SlideShare a Scribd company logo
Meta Learning Low Rank Covariance Factors for
Energy-Based Deterministic Uncertainty
Jeffrey Willette¹, Hae Beom Lee¹, Juho Lee¹⁻², Sung Ju Hwang¹⁻²
KAIST¹, AITRICS²
Prototypical networks first extract features into a shared metric space, and then
minimizes the distance between instances and their classwise centroids.
Background - Prototypical Networks
We utilize a prototypical network style backbone for meta learning in our work,
which can utilize the inverse covariances to compute the Mahalanobis distance.
[1] Protonet - Snell, J., et al. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30.
Figure 1 from [1]
Previous successful deterministic uncertainty [1, 2] generally require a post
processing step which utilizes large training data.
Problem - Meta Deterministic Uncertainty
[1] SNGP - Liu, J., et al. (2020). Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information Processing Systems, 33, 7498-7512.
[2] DDU - Mukhoti, J., et al. (2021). Deterministic Neural Networks with Inductive Biases Capture Epistemic and Aleatoric Uncertainty. arXiv preprint arXiv:2102.11582.
[3] Protonet - Snell, J., et al. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30.
This can adversely affect performance in the meta learning setting where:
1. Each task dataset may be small in size
2. There is no mechanism for learning shared knowledge between tasks.
Protonet [3] ProtoDDU [2] ProtoSNGP [1] Proto Mahalanobis (Ours)
Our method utilizes an attentive set encoder in conjunction with a smooth feature
extractor to predict diagonal or diagonal plus low-rank covariance factors
Method - Proto Mahalanobis
[1] Set Transformer - Lee, J., et al. (2019, May). Set transformer: A framework for attention-based permutation-invariant neural networks. In International Conference on Machine Learning (pp. 3744-3753). PMLR.
Encoding support sets as sets allows the encoder to meta learn shared knowledge
over the task distribution.
The softmax function is shift invariant, such that in the example below, z can be
shifted by any constant and the entropy of the softmax will not change.
Problem - Shift Invariant Softmax
Intuitively, if the instance falls very far, from then centroid, there should be less
confidence assigned to that instance.
We solve this by using a logit-normal softmax distribution. The mu value is the log
Gaussian density, and sigma is a log sum exponential of the energy.
Method - Logit Normal Softmax with Scaled Energy
Intuitively, the variance rises with the minimum energy magnitude. If the minimum
energy is high, then the resulting mean in softmax space will be more uniform.
We constructed a corrupted version of the Omniglot dataset based on common
corruptions [1].
Experiments - Omniglot-C
[1] Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261.
As the level of corruption increases, Proto Mahalanobis models maintain better
calibration
We look forward to seeing you at our poster session. Thanks for watching!
Conclusion

More Related Content

What's hot

Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-LearningMeta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
MLAI2
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
Taiji Suzuki
 

What's hot (20)

Learning to compare: relation network for few shot learning
Learning to compare: relation network for few shot learningLearning to compare: relation network for few shot learning
Learning to compare: relation network for few shot learning
 
Knowledge distillation deeplab
Knowledge distillation deeplabKnowledge distillation deeplab
Knowledge distillation deeplab
 
Digit recognition using mnist database
Digit recognition using mnist databaseDigit recognition using mnist database
Digit recognition using mnist database
 
Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...
 
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-LearningMeta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
 
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
Gradient-Based Meta-Learning with Learned Layerwise Metric and SubspaceGradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
 
Meta learning with memory augmented neural network
Meta learning with memory augmented neural networkMeta learning with memory augmented neural network
Meta learning with memory augmented neural network
 
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Anal...
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Anal...Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Anal...
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Anal...
 
