Pertemuan 1 - 4 FISIKA ZAT PADAT Iwan Sugihartono, M.Si Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam
Outline Bloch Functions  Nearly Free Electron Model Kronig-Penney Model Wave Equation of Electron in a Periodic Potential Number of Orbitals in a Band 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
Some successes of the free electron model: C,  κ ,  σ ,  χ ,  … Some failures of the free electron model:  Distinction between metals, semimetals, semiconductors & insulators. Positive values of Hall coefficent. Relation between conduction & valence electrons. Magnetotransport. Band model New concepts: Effective mass Holes finite T impurities 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
NEARLY FREE ELECTRON MODEL 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Bragg reflection  -> no wave-like solutions ->  energy gap Bragg condition: ->
ORIGIN OF THE ENERGY GAP 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
BLOCH FUNCTIONS 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Periodic potential  ->  Translational symmetry  ->  Abelian group  T  = { T ( R l )}  k -representation  of  T ( R l )  is Corresponding basis function for the Schrodinger equation must satisfy  This can be satisfied by the Bloch function where or ->  representative values of  k  are contained inside the Brillouin zone.  Basis =
KRONIG-PENNEY MODEL 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Bloch theorem: ψ    (0) continuous: ψ    ( a ) continuous: ψ (0) continuous: ψ ( a ) continuous:
-> Delta function potential:  Thus so that 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
MATRIX MECHANICS 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Ansatz  Secular equation: Matrix equation Orthonormal basis: Eigen-problem
FOURIER SERIES OF THE PERIODIC POTENTIAL 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | ->    = Volume of crystal       volume of unit cell For a lattice with atomic basis at positions  ρ α   in the unit cell is the structural factor ->
PLANE WAVE EXPANSION 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Bloch function    = Volume of crystal Matrix form of the Schrodinger equation: (central equation) n  = 0:
CRYSTAL MOMENTUM OF AN ELECTRON 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Properties of  k : -> U  = 0  -> Selection rules in collision processes -> crystal momentum of electron is     k . Eq.,  phonon absorption:
SOLUTION OF THE CENTRAL EQUATION 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | 1-D lattice, only
KRONIG-PENNEY MODEL IN RECIPROCAL SPACE 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Eigen-equation: -> (only  s  = 0 term contributes)
-> (Kronig-Penney model) with 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
EMPTY LATTICE APPROXIMATION 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Free electron in vacuum: Free electron in empty lattice: Simple cubic
APPROXIMATE SOLUTION NEAR A ZONE BOUNDARY 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | k  near zone right boundary: Weak  U ,  λ k  2 g  >>  U -> for  E  near  λ k
K  <<  g /2 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |
NUMBER OF ORBITALS IN A BAND 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  | Linear crystal of length  L  composed of of  N  cells of lattice constant  a . Periodic boundary condition: -> ->  N  inequivalent values of  k Generalization to 3-D crystals:  Number of  k  points in 1 st  BZ = Number of primitive cells ->  Each primitive cell contributes one  k  point to each band. Crystals with odd numbers of electrons in primitive cell must be metals,  e.g., alkali & noble metals metal semi-metal insulator
THANK YOU 15/03/11 ©  2010 Universitas Negeri Jakarta  |  www.unj.ac.id  |

Pert 1-4

  • 1.
    Pertemuan 1 -4 FISIKA ZAT PADAT Iwan Sugihartono, M.Si Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam
  • 2.
    Outline Bloch Functions Nearly Free Electron Model Kronig-Penney Model Wave Equation of Electron in a Periodic Potential Number of Orbitals in a Band 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 3.
    Some successes ofthe free electron model: C, κ , σ , χ , … Some failures of the free electron model: Distinction between metals, semimetals, semiconductors & insulators. Positive values of Hall coefficent. Relation between conduction & valence electrons. Magnetotransport. Band model New concepts: Effective mass Holes finite T impurities 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 4.
    NEARLY FREE ELECTRONMODEL 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Bragg reflection -> no wave-like solutions -> energy gap Bragg condition: ->
  • 5.
    ORIGIN OF THEENERGY GAP 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 6.
    BLOCH FUNCTIONS 15/03/11© 2010 Universitas Negeri Jakarta | www.unj.ac.id | Periodic potential -> Translational symmetry -> Abelian group T = { T ( R l )} k -representation of T ( R l ) is Corresponding basis function for the Schrodinger equation must satisfy This can be satisfied by the Bloch function where or -> representative values of k are contained inside the Brillouin zone. Basis =
  • 7.
    KRONIG-PENNEY MODEL 15/03/11© 2010 Universitas Negeri Jakarta | www.unj.ac.id | Bloch theorem: ψ  (0) continuous: ψ  ( a ) continuous: ψ (0) continuous: ψ ( a ) continuous:
  • 8.
    -> Delta functionpotential: Thus so that 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 9.
    15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 10.
    MATRIX MECHANICS 15/03/11© 2010 Universitas Negeri Jakarta | www.unj.ac.id | Ansatz Secular equation: Matrix equation Orthonormal basis: Eigen-problem
  • 11.
    FOURIER SERIES OFTHE PERIODIC POTENTIAL 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | ->  = Volume of crystal   volume of unit cell For a lattice with atomic basis at positions ρ α in the unit cell is the structural factor ->
  • 12.
    PLANE WAVE EXPANSION15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Bloch function  = Volume of crystal Matrix form of the Schrodinger equation: (central equation) n = 0:
  • 13.
    CRYSTAL MOMENTUM OFAN ELECTRON 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Properties of k : -> U = 0 -> Selection rules in collision processes -> crystal momentum of electron is  k . Eq., phonon absorption:
  • 14.
    SOLUTION OF THECENTRAL EQUATION 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | 1-D lattice, only
  • 15.
    KRONIG-PENNEY MODEL INRECIPROCAL SPACE 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Eigen-equation: -> (only s = 0 term contributes)
  • 16.
    -> (Kronig-Penney model)with 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 17.
    EMPTY LATTICE APPROXIMATION15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Free electron in vacuum: Free electron in empty lattice: Simple cubic
  • 18.
    APPROXIMATE SOLUTION NEARA ZONE BOUNDARY 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | k near zone right boundary: Weak U , λ k  2 g >> U -> for E near λ k
  • 19.
    K << g /2 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 20.
    15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 21.
    NUMBER OF ORBITALSIN A BAND 15/03/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id | Linear crystal of length L composed of of N cells of lattice constant a . Periodic boundary condition: -> -> N inequivalent values of k Generalization to 3-D crystals: Number of k points in 1 st BZ = Number of primitive cells -> Each primitive cell contributes one k point to each band. Crystals with odd numbers of electrons in primitive cell must be metals, e.g., alkali & noble metals metal semi-metal insulator
  • 22.
    THANK YOU 15/03/11© 2010 Universitas Negeri Jakarta | www.unj.ac.id |