SlideShare a Scribd company logo
LIVING MACHINE®
ECOLOGICAL WASTEWATER TREATMENT
INTRODUCTION
• Living machine® is a
trademark and brand name
for a patented form of
ecological sewage treatment
designed to mimic the
cleansing functions of
wetlands
• The technology is based on
fixed-film ecology and the
ecological processes of a
natural tidal wetland, one of
nature’s most productive
ecosystems.
HISTORY
Dr. John Todd
• The initial development of the technology in the United States is
credited to Dr. John Todd, the internationally renowned ecological
designer, developed at the now-defunct New Alchemy Institute.
• The Living Machine system falls within the emerging discipline of
ecological engineering.
The world's most beautiful wastewater treatment
plant :Omega Center for Sustainable Living
Size V/S EnergyComparison
On-Site Wastewater treatment
1. Mineral diversity
2. Nutrient reservoirs
3. Steep gradients
4. High exchange rates
5. Periodic and random pulses
6. Cellular design and mesocosm structure
7. Subecosystems
8. Microbial communities
9. Photosynthetic bases
10. Animal diversity
11. Biological exchanges beyond the mesocosm
12. Mesocosm/macrocosm relationships
Twelve Precepts of Ecological Design
• Biological richness of the earth is a result of the complexity and
diversity of its mineral foundations.
• In mineral-rich zones, life can be extraordinarily abundant.
• In designing living machines, mineral diversity should include
igneous, sedimentary and metamorphic rocks.
• In living machines they use finely ground rock powders which are
quickly incorporated into biological systems.
• In one experiment they have digested 19000 m3 of bottom
sediments in a polluted 4 ha pond with the application of 7200 kg of
rock powders from glacial materials.
• They were used in combination with a floating living machine
through which 750 m3 of pond water circulated daily.
1. Mineral diversity
2. Nutrient reservoirs
•Mineral diversity provides the long-term foundation for nutrient
diversity.
•Microorganisms and plants require nutrients in an available form if
carbon is recalcitrant, or phosphorus in an insoluble state, or the
NPK ratios are out of balance, or trace elements are missing, the
ecosystems can become impoverished.
•Ex. If an appropriate inorganic carbon source is not available to the
nitrifying bacteria, the degradation of nitrogenous waste products is
reduced and toxic levels of ammonia can increase.
•The flora of waste purification systems can be completely altered by
trace mineral imbalances.
3. Steep Gradients
•It increase the diversity of internal processes and the multiplicity of
pathways within a living machine.
•Abrupt or rapid change, as measured in time or space, in the basic
underlying attributes or properties of the subsystems.
•For ex. a waste stream can benefit from passing through a series of
stages that have different oxygen regimes, redox potentials, pH,
temperature, humic and ligand or metal-related state.
•When the redox is low enough to cause hydrogen sulfide to form,
treats polluted lakes with forced aeration, or with the addition of
nitrates.
•The ecological designer should consider using diverse humic materials
in various subsystems to produce gradients.
•Iron compounds are key redox elements in regulating paddy soils and
health.
4. High exchange rates
• Maximize the surface area of living material to which a waste stream
is exposed.
• The challenge is to create surfaces and associated communities that
are not disrupted by strong currents and turbulence yet do not
impede flows.
• One approach is to grow floating aquatic plants on the water surface
and, with aeration, to create up wellings that pass large volumes
through the root mass and associated biological communities.
• Surface area of roots available to microorganisms is several order of
magnitude greater than that of manufactured substitute surfaces.
Ecological fluidized beds
• It is a technological development a step beyond
trickling filters or conventional biofilters used in
intensive closed system aquaculture.
• The medium, whether plastic or of mineral origin,
must have a specific gravity approaching 1 so that
the medium will be buoyant or capable of being
readily re-suspended.
• Medium should have rough-surfaced or porous.
• Ecological fluidized beds have rapid internal
recycling rates and still provide habitat for diverse
benthic animal communities. Such communities
can include snails and clams, attached algae,
aquatic plants, and higher plants.
• Nitrification as well as some denitrification can
occur within the same internal recycle loop due to
the abrupt oxygen gradients and the presence of
endogenous organic carbon in the beds
Pumic rock
5. Periodicandrandompulsedexchanges
• "Direct reaction of organisms to environmental change is most useful
if the environment is being altered in an unpredictable way... One can
say that the ecosystem has "learned" the changes in the
environment, so that before it takes place, the ecosystem is prepared
for it, as it happens with yearly rhythms. Thus the impact of the
change, and the new information are much less".
• "By creating a pulse, perhaps by controlling the water table or by
covering plants with black plastic an introducing new plantings to
accelerate the self design, a simpler system with a large net yield may
replace the complex one with many low yields".
• living technologies become robust enough in ecological terms to
survive the inevitable failure of some of the system's external
hardware and software.
6. Cellular Design is the Structural Model
multiple rows of "cells" connected together like beads on a string.
7. Minimumnumberof subecosystems
• All the ecologically engineered systems they describe
have at least two subecosystems.