Optimization as a model for few shot learning
Optimization as a model for few shot learningOptimization as a model for few shot learning
Optimization as a model for few shot learning
 
Random Valued Impulse Noise Elimination using Neural Filter
Random Valued Impulse Noise Elimination using Neural FilterRandom Valued Impulse Noise Elimination using Neural Filter
Random Valued Impulse Noise Elimination using Neural Filter
 
A beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trendsA beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trends
 
Handwritten Digit Recognition(Convolutional Neural Network) PPT
Handwritten Digit Recognition(Convolutional Neural Network) PPTHandwritten Digit Recognition(Convolutional Neural Network) PPT
Handwritten Digit Recognition(Convolutional Neural Network) PPT
 
Comparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit RecognitionComparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit Recognition
 
Face Recognition Using Neural Networks
Face Recognition Using Neural NetworksFace Recognition Using Neural Networks
Face Recognition Using Neural Networks
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
 
Visualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networksVisualizaing and understanding convolutional networks
Visualizaing and understanding convolutional networks
 
Digit recognition
Digit recognitionDigit recognition
Digit recognition
 
Perceptron and Sigmoid Neurons
Perceptron and Sigmoid NeuronsPerceptron and Sigmoid Neurons
Perceptron and Sigmoid Neurons
 
Few shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learningFew shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learning
 
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Eff...
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Eff...Switch Transformers: Scaling to Trillion Parameter Models with Simple and Eff...
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Eff...
 

Similar to Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Uncertainty

New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
ijasuc
 
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
ijasuc
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Cemal Ardil
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 

Similar to Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Uncertainty (20)

Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...
 
Introduction Of Artificial neural network
Introduction Of Artificial neural networkIntroduction Of Artificial neural network
Introduction Of Artificial neural network
 
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
 
nonlinear_rmt.pdf
nonlinear_rmt.pdfnonlinear_rmt.pdf
nonlinear_rmt.pdf
 
Survey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique AlgorithmsSurvey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique Algorithms
 
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
 
IRJET- Prediction of Autism Spectrum Disorder using Deep Learning: A Survey
IRJET- Prediction of Autism Spectrum Disorder using Deep Learning: A SurveyIRJET- Prediction of Autism Spectrum Disorder using Deep Learning: A Survey
IRJET- Prediction of Autism Spectrum Disorder using Deep Learning: A Survey
 
D028018022
D028018022D028018022
D028018022
 
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
 
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
New Generation Routing Protocol over Mobile Ad Hoc Wireless Networks based on...
 
B42010712
B42010712B42010712
B42010712
 
Boosting auxiliary task guidance: a probabilistic approach
Boosting auxiliary task guidance: a probabilistic approachBoosting auxiliary task guidance: a probabilistic approach
Boosting auxiliary task guidance: a probabilistic approach
 
Neural network based numerical digits recognization using nnt in matlab
Neural network based numerical digits recognization using nnt in matlabNeural network based numerical digits recognization using nnt in matlab
Neural network based numerical digits recognization using nnt in matlab
 
Extracted pages from Neural Fuzzy Systems.docx
Extracted pages from Neural Fuzzy Systems.docxExtracted pages from Neural Fuzzy Systems.docx
Extracted pages from Neural Fuzzy Systems.docx
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
 
Short Term Load Forecasting Using Bootstrap Aggregating Based Ensemble Artifi...
Short Term Load Forecasting Using Bootstrap Aggregating Based Ensemble Artifi...Short Term Load Forecasting Using Bootstrap Aggregating Based Ensemble Artifi...
Short Term Load Forecasting Using Bootstrap Aggregating Based Ensemble Artifi...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
X trepan an extended trepan for
X trepan an extended trepan forX trepan an extended trepan for
X trepan an extended trepan for
 
C42021115
C42021115C42021115
C42021115
 
Ffnn
FfnnFfnn
Ffnn
 

More from MLAI2

Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual LearningSequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
MLAI2
 
Skill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement LearningSkill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement Learning
MLAI2
 
Edge Representation Learning with Hypergraphs
Edge Representation Learning with HypergraphsEdge Representation Learning with Hypergraphs
Edge Representation Learning with Hypergraphs
MLAI2
 
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
MLAI2
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive Learning
MLAI2
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
MLAI2
 
Accurate Learning of Graph Representations with Graph Multiset Pooling
Accurate Learning of Graph Representations with Graph Multiset PoolingAccurate Learning of Graph Representations with Graph Multiset Pooling
Accurate Learning of Graph Representations with Graph Multiset Pooling
MLAI2
 
