operation Regular operation (phase B) Stepan Sutula
  • 59. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 41/72 SVMA Design Equivalent-condition extraction Design-time minimization Parameter SVMA1 SVMA2 SVMA3,4 Units Cssi 63.48 3.68 0.92 pF Cii 211.6 9.2 9.2 pF Cli 4.6 1.84 1.84 pF Stepan Sutula
  • 60. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 42/72 SVMA Design Basic-parameter analytical estimation Parameter SVMA1 SVMA2 SVMA3,4 Units βfb = Cii Cssi +Cii 0.77 0.71 0.91 Cleffi = Cli + (1 − βfb)Cii 53.4 4.47 2.68 pF Cleffi/Cli 11.6 2.43 1.46 Aopen = 1 βfb sett 71.4 72 69.9 dB SR = Vstep tslew 46 61.3 15.3 V µs Imax = SR · Cleffi 2.46 0.274 0.041 mA GBW = ln −1 sett 2πβfbtsett 77.9 83.9 65.9 MHz Stepan Sutula
  • 61. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 43/72 Optimization Flow Automated variable sweep Increased productivity Stepan Sutula
  • 62. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 44/72 Sized SVMA1 Optimum values: kb 4 kz 3 ICin 2 ICtail 4 ICmirr 6 Itail 950 µA Minimum-channel- length devices used Bias for cascode transistors optimized for maximum output full scale 1.8-V nominal voltage supply of the CMOS technology Stepan Sutula
  • 63. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 45/72 SVMA1 DC Transfer Curve Minimal deviation under different process and temperature conditions Class-AB achieves about ×4 bias current −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 Ionn kb Ionp kb (Iinp − Iinn) /Itail [Itail] [Itail] typical at 20 °C fast at -40 °C slow at 80 °C Stepan Sutula
  • 64. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 46/72 SVMA1-Parameter Extraction Open-loop-gain and settling-time compliance with specifications Parameter typical 20 °C fast -40 °C slow 80 °C Units Aopen 74.1 74.7 73.9 dB SR 139 146 133 V µs Imax 7.41 7.8 7.1 mA GBW 221 250 206 MHz PM1 54 46.9 60.7 ° PMβ 55.8 48.9 62.8 ° tint 16.41 14.24 19.57 ns Stepan Sutula
  • 65. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 47/72 All-SVMA-Parameter Extraction Open-loop-gain and settling-time compliance with specifications Parameter SVMA1 SVMA2 SVMA3,4 Units Aopen 74.1 72.1 70.5 dB SR 139 36.2 26 V µs Imax 7.41 0.162 0.07 mA GBW 221 95.4 70.9 MHz PM1 54 77.8 83.1 ° PMβ 55.8 80.2 83.6 ° tint 16.41 25.75 19.82 ns Stepan Sutula
  • 66. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 48/72 SVMA Device Sizes Parameter SVMA1 SVMA2 SVMA3,4 Units Ccmfb 8050 437 218 fF Ia1 250 50 50 µA Ia2 237.5 50 50 µA Ib 200 50 50 µA (W/L)MA1 7.48/0.24 1.58/0.24 1.58/0.24 µm/µm (W/L)MA2 2.7/0.24 0.57/0.24 0.57/0.24 µm/µm (W/L)MB1,2 28.48/0.48 7.12/0.48 7.12/0.48 µm/µm (W/L)MB3 154.24/0.48 38.56/0.48 38.56/0.48 µm/µm (W/L)MC1,2 478.72/0.24 12.64/0.24 6.32/0.24 µm/µm (W/L)MC3,4 172.8/0.24 4.56/0.24 2.28/0.24 µm/µm (W/L)MD1,2 59.84/0.24 3.15/0.24 3.16/0.24 µm/µm (W/L)MD3,4 21.6/0.24 1.14/0.24 1.14/0.24 µm/µm (W/L)MG1,2 957.44/0.24 25.2/0.24 12.64/0.24 µm/µm (W/L)MG3,4 345.6/0.24 9.12/0.24 4.56/0.24 µm/µm (W/L)MI1,2 129.6/0.24 6.8/0.24 3.4/0.24 µm/µm (W/L)MI3,4 359.04/0.24 18.96/0.24 9.44/0.24 µm/µm (W/L)ML1,2 957.44/0.24 25.2/0.24 12.64/0.24 µm/µm (W/L)ML3,4 345.6/0.24 9.12/0.24 4.56/0.24 µm/µm (W/L)MSN 16/0.18 0.96/0.18 0.48/0.18 µm/µm (W/L)MSP 144/0.18 8.64/0.18 4.32/0.18 µm/µm (W/L)MT1 270.56/0.48 14.24/0.48 7.12/0.48 µm/µm (W/L)MT2 732.64/0.48 38.56/0.48 19.28/0.48 µm/µm (W/L)MU1,2 239.36/0.24 12.6/0.24 6.32/0.24 µm/µm (W/L)MU3,4 86.4/0.24 4.56/0.24 2.28/0.24 µm/µm (W/L)MZ1,2 179.52/0.24 9.45/0.24 3.16/0.24 µm/µm (W/L)MZ3,4 64.8/0.24 3.42/0.24 1.14/0.24 µm/µm Stepan Sutula