• One is an algae growth chamber or algal scrubber that
operates under intense light and acts as a control
module.
• Three major components or subsystems.
• It consists of photosynthetically driven system that is
connected to an animal consumer component, which in
turn, is connected to a detritus/bacterial system
8. Microbial Communities
• That microbial communities are the foundation of
living machines
• bacteria species have highly specific nutritional and
environmental requirements
• Many important reactions are catalyzed only by
bacteria.
• In their work with the degradation of coal tar
derivatives (PAHs) they inoculated the treatment
systems with microbial communities from such
diverse locations as salt marshes, sewage plants and
rotting railroad ties
• Nucleated algae, water molds,slime molds, slime nets and protozoa are organisms with
exceptionally diverse life histories and nutritional habits.
• Protozoan's are important in removing coliform bacteria and pathogens from sewage. They
also serve to remove moribund bacteria and improve system efficiencies.
• Fungi are key decomposers in ecological systems. It is estimated that there are about
1,00,000 species, many capable of excreting powerful enzymes.
• They can be as efficient as heterotrophic bacteria in the removal of organic matter from
wastewater.
• Fungi tend to be more dominant in low ph and terrestrial soils than in aquatic environments.
• It may be that living technologies should incorporate soil-based acid sites linked to the main
process cycles into their design.
9. Photosynthetic foundations are essential
• Employing plant diversity can produce living technologies that
require less energy, aeration and chemical management.
• Root zones are superb micro-sites for bacterial communities.
• Enhanced nitrification in treatment cells covered with pennywort,
hydrocotyle umbellata, and water hyacinth, eichhornia crassipes, as
cornpared with comparable cells devoid of higher plants.
Pennywort, hydrocotyle umbellata Water hyacinth, eichhornia crassipes
•One species of mustard, Brassica juncea, has been found to remove metals from flowing
waste streams, accumulating up to 60% of its dry weight as lead.
•Metals can be recovered from harvested, dried and burned plants.
•Certain species of higher plants such as Mentha aquatica produce compounds or antibiotics
that can kill certain human pathogens.
•There is economic potential in plants from living machines.
• Flowers, medical herbs and trees used in rhizofiltration in a waste treatment facility can
subsequently be sold as byproducts.
mustard, Brassica juncea Mentha aquatica
10. Animal Diversity
• Find control species, meaning those organisms capable of
directing living processes towards such useful end points
including foods, fuels, waste recovery, and environmental
repair.
• The potential contributions of animals to living
technologies is remarkable.
•Snails are central to the functioning of living technologies.
•Pulmonate snails, including members of the physidae, lymnaeidae and planorbidae
families feed on the slime and sludge communities.
•They thrive in zones where predators are lacking.
•Snails play a dominant role in sludge reduction, tank maintenance and ecological
fluidized bed and marsh cleaning.
•Snails of the family planorbidae graze and control filamentous algae mats that
would otherwise clog and reduce the effectiveness of the diverse fluidized bed
communities. Some snails digest recalcitrant compounds.
planorbidae familyPhysidae family
•The salt marsh periwinkle, littorina irrorata,
produces enzymes that attack cellulose, pectin,
xylan, bean gum, major polysaccharide classes,
algae, fungi and animal tissues as well
•As 19 other enzymes interactive with
carbohydrates, lipids and peptides.
•Snails can function as alarms in the living machines
treating sewage.
•When a toxic load enters the providence sewage
treatment system for example the snails quickly
leave the water column and move onto the moist
lower leaves of the floating plants above the water.
•Observing this behavior the operator then
increases the rate of recycling clean water back
upstream into the first cells.
littorina irrorata
•Virtually all phyla of animals in aquatic environments feed through some filtration
mechanism.
•Bivalves, algivorous fish, zooplankton, protists, rotifers, insect larvae, sponges and
others are in this functional category.
•They remove particles of roughly 0.1 µm to 50 µm from the water column.
Freshwater sponges, SpongillaRotifers
•Bivalves are significant filterers.
•Mussels can retain suspended bacteria smaller than 1 µm.
•Efficiencies reach 100% for particles larger than 4 µm.
•Individual freshwater clams of the genera Unio and Anodonta filter up to 40 l/day of
water, extracting colloidal materials and other suspended organic and inorganic
particles.
•Removal rates are 99.5%.
•In one experiment clams were used in a Russian river to reduce total suspended
solid levels of 50 mg/1 to 0.2 mg/l
Duck mussel, Anodonta anatina
Unio pictorum
Freshwater clames
• Zooplankton can be employed to good effect in applied mesocosms.
• They feed upon particles 25 μm and smaller.
• Their nauplii or juvenile stages graze sub μm sized particles.
• Since they can exchange the volume of a natural body of water several times
per day it is difficult to overstate their importance in ecological engineering.
• We have found zooplankton throughout 3m deep ecological fluidized beds
comprised of 2 cm sized pumice rock in a prototype living technology that
upgrades secondary sewage effluent to reusable quality water in San
Francisco.
Zooplankton
• Insects play pivotal roles in living
technologies.
• Removed from predators in ecologi-cally
engineered systems, they proliferate and
impact significantly on the water.
• In their sewage treatment facilities