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
MLAI2
 
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
MLAI2
 
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MLAI2
 
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive LearningAdversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
MLAI2
 
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
MLAI2
 

More from MLAI2 (20)

Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient DistillationOnline Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient Distillation
 
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual LearningSequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
 
Skill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement LearningSkill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement Learning
 
Edge Representation Learning with Hypergraphs
Edge Representation Learning with HypergraphsEdge Representation Learning with Hypergraphs
Edge Representation Learning with Hypergraphs
 
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
 
Mini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set EncodingMini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive Learning
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
 
Accurate Learning of Graph Representations with Graph Multiset Pooling
Accurate Learning of Graph Representations with Graph Multiset PoolingAccurate Learning of Graph Representations with Graph Multiset Pooling
Accurate Learning of Graph Representations with Graph Multiset Pooling
 
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
 
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
 
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
 
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive LearningAdversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
 
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Pr...
 
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...
 
Cost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention ProcessCost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention Process
 
Adversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability SuppressionAdversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability Suppression
 
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
 
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
 
Meta Dropout: Learning to Perturb Latent Features for Generalization
Meta Dropout: Learning to Perturb Latent Features for Generalization Meta Dropout: Learning to Perturb Latent Features for Generalization
Meta Dropout: Learning to Perturb Latent Features for Generalization
 

Recently uploaded

Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Peter Udo Diehl
 

Recently uploaded (20)

JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 

Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Uncertainty

  • 1. Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Uncertainty Jeffrey Willette¹, Hae Beom Lee¹, Juho Lee¹⁻², Sung Ju Hwang¹⁻² KAIST¹, AITRICS²
  • 2. Prototypical networks first extract features into a shared metric space, and then minimizes the distance between instances and their classwise centroids. Background - Prototypical Networks We utilize a prototypical network style backbone for meta learning in our work, which can utilize the inverse covariances to compute the Mahalanobis distance. [1] Protonet - Snell, J., et al. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30. Figure 1 from [1]
  • 3. Previous successful deterministic uncertainty [1, 2] generally require a post processing step which utilizes large training data. Problem - Meta Deterministic Uncertainty [1] SNGP - Liu, J., et al. (2020). Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information Processing Systems, 33, 7498-7512. [2] DDU - Mukhoti, J., et al. (2021). Deterministic Neural Networks with Inductive Biases Capture Epistemic and Aleatoric Uncertainty. arXiv preprint arXiv:2102.11582. [3] Protonet - Snell, J., et al. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30. This can adversely affect performance in the meta learning setting where: 1. Each task dataset may be small in size 2. There is no mechanism for learning shared knowledge between tasks. Protonet [3] ProtoDDU [2] ProtoSNGP [1] Proto Mahalanobis (Ours)
  • 4. Our method utilizes an attentive set encoder in conjunction with a smooth feature extractor to predict diagonal or diagonal plus low-rank covariance factors Method - Proto Mahalanobis [1] Set Transformer - Lee, J., et al. (2019, May). Set transformer: A framework for attention-based permutation-invariant neural networks. In International Conference on Machine Learning (pp. 3744-3753). PMLR. Encoding support sets as sets allows the encoder to meta learn shared knowledge over the task distribution.
  • 5. The softmax function is shift invariant, such that in the example below, z can be shifted by any constant and the entropy of the softmax will not change. Problem - Shift Invariant Softmax Intuitively, if the instance falls very far, from then centroid, there should be less confidence assigned to that instance.
  • 6. We solve this by using a logit-normal softmax distribution. The mu value is the log Gaussian density, and sigma is a log sum exponential of the energy. Method - Logit Normal Softmax with Scaled Energy Intuitively, the variance rises with the minimum energy magnitude. If the minimum energy is high, then the resulting mean in softmax space will be more uniform.
  • 7. We constructed a corrupted version of the Omniglot dataset based on common corruptions [1]. Experiments - Omniglot-C [1] Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261. As the level of corruption increases, Proto Mahalanobis models maintain better calibration
  • 8. We look forward to seeing you at our poster session. Thanks for watching! Conclusion