  • 67. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 49/72 Feedforward-Switch Optimization Equivalent switching scheme Trade-off between the switch conductor capabilities and parasitics Design-time reduction Stepan Sutula
  • 68. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 50/72 Feedforward-Switch Optimization 126-dB SDR reached for the worst-case corner 103 104 105 106 0 −50 −100 −150 −200 Frequency [Hz] Powerspectraldensity[dBFS/bin] typical at 20 °C fast at -40 °C slow at 80 °C Stepan Sutula
  • 69. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 51/72 Full-ΔΣM Simulation 105.7-dB SQNDR reached in the worst case 16.5-hour simulation time for 64 input-signal sine periods on Intel ® CoreTM CPU i7-2600 @ 3.40 GHz 103 104 105 106 0 −20 −40 −60 −80 −100 −120 −140 −160 80 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] typical at 20 °C fast at -40 °C slow at 80 °C Stepan Sutula
  • 70. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 52/72 CMOS Physical Design Standard analog layout-design techniques Gate noise: V 2 n,g = 4kBT 3m2 W L R Input-referred channel noise: V 2 n,ch = 8kBT 3gm Minimum finger number for wide-channel devices (Vn,ch/Vg,ch = 5): m = 3.5 W L R gm Stepan Sutula
  • 71. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 53/72 SVMA1 Post-Layout Simulation Results Open-loop frequency response 200-pF load capacitance 103 104 105 106 107 108 109 0 −60 −120 −180 Frequency [Hz] Phase[°] Phase Gain 0 10 20 30 40 50 60 70 80 72 dB 50 ° DifferentialGain[dB] Stepan Sutula
  • 72. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 54/72 SVMA1 Post-Layout Simulation Results Step response for several load conditions 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 −1 0 1 2 Time × Input Frequency [-] DifferentialOutputVoltage[V] 650 µF at 1 Hz, 650 nF at 1 kHz 650 pF at 1 MHz Hz, 650 nF at 1 kHz 6 Stability robustness Stepan Sutula
  • 73. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 55/72 ΔΣM Post-Layout Simulation Spectre transient-noise mode 2-month simulation time for 64 input-signal sine periods on Intel® Xeon® CPU E5-2640 @ 2.50 GHz 103-dB SNDR 108.7-dB DR 103 104 105 106 0 −20 −40 −60 −80 −100 −120 −140 −160 80 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] Without transient noise With transient noise Stepan Sutula
  • 74. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 56/72 Test-Vehicle Integration Standard 0.18-µm 1P6M MIM CMOS technology 4.9-mm2 area Stepan Sutula
  • 75. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 57/72 SVMA1 0.07-mm2 area Additional input for the external CMFB control Stepan Sutula
  • 76. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 58/72 Full-ΔΣM 1.8-mm2 area No need for global symmetry Separate analog and digital 1.8-V supplies Stepan Sutula
  • 77. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 58/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 78. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 59/72 SVMA Measurement Setup Unity-gain transient-response measurement Continuous-time operation External CMFB control Stepan Sutula
  • 79. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 60/72 SVMA Step Response Stepan Sutula