chironomid larvae attach themselves to
the walls of the aerated tanks, often in
great numbers. They developed mass
culture methods for chironomids fed on
dried sewage.
• Their objective was to culture live foods
for fish.
• Chironomid production levels were as
high as 400 g /𝑚2/day.
• Water quality improvement was an
additional benefit.
chironomid life cycle
facilities chironomid larvae Chironomid adult
• Vertebrates play key roles in the functioning of living technologies.
• fishes are the most numerous and diverse of the vertebrates.
• In diet, behavior, habitat and function fish are extraordinarily diverse.
• Filter and detritus feeding fish are common to all the continents.
• The filtration rate of algivorous fish may be five orders of magnitude greater than their
volume every day.
• In theory it is possible for the total volume of a fish pond to pass through algae-filtering fish
on a daily basis.
• There are edible fish species like the Central American Characin, Brycon guaternalensis, that
are capable of shred- ding and ingesting tough and woody materials.
• We use members of the South American armored catfish family Plecostomidae
to control sludge build up in waste treatment and
food culture living technologies.
Brycon guaternalensis
• Tilapia, Oreochromis spp., are used to harvest
small plants like duckweed and aquatic ferns.
• The grass carp, Ctenopharyngodon idellus,
recycles a variety of plant materials.
• In several living machines minnows, including
the golden shiner, Notemigonus crysoleucas,
and fathead minnow, Pimephales promelas,
feed on organic debris and rotting aquatic
vegetation.
• They breed among rafted higher plants grown
on the surface of the water. Excess minnows
are sold as bait fish.
Tilapia, Oreochromis spp
grass carp, Ctenopharyngodon idellus
Notemigonus crysoleucasfathead minnow, Pimephales promelas
11.Biological exchanges beyond
the mesocosm
• To optimize their self-design and organization capacities a living technology may
require gaseous, nutrient, mineral and biological linkages with larger natural
systems.
• For aquatic mesocosms select organisms from stream, pond and lake
environments.
• Its is valuable to return each season to these same environments for samples.
• Doing so will provide organisms adapted to seasonal differences.
• An interesting experiment would entail linking a living machine to a natural
ecosystem and exchange biological materials between the two.
• A sewage treatment facility for could be connected with a nearby marsh or pond.
• A small percentage of the flow could be directed to the natural system which, in
turn, could be linked back to the living technology.
• natural system would provide, on a periodic or a continuous basis, an inflow of
chemical and biological materials.
• The linkage would allow the natural water body to act as a refugia for the living
technology, protecting it from toxic upsets or unnatural loadings.
12. Microcosm, mesocosms, macrocosm relationships
• The most complete living system of which we are
aware, the earth, should be the overriding basis for
design.
• the planet having 70% of the interior space
occupied by water and the remainder terrestrial.
• Use renewable energy
• Ecological design will help create a symbiotic
partnership between humanity and nature.
Designapplied:
Ocean Arks International has a Solar Aquatic TM living
machine for the treatment of sewage.
Water samples at the Ocean Arks International
research facility in Providence, Rhode Island
• Flow: 61- 34 m3/d
• HRT: 2.5-4.5d
• Influent COD : 800-100 mg/l
Result & discussion
BOD Removal
COD Removal
Nitrogen
removal
Phosphorous Removal
• Since Providence is a city with a large electroplating industry metal uptake was a
concern in performance evaluation.
• Cadmium, chromium, copper, silver and zinc were an order of magnitude below the
standard levels.
• The data suggests that living technologies may be a cost effective new way of
protecting and improving water supplies.
Heavy metals removal
• Water hyacinths played only a minor role in metals uptake.
• No more than 1% of the metals appeared in the plant tissue
analysis
• One of our design objectives was the removal of most of the coliform bacteria
without the need for chlorination or other sterilization procedures.
• Except for two occasions coliform counts in the effluent were below swimming
water standards of 200 counts per 100 ml. The effluent was below 15 coliforms per
100 ml, the standard for food contamination, over 60% of the time.
Fecal coliform
removal
Raw, untreated sewage in the
Baima Canal before Restorer
installation having
bad odor & health problems.
The Baima Canal after
Restorer also functions as a
community walking bridge.
Urban Municipal Canal Restorer
Fuzhou, China
Case study
Flowering plants now line the walkway
Restorer
second generation living machine
Canclusion
 Produce beneficial byproducts, such as
• reuse-quality water,
• ornamental plants,
• Flowers,
• plant products—for building material, energy biomass, animal feed.
 Less energy and land requeriment w.r.t. conventional WWT.
 No chemical are required.
 It can handle flow variation & seasonal variation.
 It is sustainable.
 No production of sludge.
 The living machine significantly decreased the COD of sewage
inputs, as compared to zero-treatment model outputs.
 The living machine has the potential to effectively remove
phosphate, but optimum pH and redox conditions must be
maintained.
 Efficient nitrogen removal by nitrification and dinirtification.
REFERANCE
• John Todd *, Beth Josephson, The design of living
technologies for waste treatment, Ecological
Engineering 6 (1996) 109-136.
• John Todda,b∗, Erica J.G. Browna,b, Erik Wellsb,
Ecological design applied, Ecological Engineering 20
(2003) 421–440

