Multiplying
Polynomials
   Part 1
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                           2
                               (   2
                         3x 2x − 7x + 5   )
by the monomial
outside the
parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                     )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2       2



parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                     )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2       2



parenthesis.
The number of terms
inside the parenthesis
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                         )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2           2



parenthesis.
The number of terms
inside the parenthesis
                                         2
                                             (
                                   3x 2x − 7x + 5    2
                                                             )
will be the same as
after multiplying.
Multiply a Polynomial by a
            Monomial
Multiply each term
inside the parenthesis
                                     2
                                         (
                                   3x 2x − 7x + 52
                                                             )
by the monomial
outside the
                   3x  2
                           ( 2x ) + 3x ( −7x ) + 3x ( 5 )
                               2             2               2



parenthesis.
The number of terms
inside the parenthesis
                                         2
                                             (
                                   3x 2x − 7x + 5    2
                                                                 )
will be the same as                          4
                                     6x − 21x + 15x      3           2

after multiplying.
Multiply a Polynomial by a
           Monomial
Review this Cool Math site to learn about
multiplying a polynomial by a monomial.
Do the Try It and Your Turn problems in
your notebook and check your answers on
the next slides.
Try It - Page 1
 Multiply:         4
                       (
                  6x 2x + 32
                               )
Try It - Page 1
    Multiply:               4
                                (
                           6x 2x + 32
                                        )
Distribute the monomial.
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
                                     6           4
                             12x + 18x
Try It - Page 1
    Multiply:                    4
                                     (
                             6x 2x + 3       2
                                                     )
Distribute the monomial.
                             4           2       4
                           6x ⋅ 2x + 6x ⋅ 3
  Multiply each term.
                                     6           4
                             12x + 18x
Verify your answer has same number of terms
  as inside original ( ). Both have 2 terms.
Your Turn - Page 2
 multiply:
Your Turn - Page 2
 multiply:
                3
                    (   5   2
             10x 2x + 1 − 3x + x   )
Your Turn - Page 2
    multiply:
                              3
                                  (   5   2
                           10x 2x + 1 − 3x + x   )
Distribute the monomial.
Your Turn - Page 2
    multiply:
                              3
                                  (
                           10x 2x + 1 − 3x + x5           2
                                                                  )
Distribute the monomial.

           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3     5        3               3
                                          (       2
                                                      )       3
Your Turn - Page 2
    multiply:
                             3
                                 (
                          10x 2x + 1 − 3x + x5           2
                                                                 )
           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3    5         3              3
                                         (       2
                                                     )       3


Multiply each term.
Your Turn - Page 2
    multiply:
                                 3
                                     (
                           10x 2x + 1 − 3x + x   5                   2
                                                                             )
           ( )
   10x 2x + 10x (1) + 10x −3x + 10x ( x )
       3    5         3                  3
                                             (           2
                                                             )           3


Multiply each term.          8                       3           5               4
                          20x + 10x − 30x + 10x
Your Turn - Page 2
     multiply:
                                  3
                                      (
                            10x 2x + 1 − 3x + x   5                   2
                                                                              )
            ( )
    10x 2x + 10x (1) + 10x −3x + 10x ( x )
        3    5         3                  3
                                              (           2
                                                              )           3


                              8                       3           5               4
  Put in descending        20x + 10x − 30x + 10x
   order and verify
  number of terms.
(Both have 4 terms.)
Your Turn - Page 2
     multiply:
                                      3
                                          (
                             10x 2x + 1 − 3x + x      5                       2
                                                                                      )
            ( )
    10x 2x + 10x (1) + 10x −3x + 10x ( x )
        3    5         3                      3
                                                  (           2
                                                                  )               3