  • 80. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 61/72 SVMA Full-Scale Evaluation 0 20 40 60 80 100 120 140 160 180 200 −2 −1 0 1 2 Time [ms] DifferentialOutputVoltage[V] Ideal Simulated Measured 0 1 2 utputVoltage[V] 3.3-Vpp differential full scale at 1.8-V voltage supply Stepan Sutula
  • 81. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 62/72 SVMA Figure-of-Merit Comparison Parameter [10] [11] [12] [13] [14] This work Units Technology 0.5 0.5 0.25 0.13 0.18 0.18 µm Supply 2 2 1.2 1.2 0.8 1.8 V DC gain 43 45 69 70 51 72 dB Cload 80 25 4 5.5 8 200 pF GBW 0.725 11 165 35 0.057 86.5 MHz Phase margin 89.5 N/A 65 45 60 50 ° Slew rate, SR 89 20 329 19.5 0.14 74.1 V/µs Static power, P 0.12 0.04 5.8 0.11 0.0012 11.9 mW Area 0.024 0.012 N/A 0.012 0.057 0.07 mm2 Resistor-free No No Yes Yes Yes Yes mm2 FOM 59.33 12.50 0.28 0.98 0.93 1.25 V µs pF µW FOM = SR·Cload P V µs pF µW Stepan Sutula
  • 82. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 63/72 ΔΣM-DUT Packaging Dual-in-line 16-pin ceramic packaging Top and bottom shielding layers In-package noise-decoupling capacitors Interference and noise reduction Stepan Sutula
  • 83. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 64/72 ΔΣM Measurement Setup Ultra-low-distortion function generator as a input-signal generator Low-jitter pulse generator as a input clock timebase Low-noise battery-based power supplies and references Flexible FPGA-based readout system Stepan Sutula
  • 84. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 65/72 ΔΣM Measurement Results 2.4-Vpp differential full scale -2-dBFS input amplitude 80-dB/decade noise-shaping slope observed 103 104 105 106 0 −20 −40 −60 −80 −100 −120 −140 −160 80 dB/dec Frequency [Hz] Powerspectraldensity[dBFS/bin] Simulated Measured Stepan Sutula
  • 85. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 66/72 ΔΣM Measurement Results 96.6-dB SNDR 105.3-dB SFDR 97-dB DR SNDR degradation at high amplitudes is avoided −100 −80 −60 −40 −20 0 0 20 40 60 80 100 Input Amplitude [dBFS] SNR,SFDR,SNDR[dB] SNDR SFDR SNR Stepan Sutula
  • 86. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 67/72 ADC Performance Comparison [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] This work Architecture ΔΣ SC ΔΣ CT,SC ΔΣ SC ΔΣ CT,SC ΔΣ CT ΔΣ SRC ΔΣ SC ΔΣ SC ΔΣ SC INC ΔΣ CT Pipe+ SAR ΔΣ SC ΔΣ SC Technology 0.35 0.35 0.25 0.18 0.18 0.13 0.18 0.18 0.35 0.16 0.18 0.18 0.18 0.18 µm Supply voltage 5 3.3 1.8 0.9 1.8 0.7 1.5 1.8 5, 1.8 5 1.8 V Diff. full scale 6.6 5.7 1.4 1.1 1.8 10 4.4 2.4 Vpp Sampling rate 5.12 6.14 20 6.14 41.7 6.14 45.2 5 2.4 0.05 57.5 5 0.15 13.6 MS s Bandwidth 20 20 1000 20 200 24 500 25 20 0.0125 600 2500 0.1 50 kHz Supply power 55 18 475 37 210 1.5 38 0.87 0.14 0.0063 21 30.5 0.505 7.9 mW Area 5.6 0.82 20.2 0.65 6 1.44 3.5 2.16 0.21 0.38 0.99 5.74 0.8 1.8 mm2 DR 111 106 103 102 98 92 90.1 100 92.6 100.2 97 dB SFDRmax 97 90 100.8 105.3 dB SNDRmax 105 97 95 90 89 86.3 95 87.9 98.6 100.6 96.6 dB FOMW 9458 7776 2057 20122 20311 1357 2251 378.5 173 314.8 678.2 87.7 28825 1429 fJ conv FOMS 160.6 157.5 166.2 152.3 149.8 161.0 157.5 169.6 169.5 182.8 164.6 177.7 153.6 164.6 dB Bootstrap-free Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes Calibration-free Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Stepan Sutula
  • 87. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72 Performance Comparison 20 30 40 50 60 70 80 90 100 110 120 100 101 102 103 104 105 106 107 SNDR [dB] P/fsnyq[pJ] Flash Folding Pipeline SAR CT ΔΣ SC ΔΣ Stepan Sutula