More Related Content

What's hot

Water supply system
Water supply systemWater supply system
Water supply systemaishah
 
Waste water treatment
Waste water treatment Waste water treatment
Waste water treatment Vijaya Gupta
 
Landscape architecture & water management_ Mohan Subramaniam_2013
Landscape architecture & water management_ Mohan Subramaniam_2013Landscape architecture & water management_ Mohan Subramaniam_2013
Landscape architecture & water management_ Mohan Subramaniam_2013India Water Portal
 
japanese garden. landscape .pdf
japanese garden. landscape .pdfjapanese garden. landscape .pdf
japanese garden. landscape .pdfaqsamali1
 
California academy of Science: Case study
California academy of Science: Case studyCalifornia academy of Science: Case study
California academy of Science: Case studySatya Rachakonda
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterKaleem
 
PLUMBING YSTEM
PLUMBING YSTEMPLUMBING YSTEM
PLUMBING YSTEMmurali444
 
How to install plumbing system of new house
How to install plumbing system of new houseHow to install plumbing system of new house
How to install plumbing system of new housebuiltify
 
Water purification process
Water purification processWater purification process
Water purification processMOHIT DUREJA
 
The use of reed beds for the treatment of sewage and wastewater.
The use of reed beds for the treatment of sewage and wastewater.The use of reed beds for the treatment of sewage and wastewater.
The use of reed beds for the treatment of sewage and wastewater.Faisal Ahmed Bappi
 
UV for water treatment
UV for water treatmentUV for water treatment
UV for water treatmentLibin Song
 

What's hot (20)

Water supply system
Water supply systemWater supply system
Water supply system
 
Waste water treatment
Waste water treatment Waste water treatment
Waste water treatment
 
Landscape architecture & water management_ Mohan Subramaniam_2013
Landscape architecture & water management_ Mohan Subramaniam_2013Landscape architecture & water management_ Mohan Subramaniam_2013
Landscape architecture & water management_ Mohan Subramaniam_2013
 
State Museum Bhopal
State Museum BhopalState Museum Bhopal
State Museum Bhopal
 
japanese garden. landscape .pdf
japanese garden. landscape .pdfjapanese garden. landscape .pdf
japanese garden. landscape .pdf
 
Spanish garden
Spanish gardenSpanish garden
Spanish garden
 
Chinese garden
Chinese gardenChinese garden
Chinese garden
 
Water supply
Water supplyWater supply
Water supply
 
California academy of Science: Case study
California academy of Science: Case studyCalifornia academy of Science: Case study
California academy of Science: Case study
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For Wastewater
 
Constructed wetland
Constructed wetlandConstructed wetland
Constructed wetland
 
Sanitation systems
Sanitation systems Sanitation systems
Sanitation systems
 
Design HVAC System for Hospital
Design HVAC System for Hospital Design HVAC System for Hospital
Design HVAC System for Hospital
 
Transmission of water
Transmission of waterTransmission of water
Transmission of water
 
PLUMBING YSTEM
PLUMBING YSTEMPLUMBING YSTEM
PLUMBING YSTEM
 
Eco School Design- Ar.Suvarna lele
Eco School Design- Ar.Suvarna leleEco School Design- Ar.Suvarna lele
Eco School Design- Ar.Suvarna lele
 
How to install plumbing system of new house
How to install plumbing system of new houseHow to install plumbing system of new house
How to install plumbing system of new house
 
Water purification process
Water purification processWater purification process
Water purification process
 
The use of reed beds for the treatment of sewage and wastewater.
The use of reed beds for the treatment of sewage and wastewater.The use of reed beds for the treatment of sewage and wastewater.
The use of reed beds for the treatment of sewage and wastewater.
 
UV for water treatment
UV for water treatmentUV for water treatment
UV for water treatment
 

Similar to Living machine: The Ecological Wastewater Treatment

Living Machine for Bug Committee
Living Machine for Bug CommitteeLiving Machine for Bug Committee
Living Machine for Bug Committeebeckdr
 
waste water treatment through Algae and Cyanobacteria
 waste water treatment through Algae and Cyanobacteria waste water treatment through Algae and Cyanobacteria
waste water treatment through Algae and Cyanobacteriaiqraakbar8
 
Paulo Mellet's Productive ecological sewage water treatment systems
Paulo Mellet's Productive ecological sewage water treatment systems Paulo Mellet's Productive ecological sewage water treatment systems
Paulo Mellet's Productive ecological sewage water treatment systems Magnus Wolfe Murray
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitatsMicrobiology
 
AQUAPONICS PRESENTATION.pptx
AQUAPONICS PRESENTATION.pptxAQUAPONICS PRESENTATION.pptx
AQUAPONICS PRESENTATION.pptxAbeerDas1
 
Wastewater microorganisms
Wastewater microorganismsWastewater microorganisms
Wastewater microorganismsakash mahadev
 
ecosystem class 12 ppt investigatory project
ecosystem class 12 ppt investigatory projectecosystem class 12 ppt investigatory project
ecosystem class 12 ppt investigatory projectMayank524181
 
. Fungi in waste water treatment, s
.  Fungi in waste water treatment,  s.  Fungi in waste water treatment,  s
. Fungi in waste water treatment, sDr. sreeremya S
 
Environmental science
Environmental scienceEnvironmental science
Environmental sciencetcvishnu
 
Human effect in environment
Human effect in environmentHuman effect in environment
Human effect in environmentPramoda Raj
 
Bioremediation introduction
Bioremediation   introductionBioremediation   introduction
Bioremediation introductionEstherShoba1
 
biotechnological approaches for advanced water treatment technology
biotechnological approaches for advanced water treatment technologybiotechnological approaches for advanced water treatment technology
biotechnological approaches for advanced water treatment technologyAyshathul Femitha
 
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptxUmeshTimilsina1
 
Role of enzymes in biorediation
Role of enzymes in biorediationRole of enzymes in biorediation
Role of enzymes in biorediationpuff7
 
Secondary wastewater treatment
Secondary wastewater treatmentSecondary wastewater treatment
Secondary wastewater treatmentRishaw R T
 
