SlideShare a Scribd company logo
Section 7-2
Addition Counting Principles
Warm-up
How many positive integers less than or equal to 1000
              satisfy each condition?
  a. Divisible by 5?                b. Divisible by 7?




                  Divisible by 5 or 7?
Warm-up
How many positive integers less than or equal to 1000
              satisfy each condition?
  a. Divisible by 5?                b. Divisible by 7?
         200


                  Divisible by 5 or 7?
Warm-up
How many positive integers less than or equal to 1000
              satisfy each condition?
  a. Divisible by 5?                b. Divisible by 7?
         200                               142


                  Divisible by 5 or 7?
Warm-up
How many positive integers less than or equal to 1000
              satisfy each condition?
  a. Divisible by 5?                b. Divisible by 7?
         200                               142


                  Divisible by 5 or 7?
                          314
Union:
Union: Values that are in one set or another; does not
  need to be part of both
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive:
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive: A situation where two or
  more sets have nothing in common
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive: A situation where two or
  more sets have nothing in common
  i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t
  have them both happen at the same time
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive: A situation where two or
  more sets have nothing in common
  i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t
  have them both happen at the same time

Intersection:
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive: A situation where two or
  more sets have nothing in common
  i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t
  have them both happen at the same time

Intersection: Values that are shared by two or more sets
Union: Values that are in one set or another; does not
  need to be part of both

Notation: A  B

Disjoint/Mutually Exclusive: A situation where two or
  more sets have nothing in common
  i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t
  have them both happen at the same time

Intersection: Values that are shared by two or more sets

Notation: A  B
Addition Counting Principle (Mutually Exclusive Form):
Addition Counting Principle (Mutually Exclusive Form):

If two finite sets A and B are mutually exclusive, then
                 N( A  B) = N( A) + N(B)
Addition Counting Principle (Mutually Exclusive Form):

   If two finite sets A and B are mutually exclusive, then
                     N( A  B) = N( A) + N(B)




Theorem (Probability of the Union of Mutually Exclusive Events):
Addition Counting Principle (Mutually Exclusive Form):

   If two finite sets A and B are mutually exclusive, then
                     N( A  B) = N( A) + N(B)




Theorem (Probability of the Union of Mutually Exclusive Events):


If A and B are mutually exclusive events in the same finite
                   sample space, then
                     P( A  B) = P( A) + P(B)
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6   P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6        =   1
                                              36
                                                   + 36
                                                      2


 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6        =   1
                                              36
                                                   + 36 =
                                                      2      3
                                                            36

 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6        =   1
                                              36
                                                   + 36 =
                                                      2      3
                                                            36
                                                                 = 12
                                                                    1


 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
a. If two fair dice are tossed, what is the probability that
                     the sum is 2 or 3?

 1,1   1,2   1,3   1,4   1,5   1,6        P(sum of 2 or 3)
 2,1   2,2   2,3   2,4   2,5   2,6   = P(sum of 2) + P(sum of 3)
 3,1   3,2   3,3   3,4   3,5   3,6        =   1
                                              36
                                                   + 36 =
                                                      2      3
                                                            36
                                                                 = 12
                                                                    1


 4,1   4,2   4,3   4,4   4,5   4,6   There is an 8 1/3 %
 5,1   5,2   5,3   5,4   5,5   5,6   chance of rolling a sum
 6,1   6,2   6,3   6,4   6,5   6,6   of 2 or 3
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

 1,1   1,2   1,3   1,4   1,5   1,6
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                     P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36
                                            18
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36 + 36
                                            18   30
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36 + 36 − 36
                                            18   30   14
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36 + 36 − 36 = 36
                                            18   30   14   34
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36 + 36 − 36 = 36 = 18
                                            18   30   14   34   17
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6
 5,1   5,2   5,3   5,4   5,5   5,6
 6,1   6,2   6,3   6,4   6,5   6,6
Example 1
b. If two dice are tossed, what is the probability that the
           sum will be even or greater than 4?