  • 88. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72 Performance Comparison 85 90 95 100 105 110 115 120 104 105 106 107 FOMS = SNDR + 10 log BW P [28] [29] [15] [18] [19] [20] [27] [30] [17] [24] [25] [31] [32] [33] [16] [21] [22] [23] [26] This work SNDR [dB] P/fsnyq[pJ] Feature-compliant Others FOMS of this work Stepan Sutula
  • 89. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 68/72 1 Introduction 2 ΔΣ-Modulator Architectures 3 Low-Power CMOS Switched-Capacitor Circuits 4 Practical ΔΣM Design in a 0.18-µm CMOS Technology 5 Experimental Results 6 Conclusions Stepan Sutula
  • 90. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 69/72 Contributions Initial working hypotheses successively tested and confirmed: • High-resolution and low-power state-of-the-art ADC • Integrated in a low-cost standard CMOS technology • Using novel analog design techniques at the system and circuit levels • No bootstrapping, analog calibration or digital post-compensation Selection guide of SC ΔΣM ADCs Efficient framework based on open-source EDA tools New family of single-stage Class-AB OpAmps: VMAs SVMA- and ΔΣM-demonstrator implementation and measurements Stepan Sutula
  • 91. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 70/72 Research Funding 2007-2011: Chemical Warfare Agents Analyzer Based on Low Cost Dual Band IR Microsystem (CANARIO) EDA-B-DO61-IAP2-ERG: 32-channel read-out low-power IC 2009-2012: Perishable Monitoring through Short Tracking of Lifetime and Quality by RFID (PASTEUR) CATRENE CT204: Low-power smart sensor with integrated potentiostatic ΔΣ ADC 2011-2015: ESA Cosmic Vision MF ASIC ESTEC 40000101556/10/NL/AF: 4 low-power ΔΣ ADCs with multiple BWs and SNDRs Stepan Sutula
  • 92. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 71/72 Publications 11 papers: • 9 published (2 awarded) • 2 being disseminated: [+] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage OpAmps for Low-Power SC Circuits,” submitted to the IEEE Transactions on Circuits and Systems I. [+] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “A Calibration-Free 96.6-dB-SNDR Non-Bootstrapped 1.8-V 7.9-mW Delta-Sigma Modulator with Class-AB Single-Stage Switched-OpAmps,” submitted to the IEEE International Symposium on Circuits and Systems, Montreal, 2016. Stepan Sutula
  • 93. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 Future Work Integration on the same die with the sensor array LVDS-bus implementation Decoupling-capacitor increase Multi-bit-ΔΣM exploration Reuse of low-current design techniques in the low-voltage realm Thank you! Stepan Sutula
  • 94. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 References [1] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, “Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2081–2084, 2015, Student Best Paper Award Honorable Mention. [2] S. Sutula, F. Vila, J. Pallarès, K. Sabine, L. Terés, and F. Serra-Graells, “Teaching Mixed-Mode Full-Custom VLSI Design with gaf, SpiceOpus and Glade,” in Proceedings of the 10th European Workshop on Microelectronics Education, pp. 43–48, 2014. [3] J. Pallarès, F. Vila, S. Sutula, K. Sabine, L. Terés, and F. Serra-Graells, “A Freeware EDA Framework for Teaching Mixed-Mode Full-Custom VLSI Design,” in Proceedings of the XIX Conference on Design of Circuits and Integrated Systems, 2014. [4] S. Sutula, J. Pallarès Cuxart, J. Gonzalo-Ruiz, F. Xavier Munoz-Pascual, L. Terés, and F. Serra-Graells, “A 25-uW All-MOS Potentiostatic Delta-Sigma ADC for Smart Electrochemical Sensors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, pp. 671–679, 2014. [5] J. Pallarès, S. Sutula, J. Gonzalo-Ruiz, F. X. Muñoz-Pascual, L. Terés, and F. Serra-Graells, “A Low-Power MOS-Only Potentiostatic Delta-Sigma ADC Architecture for Electrochemical Sensors,” in Proceedings of the XIX Conference on Design of Circuits and Integrated Systems, 2014, Best Paper Award. Stepan Sutula