CH-2 Activated sludge treatment for wastewater
CH-2 Activated sludge treatment for wastewaterCH-2 Activated sludge treatment for wastewater
CH-2 Activated sludge treatment for wastewaterTadviDevarshi
 

Similar to Living machine: The Ecological Wastewater Treatment (20)

Living Machine for Bug Committee
Living Machine for Bug CommitteeLiving Machine for Bug Committee
Living Machine for Bug Committee
 
waste water treatment through Algae and Cyanobacteria
 waste water treatment through Algae and Cyanobacteria waste water treatment through Algae and Cyanobacteria
waste water treatment through Algae and Cyanobacteria
 
Paulo Mellet's Productive ecological sewage water treatment systems
Paulo Mellet's Productive ecological sewage water treatment systems Paulo Mellet's Productive ecological sewage water treatment systems
Paulo Mellet's Productive ecological sewage water treatment systems
 
Bioenergy
BioenergyBioenergy
Bioenergy
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitats
 
AQUAPONICS PRESENTATION.pptx
AQUAPONICS PRESENTATION.pptxAQUAPONICS PRESENTATION.pptx
AQUAPONICS PRESENTATION.pptx
 
Wastewater microorganisms
Wastewater microorganismsWastewater microorganisms
Wastewater microorganisms
 
ecosystem class 12 ppt investigatory project
ecosystem class 12 ppt investigatory projectecosystem class 12 ppt investigatory project
ecosystem class 12 ppt investigatory project
 
. Fungi in waste water treatment, s
.  Fungi in waste water treatment,  s.  Fungi in waste water treatment,  s
. Fungi in waste water treatment, s
 
Environmental science
Environmental scienceEnvironmental science
Environmental science
 
Bioreactor
BioreactorBioreactor
Bioreactor
 
Human effect in environment
Human effect in environmentHuman effect in environment
Human effect in environment
 
Bioremediation introduction
Bioremediation   introductionBioremediation   introduction
Bioremediation introduction
 
biotechnological approaches for advanced water treatment technology
biotechnological approaches for advanced water treatment technologybiotechnological approaches for advanced water treatment technology
biotechnological approaches for advanced water treatment technology
 
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx
22. Hyydroponics, aeroponics, verticulture and riverbed farming.pptx
 
Role of enzymes in biorediation
Role of enzymes in biorediationRole of enzymes in biorediation
Role of enzymes in biorediation
 
Vermifiltration
VermifiltrationVermifiltration
Vermifiltration
 
Secondary wastewater treatment
Secondary wastewater treatmentSecondary wastewater treatment
Secondary wastewater treatment
 
Bioreactors ppt atun
Bioreactors ppt atunBioreactors ppt atun
Bioreactors ppt atun
 
CH-2 Activated sludge treatment for wastewater
CH-2 Activated sludge treatment for wastewaterCH-2 Activated sludge treatment for wastewater
CH-2 Activated sludge treatment for wastewater
 

Recently uploaded

Prevention and Control of Water Pollution
Prevention and Control of Water PollutionPrevention and Control of Water Pollution
Prevention and Control of Water Pollutionlinciy03
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shoplaozhuseo02
 
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESDESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESSumayyaSayeeda
 
Environmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. SinghEnvironmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. SinghAhmadKhan917612
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理exehay
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptxRaniJaiswal16
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationshipSANTU GUCHHAIT
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyRobin Grant
 
DRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherDRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherRobin Grant
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Open Access Research Paper
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单tyvaq
 
Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024punit537210
 
Environmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxEnvironmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxAnshu Bhoosal
 
The State Board for Water Pollution - The Water Act 1974 .pptx
The State Board for  Water Pollution - The Water Act 1974  .pptxThe State Board for  Water Pollution - The Water Act 1974  .pptx
The State Board for Water Pollution - The Water Act 1974 .pptxlinciy03
 
Navigating the complex landscape of AI governance
Navigating the complex landscape of AI governanceNavigating the complex landscape of AI governance
Navigating the complex landscape of AI governancePiermenotti Mauro
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...ipcc-media
 
Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxsidjena70
 
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单yegohah
 

Recently uploaded (20)

Prevention and Control of Water Pollution
Prevention and Control of Water PollutionPrevention and Control of Water Pollution
Prevention and Control of Water Pollution
 
A systematic review of the implementation of Industry 4.0 in human resources
A systematic review of the implementation of Industry 4.0 in human resourcesA systematic review of the implementation of Industry 4.0 in human resources
A systematic review of the implementation of Industry 4.0 in human resources
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shop
 
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESDESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
 
Environmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. SinghEnvironmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. Singh
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptx
 
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdfPresentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationship
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
 
DRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherDRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving together
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单
 
Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024
 
Environmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxEnvironmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptx
 
The State Board for Water Pollution - The Water Act 1974 .pptx
The State Board for  Water Pollution - The Water Act 1974  .pptxThe State Board for  Water Pollution - The Water Act 1974  .pptx
The State Board for Water Pollution - The Water Act 1974 .pptx
 
Navigating the complex landscape of AI governance
Navigating the complex landscape of AI governanceNavigating the complex landscape of AI governance
Navigating the complex landscape of AI governance
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
 
Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptx
 
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
 

Living machine: The Ecological Wastewater Treatment

  • 2. INTRODUCTION • Living machine® is a trademark and brand name for a patented form of ecological sewage treatment designed to mimic the cleansing functions of wetlands • The technology is based on fixed-film ecology and the ecological processes of a natural tidal wetland, one of nature’s most productive ecosystems.
  • 3. HISTORY Dr. John Todd • The initial development of the technology in the United States is credited to Dr. John Todd, the internationally renowned ecological designer, developed at the now-defunct New Alchemy Institute. • The Living Machine system falls within the emerging discipline of ecological engineering.
  • 4. The world's most beautiful wastewater treatment plant :Omega Center for Sustainable Living
  • 5. Size V/S EnergyComparison On-Site Wastewater treatment
  • 6. 1. Mineral diversity 2. Nutrient reservoirs 3. Steep gradients 4. High exchange rates 5. Periodic and random pulses 6. Cellular design and mesocosm structure 7. Subecosystems 8. Microbial communities 9. Photosynthetic bases 10. Animal diversity 11. Biological exchanges beyond the mesocosm 12. Mesocosm/macrocosm relationships Twelve Precepts of Ecological Design
  • 7. • Biological richness of the earth is a result of the complexity and diversity of its mineral foundations. • In mineral-rich zones, life can be extraordinarily abundant. • In designing living machines, mineral diversity should include igneous, sedimentary and metamorphic rocks. • In living machines they use finely ground rock powders which are quickly incorporated into biological systems. • In one experiment they have digested 19000 m3 of bottom sediments in a polluted 4 ha pond with the application of 7200 kg of rock powders from glacial materials. • They were used in combination with a floating living machine through which 750 m3 of pond water circulated daily. 1. Mineral diversity
  • 8. 2. Nutrient reservoirs •Mineral diversity provides the long-term foundation for nutrient diversity. •Microorganisms and plants require nutrients in an available form if carbon is recalcitrant, or phosphorus in an insoluble state, or the NPK ratios are out of balance, or trace elements are missing, the ecosystems can become impoverished. •Ex. If an appropriate inorganic carbon source is not available to the nitrifying bacteria, the degradation of nitrogenous waste products is reduced and toxic levels of ammonia can increase. •The flora of waste purification systems can be completely altered by trace mineral imbalances.
  • 9. 3. Steep Gradients •It increase the diversity of internal processes and the multiplicity of pathways within a living machine. •Abrupt or rapid change, as measured in time or space, in the basic underlying attributes or properties of the subsystems. •For ex. a waste stream can benefit from passing through a series of stages that have different oxygen regimes, redox potentials, pH, temperature, humic and ligand or metal-related state. •When the redox is low enough to cause hydrogen sulfide to form, treats polluted lakes with forced aeration, or with the addition of nitrates. •The ecological designer should consider using diverse humic materials in various subsystems to produce gradients. •Iron compounds are key redox elements in regulating paddy soils and health.
  • 10. 4. High exchange rates • Maximize the surface area of living material to which a waste stream is exposed. • The challenge is to create surfaces and associated communities that are not disrupted by strong currents and turbulence yet do not impede flows. • One approach is to grow floating aquatic plants on the water surface and, with aeration, to create up wellings that pass large volumes through the root mass and associated biological communities. • Surface area of roots available to microorganisms is several order of magnitude greater than that of manufactured substitute surfaces.
  • 11. Ecological fluidized beds • It is a technological development a step beyond trickling filters or conventional biofilters used in intensive closed system aquaculture. • The medium, whether plastic or of mineral origin, must have a specific gravity approaching 1 so that the medium will be buoyant or capable of being readily re-suspended. • Medium should have rough-surfaced or porous. • Ecological fluidized beds have rapid internal recycling rates and still provide habitat for diverse benthic animal communities. Such communities can include snails and clams, attached algae, aquatic plants, and higher plants. • Nitrification as well as some denitrification can occur within the same internal recycle loop due to the abrupt oxygen gradients and the presence of endogenous organic carbon in the beds Pumic rock
  • 12. 5. Periodicandrandompulsedexchanges • "Direct reaction of organisms to environmental change is most useful if the environment is being altered in an unpredictable way... One can say that the ecosystem has "learned" the changes in the environment, so that before it takes place, the ecosystem is prepared for it, as it happens with yearly rhythms. Thus the impact of the change, and the new information are much less". • "By creating a pulse, perhaps by controlling the water table or by covering plants with black plastic an introducing new plantings to accelerate the self design, a simpler system with a large net yield may replace the complex one with many low yields". • living technologies become robust enough in ecological terms to survive the inevitable failure of some of the system's external hardware and software.
  • 13. 6. Cellular Design is the Structural Model
  • 14. multiple rows of "cells" connected together like beads on a string.
  • 15. 7. Minimumnumberof subecosystems • All the ecologically engineered systems they describe have at least two subecosystems. • One is an algae growth chamber or algal scrubber that operates under intense light and acts as a control module. • Three major components or subsystems. • It consists of photosynthetically driven system that is connected to an animal consumer component, which in turn, is connected to a detritus/bacterial system