                                         P(sum is even or > 4)
 1,1   1,2   1,3   1,4   1,5   1,6
                                     = P(sum is even) + P(sum > 4)
 2,1   2,2   2,3   2,4   2,5   2,6
                                          = 36 + 36 − 36 = 36 = 18
                                            18   30   14   34   17
 3,1   3,2   3,3   3,4   3,5   3,6
 4,1   4,2   4,3   4,4   4,5   4,6       There is a 94 4/9 %
 5,1   5,2   5,3   5,4   5,5   5,6       chance of rolling an
                                         even sum or a sum
 6,1   6,2   6,3   6,4   6,5   6,6         greater than 4
Addition Counting Principle (General Form):
Addition Counting Principle (General Form):

       For any finite sets A and B,
     N( A  B) = N( A) + N(B) − N( A  B)
Addition Counting Principle (General Form):

             For any finite sets A and B,
            N( A  B) = N( A) + N(B) − N( A  B)




Theorem (Probability of a Union of Events General Form):
Addition Counting Principle (General Form):

                For any finite sets A and B,
              N( A  B) = N( A) + N(B) − N( A  B)




 Theorem (Probability of a Union of Events General Form):


If A and B are any events in the same finite sample space,
                           then
         P( A or B) = P( A  B) = P( A) + P(B) − P( A  B)
Example 2
Thirteen of the 50 states include territory that lies west of
 the continental divide. Forty-two states include territory
  that lies east of the continental divide. Is this possible?
                           Explain.
Example 2
Thirteen of the 50 states include territory that lies west of
 the continental divide. Forty-two states include territory
  that lies east of the continental divide. Is this possible?
                           Explain.
Of course this is possible! This just means that some states
  have the continental divide running right though them!
Example 2
Thirteen of the 50 states include territory that lies west of
 the continental divide. Forty-two states include territory
  that lies east of the continental divide. Is this possible?
                           Explain.
Of course this is possible! This just means that some states
  have the continental divide running right though them!

 Bonus: Which states would these be? The FIRST person
   to post the correct answer AFTER 7 PM on the wiki
      under section 7-2 will earn some bonus points!
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?


         HHH    HTT
         HHT    THT
         HTH    TTH
         THH    TTT
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?


         HHH    HTT
         HHT    THT
         HTH    TTH
         THH    TTT
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?

                                   P(Not all 3 same)
         HHH    HTT
         HHT    THT
         HTH    TTH
         THH    TTT
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?

                                   P(Not all 3 same)
         HHH    HTT                    =   6
                                           8
         HHT    THT
         HTH    TTH
         THH    TTT
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?

                                   P(Not all 3 same)
         HHH    HTT                    =   6
                                           8
                                               =   3
                                                   4
         HHT    THT
         HTH    TTH
         THH    TTT
Example 3
Three fair coins are tossed. What is the probability that not
            all of the coins show the same face?

                                   P(Not all 3 same)
         HHH    HTT                    =   6
                                           8
                                               =   3
                                                   4
         HHT    THT
         HTH    TTH                There is a 75%
         THH    TTT                   chance of
                                   getting not all 3
                                   coins the same
Complementary Events
Complementary Events
When you have events whose union takes up the entire
 sample space, but the events are mutually exclusive
Complementary Events
When you have events whose union takes up the entire
 sample space, but the events are mutually exclusive



            The complement of R is not R
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6
  4,1   4,2   4,3   4,4   4,5   4,6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6
  4,1   4,2   4,3   4,4   4,5   4,6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6   P(not 6)
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6
  4,1   4,2   4,3   4,4   4,5   4,6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6   P(not 6) =   31
                                                   36
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6
  4,1   4,2   4,3   4,4   4,5   4,6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6       P(not 6) =   31
                                                       36
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6   There is an 86 1/9 %
                                      chance that the sum
  4,1   4,2   4,3   4,4   4,5   4,6      will not be 6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6
Example 4
Two dice are tossed. Find the probability that their sum is
                         not 6.

