Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

https://www.facebook.com/eeRhapsody
Power Waves and Power-Gain Expressions

  • Login to see the comments

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

  1. 1. Chapter 3-2 Power Waves and Power-Gain Expressions Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  2. 2. Department of Electronic Engineering, NTUT Maximum Power Transfer LZ   sE sZ V I   source impedance load impedance Phasor s s L E I Z Z   • The average power dissipated in the load     2 2 2 2 2 2 1 1 1 2 2 2 s s L L rms L L L s L s L s L E E R P I R I R R Z Z R R X X             • The maximum power dissipated in the load when s LX X s LR R s LZ Z  • Maximum power transfer theorem and that is (conjugate matched) • Can we link up the “conjugate matched impedances” and “reflection coefficients” ? 2/31
  3. 3. Department of Electronic Engineering, NTUT Power Waves • In this section we discuss the analysis of lumped circuits in terms of a new set of waves, called power waves. LZ   sE sZ V I   source impedance load impedance  Since there is no transmission line, and therefore the characteristic impedances is not defined. oZ d l LZ 0  0d  IN d     0 L o L o Z Z Z Z has no meaning. No transmission line in between Can we define the reflection coefficient w/o transmission lines?  s sV E Z I 3/31
  4. 4. Department of Electronic Engineering, NTUT Normalized Impedances (I) Reference: [1] K. Kurokawa, “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and techniques, vol. 13, pp.194-202, Mar. 1965. LZ   sE sZ V I   s s sZ R jX  L L LZ R jX  • Normalize the impedances with respect to Rs 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R     4/31
  5. 5. Department of Electronic Engineering, NTUT Normalized Impedances (II) 1 1 s s z rz z z r        U jV  Γ-plane U V 1 1 z z     0  1   1  • Recall the Smith Chart (Γ-plane) 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R                 L s L s L L s ss L s L s s L s L s L L s s L s L s r j x x r r jx r jxz r z z Z Z z r r j x x r r jx r jx z z Z Z                          z should contains the resistance and reactance of the load (rL and xL), and the reactance of the source (xs) • When , the reflection coefficient (maximum power delivering to the load) L sZ Z  0  5/31
  6. 6. Department of Electronic Engineering, NTUT Power-waves Representation of One-port Network (I)    1 2 p s s a V Z I R     1 2 p s s b V Z I R   Res sR Z • Reflected power wave is equal to zero when the load impedances is conjugately matched to the source impedance, i.e., . pb  L sZ Z where LZ   sE sZ pa pb V I   s p s L s p s L s s V Zb V Z I Z ZI Va V Z I Z ZZ I            p pa b  • Normalized power waves pL s L L p bZ Z Z Z a       and 6/31
  7. 7. Department of Electronic Engineering, NTUT Available Power From Source      1 2 2 s p s s s s s E a E Z I Z I R R  2 2 4 s p s E a R    1 2 p s s a V Z I R  s sV E Z I• For and    2 2 2 , 1 2 8 s AVS p p rms s E P a a R is the power available from the source. • Maximum power is delivered to the load when  L sZ Z       2 21 1 Re Re 2 2 s L L L s L E P I Z Z Z Z PL attains its maximum value when , and is given by  L sZ Z ,maxL AVSP P   2 ,max 1 8 s L AVS s E P P R 7/31
  8. 8. Department of Electronic Engineering, NTUT Impedance Mismatch         2 2 *1 1 1 1 1 Re 2 2 8 8 2 L p p s s s s s s P a b V Z I V Z I V Z I V Z I V I R R             2 2 21 1 1 2 2 2 L p p AVS pP a b P b      21 2 p AVS Lb P P Power dissipated in the load = Available power from source – Reflected power • When the impedances are mismatched, the power delivering to the load is Reflected power = Available power from source – Power dissipated in the load 8/31
  9. 9. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (I) 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a    1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R Two-port Network [Sp] 2pa 2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V    2E 2Z  1 2 2 2 2 1 2 pb V Z I R    • Considering a two-port network, the generalized scattering matrix [Sp] is found with respect to a reference impedance Re{Z1} at port 1 and to Re{Z2} at port 2. If Z1 = Z2 = Zo, [Sp] = [S]. 9/31
  10. 10. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (II) 2 1 11 1 0p p p p a b S a   Two-port Network [Sp] 2 0pa  2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V  2Z 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a  1 1 11 1 1 T p T Z Z S Z Z      2 2 2 1 1 11 1 1 1 2 2 IN p p AVS pP a b P S    1TZ • Can we find the power by using [S] but not [Sp] ? Sure! We will talk about this later. 10/31