  • 16. 8. Microbial Communities • That microbial communities are the foundation of living machines • bacteria species have highly specific nutritional and environmental requirements • Many important reactions are catalyzed only by bacteria. • In their work with the degradation of coal tar derivatives (PAHs) they inoculated the treatment systems with microbial communities from such diverse locations as salt marshes, sewage plants and rotting railroad ties
  • 17. • Nucleated algae, water molds,slime molds, slime nets and protozoa are organisms with exceptionally diverse life histories and nutritional habits. • Protozoan's are important in removing coliform bacteria and pathogens from sewage. They also serve to remove moribund bacteria and improve system efficiencies. • Fungi are key decomposers in ecological systems. It is estimated that there are about 1,00,000 species, many capable of excreting powerful enzymes. • They can be as efficient as heterotrophic bacteria in the removal of organic matter from wastewater. • Fungi tend to be more dominant in low ph and terrestrial soils than in aquatic environments. • It may be that living technologies should incorporate soil-based acid sites linked to the main process cycles into their design.
  • 18. 9. Photosynthetic foundations are essential • Employing plant diversity can produce living technologies that require less energy, aeration and chemical management. • Root zones are superb micro-sites for bacterial communities. • Enhanced nitrification in treatment cells covered with pennywort, hydrocotyle umbellata, and water hyacinth, eichhornia crassipes, as cornpared with comparable cells devoid of higher plants. Pennywort, hydrocotyle umbellata Water hyacinth, eichhornia crassipes
  • 19. •One species of mustard, Brassica juncea, has been found to remove metals from flowing waste streams, accumulating up to 60% of its dry weight as lead. •Metals can be recovered from harvested, dried and burned plants. •Certain species of higher plants such as Mentha aquatica produce compounds or antibiotics that can kill certain human pathogens. •There is economic potential in plants from living machines. • Flowers, medical herbs and trees used in rhizofiltration in a waste treatment facility can subsequently be sold as byproducts. mustard, Brassica juncea Mentha aquatica
  • 20. 10. Animal Diversity • Find control species, meaning those organisms capable of directing living processes towards such useful end points including foods, fuels, waste recovery, and environmental repair. • The potential contributions of animals to living technologies is remarkable.
  • 21. •Snails are central to the functioning of living technologies. •Pulmonate snails, including members of the physidae, lymnaeidae and planorbidae families feed on the slime and sludge communities. •They thrive in zones where predators are lacking. •Snails play a dominant role in sludge reduction, tank maintenance and ecological fluidized bed and marsh cleaning. •Snails of the family planorbidae graze and control filamentous algae mats that would otherwise clog and reduce the effectiveness of the diverse fluidized bed communities. Some snails digest recalcitrant compounds. planorbidae familyPhysidae family
  • 22. •The salt marsh periwinkle, littorina irrorata, produces enzymes that attack cellulose, pectin, xylan, bean gum, major polysaccharide classes, algae, fungi and animal tissues as well •As 19 other enzymes interactive with carbohydrates, lipids and peptides. •Snails can function as alarms in the living machines treating sewage. •When a toxic load enters the providence sewage treatment system for example the snails quickly leave the water column and move onto the moist lower leaves of the floating plants above the water. •Observing this behavior the operator then increases the rate of recycling clean water back upstream into the first cells. littorina irrorata
  • 23. •Virtually all phyla of animals in aquatic environments feed through some filtration mechanism. •Bivalves, algivorous fish, zooplankton, protists, rotifers, insect larvae, sponges and others are in this functional category. •They remove particles of roughly 0.1 µm to 50 µm from the water column. Freshwater sponges, SpongillaRotifers
  • 24. •Bivalves are significant filterers. •Mussels can retain suspended bacteria smaller than 1 µm. •Efficiencies reach 100% for particles larger than 4 µm. •Individual freshwater clams of the genera Unio and Anodonta filter up to 40 l/day of water, extracting colloidal materials and other suspended organic and inorganic particles. •Removal rates are 99.5%. •In one experiment clams were used in a Russian river to reduce total suspended solid levels of 50 mg/1 to 0.2 mg/l Duck mussel, Anodonta anatina Unio pictorum Freshwater clames
  • 25. • Zooplankton can be employed to good effect in applied mesocosms. • They feed upon particles 25 μm and smaller. • Their nauplii or juvenile stages graze sub μm sized particles. • Since they can exchange the volume of a natural body of water several times per day it is difficult to overstate their importance in ecological engineering. • We have found zooplankton throughout 3m deep ecological fluidized beds comprised of 2 cm sized pumice rock in a prototype living technology that upgrades secondary sewage effluent to reusable quality water in San Francisco. Zooplankton
  • 26. • Insects play pivotal roles in living technologies. • Removed from predators in ecologi-cally engineered systems, they proliferate and impact significantly on the water. • In their sewage treatment facilities chironomid larvae attach themselves to the walls of the aerated tanks, often in great numbers. They developed mass culture methods for chironomids fed on dried sewage. • Their objective was to culture live foods for fish. • Chironomid production levels were as high as 400 g /𝑚2/day. • Water quality improvement was an additional benefit. chironomid life cycle facilities chironomid larvae Chironomid adult
  • 27. • Vertebrates play key roles in the functioning of living technologies. • fishes are the most numerous and diverse of the vertebrates. • In diet, behavior, habitat and function fish are extraordinarily diverse. • Filter and detritus feeding fish are common to all the continents. • The filtration rate of algivorous fish may be five orders of magnitude greater than their volume every day. • In theory it is possible for the total volume of a fish pond to pass through algae-filtering fish on a daily basis. • There are edible fish species like the Central American Characin, Brycon guaternalensis, that are capable of shred- ding and ingesting tough and woody materials. • We use members of the South American armored catfish family Plecostomidae to control sludge build up in waste treatment and food culture living technologies. Brycon guaternalensis