  1,1   1,2   1,3   1,4   1,5   1,6       P(not 6) =      31
                                                          36
  2,1   2,2   2,3   2,4   2,5   2,6
  3,1   3,2   3,3   3,4   3,5   3,6   There is an 86 1/9 %
                                      chance that the sum
  4,1   4,2   4,3   4,4   4,5   4,6      will not be 6
  5,1   5,2   5,3   5,4   5,5   5,6
  6,1   6,2   6,3   6,4   6,5   6,6    1− P(6) =1−    5
                                                     36
                                                          =    31
                                                               36
Theorem (Probability
 of Complements)
Theorem (Probability
 of Complements)

 In any event E, the complement of E is
            P(not E) =1− P(E)
Homework
Homework


 p. 437 #1-24

More Related Content

What's hot

1 f6 some facts about the disvisibility of numbers
1 f6 some facts about the disvisibility of numbers1 f6 some facts about the disvisibility of numbers
1 f6 some facts about the disvisibility of numbersmath123a
 
123a-1-f6 some facts about the disvisibility of numbers
123a-1-f6 some facts about the disvisibility of numbers123a-1-f6 some facts about the disvisibility of numbers
123a-1-f6 some facts about the disvisibility of numbersNTIP
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
José Encalada
 
Prime Numbers: The Gateway To Algebra And Beyond!
Prime Numbers: The Gateway To Algebra And Beyond!Prime Numbers: The Gateway To Algebra And Beyond!
Prime Numbers: The Gateway To Algebra And Beyond!
Dennis DiNoia
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Lossian Barbosa Bacelar Miranda
 
Questions on average, percentage, profit
Questions on average, percentage,  profitQuestions on average, percentage,  profit
Questions on average, percentage, profit
Dr. Trilok Kumar Jain
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesKate Rimando
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
Jimbo Lamb
 
Vargas chris
Vargas chrisVargas chris
Vargas chris
Leslie Vargas
 
Mega pp -_v1
Mega pp -_v1Mega pp -_v1
Mega pp -_v1harlie90
 

What's hot (12)

1 f6 some facts about the disvisibility of numbers
1 f6 some facts about the disvisibility of numbers1 f6 some facts about the disvisibility of numbers
1 f6 some facts about the disvisibility of numbers
 
123a-1-f6 some facts about the disvisibility of numbers
123a-1-f6 some facts about the disvisibility of numbers123a-1-f6 some facts about the disvisibility of numbers
123a-1-f6 some facts about the disvisibility of numbers
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
Prime Numbers: The Gateway To Algebra And Beyond!
Prime Numbers: The Gateway To Algebra And Beyond!Prime Numbers: The Gateway To Algebra And Beyond!
Prime Numbers: The Gateway To Algebra And Beyond!
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
Questions on average, percentage, profit
Questions on average, percentage,  profitQuestions on average, percentage,  profit
Questions on average, percentage, profit
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
 
Vargas chris
Vargas chrisVargas chris
Vargas chris
 
Mega pp -_v1
Mega pp -_v1Mega pp -_v1
Mega pp -_v1
 

Similar to Notes 7-2

4 6 Probablitiy
4 6 Probablitiy4 6 Probablitiy
4 6 Probablitiytaco40
 
Probability notes for the UG/PG students
Probability notes for the UG/PG studentsProbability notes for the UG/PG students
Probability notes for the UG/PG students
Geeta Arora
 
Int Math 2 Section 4-4 1011
Int Math 2 Section 4-4 1011Int Math 2 Section 4-4 1011
Int Math 2 Section 4-4 1011
Jimbo Lamb
 
Integrated Math 2 Section 4-4
Integrated Math 2 Section 4-4Integrated Math 2 Section 4-4
Integrated Math 2 Section 4-4
Jimbo Lamb
 
12X1 T09 01 definitions & theory
12X1 T09 01 definitions & theory12X1 T09 01 definitions & theory
12X1 T09 01 definitions & theoryNigel Simmons
 
Union and intersection of events (math 10)
Union and intersection of events (math 10)Union and intersection of events (math 10)
Union and intersection of events (math 10)
Damone Odrale
 
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
AILEENBAUTISTA23
 
Notes 7-1
Notes 7-1Notes 7-1
Notes 7-1
Jimbo Lamb
 
SIM Basic Probability
SIM Basic ProbabilitySIM Basic Probability
SIM Basic Probability
angelamorales78
 
Probability
ProbabilityProbability
Probability
Joey Valdriz
 
Probability theory.pptx
Probability theory.pptxProbability theory.pptx
Probability theory.pptx
ahmedyehia757198
 