  11. 11. Department of Electronic Engineering, NTUT Example • Calculate the power waves and the power delivered to the load in the circuit. 100 50LZ j     10 0sE   100 50sZ j   V I       100 50 10 5.59 26.57 100 50 100 50 L s L s Z j V E Z Z j j               10 0.05 A 100 50 100 50 s L s E I Z Z j j            1 1 10 0.5 2 2 2 100 p s s s s s s a V Z I E Z I Z I R R                1 1 1 1 10 0.05 100 50 0.05 100 50 0 2 2 2 100 p s s s s s b V Z I E Z I Z I j j R R                2 21 1 0.125 W 2 2 L p pP a b   (Try ) 1 Re 2 LP VI  11/31
  12. 12. Department of Electronic Engineering, NTUT Example (I) • Calculate the generalized parameter Sp11 and Sp21 at 1 GHz in the lossless, reciprocal, two-port network. Then calculate Sp22 and Sp12. 2 10Z   1.59 nHL    1E 1 50 50Z j     1V   2V 10LZ j  1TZ 1I 2I 1 1 1 1 1 1 0.167 0T T Z V E E Z Z      1 1 1 1 1 0.0118 45 T E I E Z Z       2 1 0.118 45V E    2 1 0.0118 45I E       1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R    2 2 2 2 2 1 2 pb V Z I R 1 0.071 0pa   1 0.061 78.69pb   2 0pa  2 0.037 45pb     For Sp11 and Sp21 12/31
  13. 13. Department of Electronic Engineering, NTUT Example (II)    2 1 1 1 11 1 1 10 10 10 50 50 0.85 78.69 10 10 50 50 p p T p p Ta b j jZ Z S a Z Z j j               2 2 21 1 0 0.037 45 0.525 45 0.071 0 p p p p a b S a          2 10Z   1.59 nHL    2E 1 50 50Z j     1V   2V 10LZ j  2TZ 1I 2I  For Sp22 and Sp12 1 2 0.833 0V E   1 2 0.0118 45I E     2 2 0.92 5.19V E    2 2 0.0118 45I E    1 0pa  1 0.083 45pb    2 0.158 0pa   2 0.134 11.32pb   1 2 2 2 22 2 2 20 0.85 11.3 p p T p p Ta b Z Z S a Z Z         1 1 12 2 0 0.083 45 0.525 45 0.158 0 p p p p a b S a          13/31
  14. 14. Department of Electronic Engineering, NTUT Power-Gain Expressions (I) Transistor [S] 2a 2b 1a 1b Port 1 Port 2   sE sZ out LZ in s L s o s s o Z Z Z Z     L o L L o Z Z Z Z     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a  • Consider a microwave amplifier with the source and load reflection coefficients and measured in a Zo system:s L • For the transistor, the input and output traveling waves measured in a Zo system (this is very practical) : 14/31
  15. 15. Department of Electronic Engineering, NTUT Power-Gain Expressions (II)   sE sZ s LZ L Transistor [S] The reflection coefficients and S-parameters are separately measured in a Zo (usually 50 Ω) system Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L After connecting them all together The goal is to find the input and output power relations. 1b 1a 2a 2b 15/31
  16. 16. Department of Electronic Engineering, NTUT Input Reflection Coefficient 1 1 in b a   2 2La b  2 21 1 22 2Lb S a S b   21 1 2 221 L S a b S    Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the first step is to find the new input coefficient , which is the result coming from and .in  S L     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a   1 12 21 11 1 221 L in L b S S S a S        12 21 1 11 1 12 2 11 1 1 221 L L L S S b S a S b S a a S         a1 is your input, so the goal here is to find the reflected wave b1 1 11 1 12 2b S a S a  a1 is your input, to find b1 = you need to find a2 to find a2 = you need to find b2  the relationship between b2 and a1 16/31
  17. 17. Department of Electronic Engineering, NTUT Output Reflection Coefficient 2 2 0s out E b a    1 1sa b  1 11 1 12 2sb S b S a   12 2 1 111 s S a b S    12 21 2 21 1 22 2 2 22 2 111 s s s S S b S b S a a S a S         12 212 22 2 110 1 s s out sE S Sb S a S        Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the second step is to find the new output coefficient , which is the result coming from and .out  S s   1 11 1 12 2b S a S a  2 21 1 22 2b S a S a      The same procedure as finding is applied.in 17/31
  18. 18. Department of Electronic Engineering, NTUT The Available Power and Input Power (I)   sE sZ s 1a 1b • After finding out the input/output refection coefficients, let’s now deal with the power. in Since we have got , we can discard the circuits connected after the source right here. in 1 1s sV E I Z    1V 1I   1 1 1 1 1 1 1s s s s o V V V V V E I I Z E Z Z                    1 1 1 1 1 1 1s s s s s o o o V V V V V E Z V E Z Z V Z Z Z                   1 1 o s o s o s s o Z Z Z V E V Z Z Z Z            • Use the normalized power waves 1 1 1 1 s o s o s s o s s oo o o E Z Z ZV V a a b Z Z Z ZZ Z Z               where , , ands o s o s E Z a Z Z   1 1 o V b Z   s o s s o Z Z Z Z     18/31
  19. 19. Department of Electronic Engineering, NTUT The Available Power and Input Power (II) 1 1inb a  1 1 1s s s s ina a b a a       1 1 s s in a a       2 2 2 2 2 2 1 1 1 2 11 1 1 1 1 2 2 2 2 1 in in in s s in P a b a a            • The available power from source 2 2 2 2 2 2 2 22 2 1 11 1 1 1 2 2 2 11 1 in s s s AVS in s s s ss s P P a a a                   2 2 2 2 2 2 1 111 2 1 1 s in in in s AVS AVS s s in s in P a P P M               • Ms is known as the source mismatch factor (or mismatch loss).   sE sZ s 1a 1b in   1V 1I Pin 19/31