  • 28. • Tilapia, Oreochromis spp., are used to harvest small plants like duckweed and aquatic ferns. • The grass carp, Ctenopharyngodon idellus, recycles a variety of plant materials. • In several living machines minnows, including the golden shiner, Notemigonus crysoleucas, and fathead minnow, Pimephales promelas, feed on organic debris and rotting aquatic vegetation. • They breed among rafted higher plants grown on the surface of the water. Excess minnows are sold as bait fish. Tilapia, Oreochromis spp grass carp, Ctenopharyngodon idellus Notemigonus crysoleucasfathead minnow, Pimephales promelas
  • 29. 11.Biological exchanges beyond the mesocosm • To optimize their self-design and organization capacities a living technology may require gaseous, nutrient, mineral and biological linkages with larger natural systems. • For aquatic mesocosms select organisms from stream, pond and lake environments. • Its is valuable to return each season to these same environments for samples. • Doing so will provide organisms adapted to seasonal differences. • An interesting experiment would entail linking a living machine to a natural ecosystem and exchange biological materials between the two. • A sewage treatment facility for could be connected with a nearby marsh or pond. • A small percentage of the flow could be directed to the natural system which, in turn, could be linked back to the living technology. • natural system would provide, on a periodic or a continuous basis, an inflow of chemical and biological materials. • The linkage would allow the natural water body to act as a refugia for the living technology, protecting it from toxic upsets or unnatural loadings.
  • 30. 12. Microcosm, mesocosms, macrocosm relationships • The most complete living system of which we are aware, the earth, should be the overriding basis for design. • the planet having 70% of the interior space occupied by water and the remainder terrestrial. • Use renewable energy • Ecological design will help create a symbiotic partnership between humanity and nature.
  • 31. Designapplied: Ocean Arks International has a Solar Aquatic TM living machine for the treatment of sewage.
  • 32. Water samples at the Ocean Arks International research facility in Providence, Rhode Island • Flow: 61- 34 m3/d • HRT: 2.5-4.5d • Influent COD : 800-100 mg/l
  • 36.
  • 38.
  • 39. • Since Providence is a city with a large electroplating industry metal uptake was a concern in performance evaluation. • Cadmium, chromium, copper, silver and zinc were an order of magnitude below the standard levels. • The data suggests that living technologies may be a cost effective new way of protecting and improving water supplies. Heavy metals removal
  • 40.
  • 41. • Water hyacinths played only a minor role in metals uptake. • No more than 1% of the metals appeared in the plant tissue analysis
  • 42. • One of our design objectives was the removal of most of the coliform bacteria without the need for chlorination or other sterilization procedures. • Except for two occasions coliform counts in the effluent were below swimming water standards of 200 counts per 100 ml. The effluent was below 15 coliforms per 100 ml, the standard for food contamination, over 60% of the time. Fecal coliform removal
  • 43. Raw, untreated sewage in the Baima Canal before Restorer installation having bad odor & health problems. The Baima Canal after Restorer also functions as a community walking bridge. Urban Municipal Canal Restorer Fuzhou, China Case study Flowering plants now line the walkway Restorer
  • 45. Canclusion  Produce beneficial byproducts, such as • reuse-quality water, • ornamental plants, • Flowers, • plant products—for building material, energy biomass, animal feed.  Less energy and land requeriment w.r.t. conventional WWT.  No chemical are required.  It can handle flow variation & seasonal variation.  It is sustainable.  No production of sludge.  The living machine significantly decreased the COD of sewage inputs, as compared to zero-treatment model outputs.  The living machine has the potential to effectively remove phosphate, but optimum pH and redox conditions must be maintained.  Efficient nitrogen removal by nitrification and dinirtification.
  • 46. REFERANCE • John Todd *, Beth Josephson, The design of living technologies for waste treatment, Ecological Engineering 6 (1996) 109-136. • John Todda,b∗, Erica J.G. Browna,b, Erik Wellsb, Ecological design applied, Ecological Engineering 20 (2003) 421–440

Editor's Notes

  1. Can range from three-cell systems to a 20-cell system
  2. Avg. HRT: 4.5 days applies when tanks with translus- cent light transmitting sides are used for waste treatment The first treatment room consists of four rows of six translucent tanks plumbed in series. The tanks are rich with microbial and algal communities, and water hyacinths, Eichornia crassipes, provide the dominant surface cover. The first five tanks in each line are mixed and aerated with fine bubble diffusers. The sixth tank is without aeration and functions to settle the solids. Solids are recycled to the first tanks in the series and periodically returned to the adjacent main sewage facility. The supernatant from these tanks flows into a set of engineered "tidal" marshes in the second room. Each treatment line flows into two gravel bed marsh trays. These marshes are planted with wetland species The flow is controlled to fill one marsh for 12 h and then switched to the other marsh, allowing the first to drain and dry. This simulates the wet/dry cycles of a tidal marsh. From the marshes the flow is pumped back up into another series of six translucent tanks. These tanks are stocked with a diverse community of racked and floating tropical and temperate plants. The biofilter is filled with a recycled plastic floating media installed in translucent cylindrical tank. The final marsh is a galvanized steel stock trough filled with gravel and planted to a variety of tropical and temperate wetland species