Lecture-1-Probability-Theory-Part-1.pdf
Lecture-1-Probability-Theory-Part-1.pdfLecture-1-Probability-Theory-Part-1.pdf
Lecture-1-Probability-Theory-Part-1.pdf
MICAHJAMELLEICAWAT1
 
Normal distribution for statistical analysis
Normal distribution for statistical analysis Normal distribution for statistical analysis
Normal distribution for statistical analysis Dr. Trilok Kumar Jain
 
AA Section 5-4
AA Section 5-4AA Section 5-4
AA Section 5-4
Jimbo Lamb
 
Int Math 2 Section 4-2 1011
Int Math 2 Section 4-2 1011Int Math 2 Section 4-2 1011
Int Math 2 Section 4-2 1011
Jimbo Lamb
 
Mean,median and mode revision card
Mean,median and mode revision cardMean,median and mode revision card
Mean,median and mode revision card
Puna Ripiye
 
5. Probability.pdf
5. Probability.pdf5. Probability.pdf
5. Probability.pdf
MdAbdullah360298
 
Addition of fractions
Addition of fractionsAddition of fractions
Addition of fractionsmuslimah_86
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
Edrin Jay Morta
 
Weekly Dose 21 - Maths Olympiad Practice
Weekly Dose 21 - Maths Olympiad PracticeWeekly Dose 21 - Maths Olympiad Practice
Weekly Dose 21 - Maths Olympiad Practice
Kathleen Ong
 

Similar to Notes 7-2 (20)

4 6 Probablitiy
4 6 Probablitiy4 6 Probablitiy
4 6 Probablitiy
 
Probability notes for the UG/PG students
Probability notes for the UG/PG studentsProbability notes for the UG/PG students
Probability notes for the UG/PG students
 
Int Math 2 Section 4-4 1011
Int Math 2 Section 4-4 1011Int Math 2 Section 4-4 1011
Int Math 2 Section 4-4 1011
 
Integrated Math 2 Section 4-4
Integrated Math 2 Section 4-4Integrated Math 2 Section 4-4
Integrated Math 2 Section 4-4
 
12X1 T09 01 definitions & theory
12X1 T09 01 definitions & theory12X1 T09 01 definitions & theory
12X1 T09 01 definitions & theory
 
Union and intersection of events (math 10)
Union and intersection of events (math 10)Union and intersection of events (math 10)
Union and intersection of events (math 10)
 
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
2.1PROBABILITY OF UNION OF TWO EVENTS.pptx
 
Notes 7-1
Notes 7-1Notes 7-1
Notes 7-1
 
SIM Basic Probability
SIM Basic ProbabilitySIM Basic Probability
SIM Basic Probability
 
Probability
ProbabilityProbability
Probability
 
Probability theory.pptx
Probability theory.pptxProbability theory.pptx
Probability theory.pptx
 
Lecture-1-Probability-Theory-Part-1.pdf
Lecture-1-Probability-Theory-Part-1.pdfLecture-1-Probability-Theory-Part-1.pdf
Lecture-1-Probability-Theory-Part-1.pdf
 
Normal distribution for statistical analysis
Normal distribution for statistical analysis Normal distribution for statistical analysis
Normal distribution for statistical analysis
 
AA Section 5-4
AA Section 5-4AA Section 5-4
AA Section 5-4
 
Int Math 2 Section 4-2 1011
Int Math 2 Section 4-2 1011Int Math 2 Section 4-2 1011
Int Math 2 Section 4-2 1011
 
Mean,median and mode revision card
Mean,median and mode revision cardMean,median and mode revision card
Mean,median and mode revision card
 
5. Probability.pdf
5. Probability.pdf5. Probability.pdf
5. Probability.pdf
 
Addition of fractions
Addition of fractionsAddition of fractions
Addition of fractions
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 
Weekly Dose 21 - Maths Olympiad Practice
Weekly Dose 21 - Maths Olympiad PracticeWeekly Dose 21 - Maths Olympiad Practice
Weekly Dose 21 - Maths Olympiad Practice
 