  20. 20. Department of Electronic Engineering, NTUT The Available Power and Output Power (II) LZ L out Since we have got , the circuits looking into the output port (with source) can be simplified as a Thevenin’s equivalent circuit. out   thE outZ 2a 2b   LV LI LZ L out  2 2 2 2 2 2 2 1 1 1 1 2 2 2 L LP b a b     • The power delivered to the load ZL 2 2 2 11 2 1 L L th out L P b       • The available power from the network 2 2 1 1 2 1L out AVN L th out P P b         2 2 2 1 1 1 L out L AVN AVN L out L P P P M          • ML is known as the load mismatch factor (or mismatch loss). 20/31
  21. 21. Department of Electronic Engineering, NTUT Definition of the Power Gains Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML • The power gain L p in P G P  • The transducer power gain L T p s AVS P G G M P   • The available power gain AVN T A AVS L P G G P M   p TG G A TG G • When the Input and output are matched: p T AG G G  From the amplifier input to load From the source to load 21/31
  22. 22. Department of Electronic Engineering, NTUT Power Gain     2 2 2 2 2 1 1 1 2 1 1 2 L L p in in bP G P a       21 1 2 221 L S a b S    2 2 212 2 22 11 1 1 L p in L G S S        • The Power Gain Gp where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 22/31
  23. 23. Department of Electronic Engineering, NTUT Transducer Power Gain • The Transducer Power Gain GT L L in in T p p s AVS in AVS AVS P P P P G G G M P P P P     2 2 2 2 2 2 21 212 2 2 2 22 11 1 1 1 1 1 1 1 1 s L s L T s in L s out L G S S S S                       2 2 2 1 1 1 s in s s in M         where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 23/31
  24. 24. Department of Electronic Engineering, NTUT Available Power Gain • The Available Power Gain GA AVN L AVN AVN T A T AVS AVS L L L P P P P G G G P P P P M     2 2 212 2 11 1 1 1 1 s A s out G S S        Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML   2 2 2 1 1 1 L out L out L M         where 24/31
  25. 25. Department of Electronic Engineering, NTUT Two-port Network Matrices • Several ways that are commonly used to represent the two-port network: Impedance matrix : z-parameter Admittance matrix : y-parameter Hybrid matrix : h-parameter ABCD matrix : ABCD parameters Scattering matrix : S-parameter • These matrices describe the relationship between the input/output voltages and currents except the scattering matrix which describes the relationship between the input/output traveling waves (or power waves). 25/31
  26. 26. Department of Electronic Engineering, NTUT Two-port Network Representation  z-parameter  y-parameter  h-parameter  ABCD parameters 1 11 12 1 2 21 22 2 v z z i v z z i                   1 11 1 12 2v z i z i  2 21 1 22 2v z i z i  1 11 12 1 2 21 22 2 i y y v i y y v                   1 11 12 1 2 21 22 2 v h h i i h h v                   1 2 1 2 v vA B i iC D                Two-port network   1v 1i 2i   2v Port 1 Port 2 26/31
  27. 27. Department of Electronic Engineering, NTUT Conversion Between the Network Parameter • This table is provided at page 62 in the textbook. 27/31
  28. 28. Department of Electronic Engineering, NTUT Series Connection • Series Connection: use z-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b v iv v z z z z v iv v z z z z                           28/31
  29. 29. Department of Electronic Engineering, NTUT Shunt Connection • Shunt Connection: use y-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b i vi i y y y y i vi i y y y y                           29/31
  30. 30. Department of Electronic Engineering, NTUT Cascade Circuits • Cascade Circuits : use ABCD parameters (chain) 1 1 2 2 1 1 2 2 a a ba a a a b b a a ba a a a b b v v v vA B A B A B i i i iC D C D C D                                         30/31
  31. 31. Department of Electronic Engineering, NTUT Summary • The power delivered to the load can be calculated by using three methods: (1) Real power dissipated at load ( ) (2) Power waves (generalized [Sp], linked with reflections) (3) Traveling waves ([S], it’s practical and useful in amplifier design)  Re 2L L LP V I  • Available power from source (maximum average power the source can provide when matched) :    2 2 2 , 1 2 8 s AVS p p rms s E P a a R 2 2 21 1 1 2 2 2 L p p AVS pP a b P b    • When mismatch occurs: Power wave Power wave L p inP G P L T AVSP G P • Power gains (defined with traveling waves, circuitries are separately measured in a Zo system) : 31/31

×