  • 95. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 [6] S. Sutula, C. Ferrer, and F. Serra-Graells, “Design and Modeling of a Low-Power Multi-Channel Integrated Circuit for Infrared Gas Recognition,” Elsevier Microprocessors and Microsystems, vol. 36, pp. 355–364, 2012. [7] S. Sutula, C. Ferrer, and F. Serra-Graells, “A 400 µW Hz-Range Lock-In A/D Frontend Channel for Infrared Spectroscopic Gas Recognition,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 1561–1568, 2011. [8] S. Sutula, C. Ferrer, and F. Serra-Graells, “A 100µA/Ch Fully-Integrable Lock-in Multi-Channel Frontend for Infrared Spectroscopic Gas Recognition,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2267–2270, 2010. [9] S. Sutula, C. Ferrer, and F. Serra-Graells, “Design and Modeling of a 0.4mW/Ch Multi-Channel Integrated Circuit for Infrared Gas Recognition,” in Proceedings of the XXV Conference on Design of Circuits and Integrated Systems, pp. 226–271, 2010. [10] A. J. López-Martín, S. Baswa, J. Ramirez-Angulo, and R. G. Carvajal, “Low-Voltage Super Class AB CMOS OTA Cells With Very High Slew Rate and Power Efficiency,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1068–1077, 2005. [11] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan, and A. Lopez-Martin, “A Free But Efficient Low-Voltage Class-AB Two-Stage Operational Amplifier,” IEEE Stepan Sutula
  • 96. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 Transactions on Circuits and Systems II: Expressed Briefs, vol. 53, pp. 568–571, 2006. [12] M. Yavary and O. Shoaei, “Very Low-Voltage, Low-Power and Fast-Settling OTA for Switched-Capacitor Applications,” in Proceedings of the International Conference on Microelectronics, pp. 10–13, 2002. [13] M. Figueiredo, R. Santos-Tavares, E. Santin, J. Ferreira, G. Evans, and J. Goes, “A Two-Stage Fully Differential Inverter-Based Self-Biased CMOS Amplifier With High Efficiency,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 1591–1603, 2011. [14] M. R. Valero, S. Celma, N. Medrano, B. Calvo, and C. Azcona, “An Ultra Low-Power Low-Voltage Class AB CMOS Fully Differential OpAmp,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1967–1970, 2012. [15] Y. Yang, A. Chokhawala, M. Alexander, J. Melanson, and D. Hester, “A 114-dB 68-mW Chopper-Stabilized Stereo Multi-bit Audio A/D Converter,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 56–477, 2003. [16] K. Nguyen, B. Adams, K. Sweetland, H. Chen, and K. McLaughlin, “A 106dB SNR Hybrid Oversampling ADC for Digital Audio,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 176–591, 2005. Stepan Sutula