More from Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
Jimbo Lamb
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
Jimbo Lamb
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Jimbo Lamb
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
Jimbo Lamb
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
Jimbo Lamb
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
Jimbo Lamb
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
Jimbo Lamb
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
Jimbo Lamb
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
Jimbo Lamb
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
Jimbo Lamb
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
Jimbo Lamb
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
Jimbo Lamb
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
Jimbo Lamb
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
Jimbo Lamb
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
Jimbo Lamb
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
Jimbo Lamb
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
Jimbo Lamb
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
Jimbo Lamb
 

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 

Recently uploaded

GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
sonjaschweigert1
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
Enhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZEnhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZ
Globus
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
Jen Stirrup
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
RinaMondal9
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
KAMESHS29
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 

Recently uploaded (20)

GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
Enhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZEnhancing Performance with Globus and the Science DMZ
Enhancing Performance with Globus and the Science DMZ
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...The Metaverse and AI: how can decision-makers harness the Metaverse for their...
The Metaverse and AI: how can decision-makers harness the Metaverse for their...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 

Notes 7-2

  • 2. Warm-up How many positive integers less than or equal to 1000 satisfy each condition? a. Divisible by 5? b. Divisible by 7? Divisible by 5 or 7?
  • 3. Warm-up How many positive integers less than or equal to 1000 satisfy each condition? a. Divisible by 5? b. Divisible by 7? 200 Divisible by 5 or 7?
  • 4. Warm-up How many positive integers less than or equal to 1000 satisfy each condition? a. Divisible by 5? b. Divisible by 7? 200 142 Divisible by 5 or 7?
  • 5. Warm-up How many positive integers less than or equal to 1000 satisfy each condition? a. Divisible by 5? b. Divisible by 7? 200 142 Divisible by 5 or 7? 314
  • 7. Union: Values that are in one set or another; does not need to be part of both
  • 8. Union: Values that are in one set or another; does not need to be part of both Notation: A  B
  • 9. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive:
  • 10. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive: A situation where two or more sets have nothing in common
  • 11. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive: A situation where two or more sets have nothing in common i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t have them both happen at the same time
  • 12. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive: A situation where two or more sets have nothing in common i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t have them both happen at the same time Intersection:
  • 13. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive: A situation where two or more sets have nothing in common i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t have them both happen at the same time Intersection: Values that are shared by two or more sets
  • 14. Union: Values that are in one set or another; does not need to be part of both Notation: A  B Disjoint/Mutually Exclusive: A situation where two or more sets have nothing in common i.e. Rolling a sum of 2 or 3 on a pair of dice; you can’t have them both happen at the same time Intersection: Values that are shared by two or more sets Notation: A  B
  • 15. Addition Counting Principle (Mutually Exclusive Form):
  • 16. Addition Counting Principle (Mutually Exclusive Form): If two finite sets A and B are mutually exclusive, then N( A  B) = N( A) + N(B)
  • 17. Addition Counting Principle (Mutually Exclusive Form): If two finite sets A and B are mutually exclusive, then N( A  B) = N( A) + N(B) Theorem (Probability of the Union of Mutually Exclusive Events):
  • 18. Addition Counting Principle (Mutually Exclusive Form): If two finite sets A and B are mutually exclusive, then N( A  B) = N( A) + N(B) Theorem (Probability of the Union of Mutually Exclusive Events): If A and B are mutually exclusive events in the same finite sample space, then P( A  B) = P( A) + P(B)
  • 19. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3?
  • 20. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 21. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 22. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 23. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 24. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 25. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 = 1 36 + 36 2 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 26. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 = 1 36 + 36 = 2 3 36 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 27. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 = 1 36 + 36 = 2 3 36 = 12 1 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 28. Example 1 a. If two fair dice are tossed, what is the probability that the sum is 2 or 3? 1,1 1,2 1,3 1,4 1,5 1,6 P(sum of 2 or 3) 2,1 2,2 2,3 2,4 2,5 2,6 = P(sum of 2) + P(sum of 3) 3,1 3,2 3,3 3,4 3,5 3,6 = 1 36 + 36 = 2 3 36 = 12 1 4,1 4,2 4,3 4,4 4,5 4,6 There is an 8 1/3 % 5,1 5,2 5,3 5,4 5,5 5,6 chance of rolling a sum 6,1 6,2 6,3 6,4 6,5 6,6 of 2 or 3