                                  8                       3               5               4
  Put in descending        20x + 10x − 30x + 10x
   order and verify
  number of terms.            8                       5               4               3
(Both have 4 terms.)
                           20x − 30x + 10x + 10x
Try It - Page 2
 Multiply:
               2   5
                       (   2   2     4
             4x w w − x + 6xw − 1 + 3x w   8
                                               )
Try It - Page 2
      Multiply:
                           2   5
                                   (   2   2   4
                     4x w w − x + 6xw − 1 + 3x w   8
                                                       )
Distribute the monomial.
Try It - Page 2
       Multiply:
                                  2       5
                                              (
                              4x w w − x + 6xw − 1 + 3x w 2           2               4   8
                                                                                              )
Distribute the monomial.
                  5
                      (   2
                              )       2   5
                                              (   2
                                                      )
 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
   2   5      2                                               2   5       2   5
                                                                                  (   4   8
                                                                                              )
Try It - Page 2
      Multiply:
                                2       5
                                            (
                            4x w w − x + 6xw − 1 + 3x w 2           2               4   8
                                                                                            )
                5
                    (   2
                            )       2   5
                                            (   2
                                                    )
4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
  2   5     2                                               2   5       2   5
                                                                                (   4   8
                                                                                            )
Multiply each term.
Try It - Page 2
      Multiply:
                                              2       5
                                                          (
                                      4x w w − x + 6xw − 1 + 3x w         2               2                   4       8
                                                                                                                           )
                      5
                          (       2
                                      )
4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w
  2   5           2                               2   5
                                                          (       2
                                                                      )       2   5               2   5
                                                                                                          (       4   8
                                                                                                                          )
Multiply each term.

          2   6               4           5                   3       7               2       5               6       13
      4x w − 4x w + 24x w − 4x w + 12x w
Verify answer has 5 terms like original parenthesis.
Try this one...
 Multiply:          (   2
                  3x 2x − 5x + 7   )
Try this one...
    Multiply:                (   2
                           3x 2x − 5x + 7   )
Distribute the monomial.
Try this one...
    Multiply:                    (   2
                               3x 2x − 5x + 7   )
Distribute the monomial.

                     ( )
                  3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                           2
Try this one...
   Multiply:                 (   2
                           3x 2x − 5x + 7   )

                      ( )
                 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                       2


Multiply each term.
Try this one...
   Multiply:                 (   2
                           3x 2x − 5x + 7   )

                      ( )
                 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 )
                       2


Multiply each term.

                             3       2
                           6x − 15x + 21x
Try this one...
 Multiply:        2 2
                        (   3
             −2a b a + 3a b − 4b2   3   5
                                            )
Try this one...
    Multiply:              2 2
                                 (   3
                     −2a b a + 3a b − 4b 2   3   5
                                                     )
Distribute the monomial.
Try this one...
    Multiply:                2 2
                                   (   3
                      −2a b a + 3a b − 4b  2    3    5
                                                         )
Distribute the monomial.

  ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
       2 2    3        2 2         2   3       2 2       5
Try this one...
   Multiply:                2 2
                                  (   3
                      −2a b a + 3a b − 4b 2    3    5
                                                        )
( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
     2 2    3         2 2         2   3       2 2       5



Multiply each term.
Try this one...
   Multiply:                 2 2
                                   (   3
                      −2a b a + 3a b − 4b          2    3            5
                                                                         )
( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b )
     2 2    3          2 2         2   3               2 2               5



Multiply each term.

                             5 2           4   5             2   7
                      −2a b − 6a b + 8a b
Great job working all those
problems!

Proceed to Multiplying
Polynomials Part 2.