  • 97. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 [17] R. Brewer, J. Gorbold, P. Hurrell, C. Lyden, R. Maurino, and M. Vickery, “A 100dB SNR 2.5MS/s Output Data Rate ΔΣ ADC,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 172–173, 2005. [18] P. Morrow, M. Chamarro, C. Lyden, P. Ventura, A. Abo, A. Matamura, M. Keane, R. O’Brien, P. Minogue, J. Mansson, N. McGuinness, M. McGranaghan, and I. Ryan, “A 0.18µm 102dB-SNR Mixed CT SC Audio-Band ΔΣ ADC,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 178–592, 2005. [19] P. Silva, L. Breems, K. Makinwa, R. Roovers, and J. Huijsing, “An 118dB DR CT IF-to-Baseband ΣΔ Modulator for AM/FM/IBOC Radio Receivers,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 151–160, 2006. [20] M. Kim, G. Ahn, P. Hanumolu, S. Lee, S. Kim, S. You, J. Kim, G. Temes, and U. Moon, “A 0.9V 92dB Double-Sampled Switched-RC ΔΣ Audio ADC,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 160–161, 2006. [21] A. Agah, K. Vleugels, P. Griffin, M. Ronaghi, J. Plummer, and B. Wooley, “A High-Resolution Low-Power Oversampling ADC with Extended-Range for Bio-Sensor Arrays,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 244–245, 2007. [22] H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley, “A 0.7-V 100-dB 870-µW Digital Audio ΔΣ Modulator,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 178–179, 2008. Stepan Sutula
  • 98. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 [23] T. Christen, “A 15bit 140µW Scalable-Bandwidth Inverter-Based Audio ΔΣ Modulator with >78dB PSRR,” in Proceedings of the European Solid-State Circuits Conference, pp. 209–212, 2012. [24] Y. Chae, K. Souri, and K. Makinwa, “A 6.3µW 20b Incremental Zoom-ADC with 6ppm INL and 1µV Offset,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 276–277, 2013. [25] A. Bandyopadhyay, R. Adams, N. Khiem, P. Baginski, D. Lamb, and T. Tansley, “A 97.3 dB SNR, 600 kHz BW, 31mW Multibit Continuous Time ΔΣ ADC,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2, 2014. [26] A. Bannon, C. Hurrell, D. Hummerston, and C. Lyden, “An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2, 2014. [27] L. Xu, B. Gönen, Q. Fan, J. Huijsing, and K. A. A. Makinwa, “A 110dB SNR ADC with ±30V Input Common-Mode Range and 8µV Offset for Current Sensing Applications,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 90–91, 2015. [28] Y. Matsuya and J. Terada, “1.2-V, 16-bit Audio A/D Converter With Suppressed Latch Error Noise,” in Symposium on VLSI Circuits Digest of Technical Papers, pp. 19–20, 1997. Stepan Sutula
  • 99. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 [29] Y. Geerts, M. Steyaert, and W. Sansen, “A 2.5MSample/s Multi-Bit ΔΣ CMOS ADC with 95dB SNR,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 336–337, 2000. [30] E. Zwan, “A 2.3 mW CMOS ΣΔ Modulator for Audio Applications,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 220–221, 1997. [31] K. Y. Leung, E. J. Swanson, K. Leung, and S. S. Zhu, “A 5V, 118dB ΔΣ Analog-to-Digital Converter for Wideband Digital Audio,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 218–219, 1997. [32] A. L. Coban and P. E. Allen, “A 1.5V 1.0mW Audio Σ∆ Modulator with 98dB Dynamic Range,” in Proceedings of the International Solid-State Circuits Conference, pp. 50–51, IEEE, 1999. [33] K. Vleugels, S. Rabii, and B. A. Wooley, “A 2.5V Broadband Multi-Bit ΔΣ Modulator with 95dB Dynamic Range,” in Proceedings of the IEEE International Solid-State Circuits Conference, pp. 50–51, 2001. Stepan Sutula
  • 100. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 Design Variables Reduced set of input variables Simplified SVMA-optimization process Automated result back-annotation Stepan Sutula
  • 101. Low-Power High-Resolution CMOS SC ΔΣ ADCs Intro ΔΣMs Circuits Design Results Conclusions 72/72 SVMA1 DC Transfer Curve versus kz b03v02 Stepan Sutula