  • 29. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4?
  • 30. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 31. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 32. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 33. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 34. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 35. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 18 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 36. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 + 36 18 30 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 37. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 + 36 − 36 18 30 14 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 38. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 + 36 − 36 = 36 18 30 14 34 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 39. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 + 36 − 36 = 36 = 18 18 30 14 34 17 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 40. Example 1 b. If two dice are tossed, what is the probability that the sum will be even or greater than 4? P(sum is even or > 4) 1,1 1,2 1,3 1,4 1,5 1,6 = P(sum is even) + P(sum > 4) 2,1 2,2 2,3 2,4 2,5 2,6 = 36 + 36 − 36 = 36 = 18 18 30 14 34 17 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 There is a 94 4/9 % 5,1 5,2 5,3 5,4 5,5 5,6 chance of rolling an even sum or a sum 6,1 6,2 6,3 6,4 6,5 6,6 greater than 4
  • 41. Addition Counting Principle (General Form):
  • 42. Addition Counting Principle (General Form): For any finite sets A and B, N( A  B) = N( A) + N(B) − N( A  B)
  • 43. Addition Counting Principle (General Form): For any finite sets A and B, N( A  B) = N( A) + N(B) − N( A  B) Theorem (Probability of a Union of Events General Form):
  • 44. Addition Counting Principle (General Form): For any finite sets A and B, N( A  B) = N( A) + N(B) − N( A  B) Theorem (Probability of a Union of Events General Form): If A and B are any events in the same finite sample space, then P( A or B) = P( A  B) = P( A) + P(B) − P( A  B)
  • 45. Example 2 Thirteen of the 50 states include territory that lies west of the continental divide. Forty-two states include territory that lies east of the continental divide. Is this possible? Explain.
  • 46. Example 2 Thirteen of the 50 states include territory that lies west of the continental divide. Forty-two states include territory that lies east of the continental divide. Is this possible? Explain. Of course this is possible! This just means that some states have the continental divide running right though them!
  • 47. Example 2 Thirteen of the 50 states include territory that lies west of the continental divide. Forty-two states include territory that lies east of the continental divide. Is this possible? Explain. Of course this is possible! This just means that some states have the continental divide running right though them! Bonus: Which states would these be? The FIRST person to post the correct answer AFTER 7 PM on the wiki under section 7-2 will earn some bonus points!
  • 48. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face?
  • 49. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? HHH HTT HHT THT HTH TTH THH TTT
  • 50. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? HHH HTT HHT THT HTH TTH THH TTT
  • 51. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? P(Not all 3 same) HHH HTT HHT THT HTH TTH THH TTT
  • 52. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? P(Not all 3 same) HHH HTT = 6 8 HHT THT HTH TTH THH TTT
  • 53. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? P(Not all 3 same) HHH HTT = 6 8 = 3 4 HHT THT HTH TTH THH TTT
  • 54. Example 3 Three fair coins are tossed. What is the probability that not all of the coins show the same face? P(Not all 3 same) HHH HTT = 6 8 = 3 4 HHT THT HTH TTH There is a 75% THH TTT chance of getting not all 3 coins the same
  • 56. Complementary Events When you have events whose union takes up the entire sample space, but the events are mutually exclusive
  • 57. Complementary Events When you have events whose union takes up the entire sample space, but the events are mutually exclusive The complement of R is not R
  • 58. Example 4 Two dice are tossed. Find the probability that their sum is not 6.
  • 59. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 60. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 61. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 P(not 6) 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 62. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 P(not 6) = 31 36 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 63. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 P(not 6) = 31 36 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 There is an 86 1/9 % chance that the sum 4,1 4,2 4,3 4,4 4,5 4,6 will not be 6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
  • 64. Example 4 Two dice are tossed. Find the probability that their sum is not 6. 1,1 1,2 1,3 1,4 1,5 1,6 P(not 6) = 31 36 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 There is an 86 1/9 % chance that the sum 4,1 4,2 4,3 4,4 4,5 4,6 will not be 6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6 1− P(6) =1− 5 36 = 31 36
  • 65. Theorem (Probability of Complements)
  • 66. Theorem (Probability of Complements) In any event E, the complement of E is P(not E) =1− P(E)