1. Quantum mechanics describes the behavior of matter and light at the atomic scale, which is very different from classical mechanics. Particles have both wave-like and particle-like properties.
2. The de Broglie hypothesis proposed that all particles have an associated wavelength that depends on their momentum. This was confirmed experimentally by observing electron diffraction patterns.
3. Heisenberg's uncertainty principle states that it is impossible to precisely measure both a particle's position and momentum simultaneously. This limits our ability to predict the future behavior of particles.