Multiplying polynomials - part 1

  • 1.
  • 2.
    Multiply a Polynomialby a Monomial Multiply each term inside the parenthesis 2 ( 2 3x 2x − 7x + 5 ) by the monomial outside the parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 3.
    Multiply a Polynomialby a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 4.
    Multiply a Polynomialby a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis will be the same as after multiplying.
  • 5.
    Multiply a Polynomialby a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis 2 ( 3x 2x − 7x + 5 2 ) will be the same as after multiplying.
  • 6.
    Multiply a Polynomialby a Monomial Multiply each term inside the parenthesis 2 ( 3x 2x − 7x + 52 ) by the monomial outside the 3x 2 ( 2x ) + 3x ( −7x ) + 3x ( 5 ) 2 2 2 parenthesis. The number of terms inside the parenthesis 2 ( 3x 2x − 7x + 5 2 ) will be the same as 4 6x − 21x + 15x 3 2 after multiplying.
  • 7.
    Multiply a Polynomialby a Monomial Review this Cool Math site to learn about multiplying a polynomial by a monomial. Do the Try It and Your Turn problems in your notebook and check your answers on the next slides.
  • 8.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 32 )
  • 9.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 32 ) Distribute the monomial.
  • 10.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3
  • 11.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term.
  • 12.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term. 6 4 12x + 18x
  • 13.
    Try It -Page 1 Multiply: 4 ( 6x 2x + 3 2 ) Distribute the monomial. 4 2 4 6x ⋅ 2x + 6x ⋅ 3 Multiply each term. 6 4 12x + 18x Verify your answer has same number of terms as inside original ( ). Both have 2 terms.
  • 14.
    Your Turn -Page 2 multiply:
  • 15.
    Your Turn -Page 2 multiply: 3 ( 5 2 10x 2x + 1 − 3x + x )
  • 16.
    Your Turn -Page 2 multiply: 3 ( 5 2 10x 2x + 1 − 3x + x ) Distribute the monomial.
  • 17.
    Your Turn -Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x5 2 ) Distribute the monomial. ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3
  • 18.
    Your Turn -Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 Multiply each term.
  • 19.
    Your Turn -Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 Multiply each term. 8 3 5 4 20x + 10x − 30x + 10x
  • 20.
    Your Turn -Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 8 3 5 4 Put in descending 20x + 10x − 30x + 10x order and verify number of terms. (Both have 4 terms.)
  • 21.
    Your Turn -Page 2 multiply: 3 ( 10x 2x + 1 − 3x + x 5 2 ) ( ) 10x 2x + 10x (1) + 10x −3x + 10x ( x ) 3 5 3 3 ( 2 ) 3 8 3 5 4 Put in descending 20x + 10x − 30x + 10x order and verify number of terms. 8 5 4 3 (Both have 4 terms.) 20x − 30x + 10x + 10x
  • 22.
    Try It -Page 2 Multiply: 2 5 ( 2 2 4 4x w w − x + 6xw − 1 + 3x w 8 )
  • 23.
    Try It -Page 2 Multiply: 2 5 ( 2 2 4 4x w w − x + 6xw − 1 + 3x w 8 ) Distribute the monomial.
  • 24.
    Try It -Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) Distribute the monomial. 5 ( 2 ) 2 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 2 5 ( 4 8 )
  • 25.
    Try It -Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) 5 ( 2 ) 2 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 2 5 ( 4 8 ) Multiply each term.
  • 26.
    Try It -Page 2 Multiply: 2 5 ( 4x w w − x + 6xw − 1 + 3x w 2 2 4 8 ) 5 ( 2 ) 4x w ( w ) + 4x w −x + 4x w 6xw + 4x w ( −1) + 4x w 3x w 2 5 2 2 5 ( 2 ) 2 5 2 5 ( 4 8 ) Multiply each term. 2 6 4 5 3 7 2 5 6 13 4x w − 4x w + 24x w − 4x w + 12x w Verify answer has 5 terms like original parenthesis.
  • 27.
    Try this one... Multiply: ( 2 3x 2x − 5x + 7 )
  • 28.
    Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) Distribute the monomial.
  • 29.
    Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) Distribute the monomial. ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2
  • 30.
    Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2 Multiply each term.
  • 31.
    Try this one... Multiply: ( 2 3x 2x − 5x + 7 ) ( ) 3x 2x + 3x ⋅ ( −5x ) + 3x ( 7 ) 2 Multiply each term. 3 2 6x − 15x + 21x
  • 32.
    Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b2 3 5 )
  • 33.
    Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) Distribute the monomial.
  • 34.
    Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) Distribute the monomial. ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5
  • 35.
    Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5 Multiply each term.
  • 36.
    Try this one... Multiply: 2 2 ( 3 −2a b a + 3a b − 4b 2 3 5 ) ( −2a b )( a ) + ( −2a b )( 3a b ) + ( −2a b )( −4b ) 2 2 3 2 2 2 3 2 2 5 Multiply each term. 5 2 4 5 2 7 −2a b − 6a b + 8a b
  • 37.
    Great job workingall those problems! Proceed to Multiplying Polynomials Part 2.