Terry Taewoong Um (terry.t.um@gmail.com)
University of Waterloo
Department of Electrical & Computer Engineering
Terry Taewoong Um
LIE GROUP FORMULATION
FOR ROBOT MECHANICS
1
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
1. Motion and Lie Group
2. Kinematics and Dynamics
3. Summary + Q&A
2
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
3
1. Motion and Lie Group
Terry Taewoong Um (terry.t.um@gmail.com)
MOTIVATION
4
• Coordinate-free approach
http://arxiv.org/pdf/1404.1100.pdf
- Which coordinate should we choose?
- Let’s remove the dependency on the choice of reference frames!
→ Use the right representation for motion → Lie group & Lie algebra
[Newton-Euler formulation]
- Geodesic : a shortest path b/w two points
- Euler angle-based trajectory is not a geodesic!
Terry Taewoong Um (terry.t.um@gmail.com)
PRELIMINARY
5
• Differential Manifolds
Implicit representation
Explicit representation
Local
coordinate
n-dim manifold is a set that locally resembles n-dim Euclidean space
- Each point of an n-dimensional manifold has a neighbourhood that is
homeomorphic to the Euclidean space of dimension n.
Local coordinate : vector space! Riemannian metric
Minimal geodesics
distortion
Terry Taewoong Um (terry.t.um@gmail.com)
6
- General Linear Group, GL(n)
: 𝑛 × 𝑛 invertible matrices with matrix multiplication
PRELIMINARY
- Special Linear Group, SL(n) : GL(n) with determinant 1
- Orthogonal Group, O(n) : 𝑄 ∈ 𝐺𝐿 𝑛 𝑄 𝑇
𝑄 = 𝑄𝑄 𝑇
= 𝐼}
• Lie Group : a group that is also a differentiable manifold
e.g.)
• Lie Algebra : the tangent space at the identity of Lie group
a vector space with Lie bracket operation [x, y]
- Lie bracket
Non-commutative
Lie group
Lie algebra
Terry Taewoong Um (terry.t.um@gmail.com)
7
SO(3) : ROTATION
• Special Orthogonal group, SO(3)
𝑅 𝑇
𝑅 = 𝑅𝑅 𝑇
= 𝐼det 𝑅 = 1
• Lie algebra of SO(3) : so(3)
𝑅 𝑎𝑏 = [𝑥 𝑎 𝑦𝑎 𝑧 𝑎]
𝑥
𝑦
𝑧
𝑥 of {b} w.r.t. {a}
- You can express SO(3) with the rotation axis & angle!
http://goo.gl/uqilDV
so(3) : skew-symm. matrices
• Exponential mapping
exp ∶ 𝑠𝑜 3 → 𝑆𝑂(3) exp ∶ 𝑠𝑒 3 → 𝑆𝐸(3)
exp ∶ 𝐿𝑖𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 → 𝐿𝑖𝑒 𝑔𝑟𝑜𝑢𝑝
𝑅 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎
Terry Taewoong Um (terry.t.um@gmail.com)
8
SO(3) : ROTATION
• Exponential mapping (Cont.)
e.g.) 𝑅𝑜𝑡 𝑧, 𝜃 = 𝐼 + 𝑠𝑖𝑛𝜃
0 −1 0
1 0 0
0 0 0
+ (1 − 𝑐𝑜𝑠𝜃)
0 −1 0
1 0 0
0 0 0
0 −1 0
1 0 0
0 0 0
=
1 0 0
0 1 0
0 0 1
+
0 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 0 0
0 0 0
+ (1 − 𝑐𝑜𝑠𝜃)
−1 0 0
0 −1 0
0 0 0
=
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1
• Logarithm mapping log : 𝐿𝑖𝑒 𝑔𝑟𝑜𝑢𝑝 → 𝐿𝑖𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎
Terry Taewoong Um (terry.t.um@gmail.com)
9
SE(3) : ROTATION + TRANSLATION
• Special Euclidean group, SE(3)
𝑋 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎
• Exp & Log
• se(3)
𝑣
{𝑏}
{𝑎}
Terry Taewoong Um (terry.t.um@gmail.com)
10
ADJOINT MAPPING
• Lie Algebra : the tangent space at the identity of Lie group
a vector space with Lie bracket operation [x, y]
• Small adjoint mapping
• Large adjoint mapping
cross product
For so(3),
For se(3),
For so(3),
For se(3),
coordinate change
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
11
2. Kinematics & Dynamics
Terry Taewoong Um (terry.t.um@gmail.com)
12
FORWARD KINEMATICS
• Product of Exponential (POE) Formula
- D-H Convention
- POE formula from robot configuration
h = pitch (m/𝑟𝑎𝑑) (0 for rev. joint)
q = a point on the axis
variableconstant
c.f.)
A seen from {0}
𝑅 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎
𝑇𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎
𝐴𝑑 𝑇 𝑎𝑏
[𝐴] 𝑏= [𝐴] 𝑎
Coord. change
SE(3) from {0} to {n} at home position
Terry Taewoong Um (terry.t.um@gmail.com)
13
FORWARD KINEMATICS
Terry Taewoong Um (terry.t.um@gmail.com)
14
DIFFERENTIAL KINEMATICS
• Angular velocity by rotational motion
from space(fixed frame) to body
c.f.)
body velocity
𝝎/𝒗 : angular/linear velocity of the {body} attached to
the body relative to the {space} but expressed @{body}
• Spatial velocity by screw motion
• Jacobian
From
𝜃 = 𝐽𝑠 𝜃
Terry Taewoong Um (terry.t.um@gmail.com)
15
PRELIMINARY FOR DYNAMICS
• Coordinate transformation rules
for velocity-like se(3) for force-like se(3)
generalized momentum
dual map
c
• Time derivatives
: :
c.f.)
whole
derivative
component-wise
derivative
𝑉 is required
Terry Taewoong Um (terry.t.um@gmail.com)
16
INVERSE DYNAMICS
• 𝑽 :
• 𝑽 : c.f.)
• 𝑭𝒐𝒓𝒄𝒆 ∶
propagated forces
Terry Taewoong Um (terry.t.um@gmail.com)
17
INVERSE DYNAMICS
Terry Taewoong Um (terry.t.um@gmail.com)
CONTENTS
18
3. Summary + Q&A
Terry Taewoong Um (terry.t.um@gmail.com)
19
SUMMARY
• Lie Group : a group that is also a differentiable manifold
• Lie Algebra : the tangent space at the identity of Lie group
• SO(3), so(3), SE(3), se(3), exp, log, Ad, ad
coord. trans.
for se(3)
cross product
for se(3)
• Forward Kinematics
• Lie algebra is vector space! (easier to apply pdf)
• Inverse Dynamics
• Differential Kinematics
𝜃 = 𝐽𝑠 𝜃
Terry Taewoong Um (terry.t.um@gmail.com)
20
Q & A
• What are the benefits/drawbacks of using Lie group for rigid
body dynamics?
• What are the key differences between Lie groups and other 6D
formulations (e.g., Featherstone's spatial notation)?
[Featherstone's cross operation]
skew-symmetric
Lie bracket
Terry Taewoong Um (terry.t.um@gmail.com)
21
Q & A
[From Featherstone's book]
Terry Taewoong Um (terry.t.um@gmail.com)
22
Q & A
• Can you do a high-level overview of the mathematical details of
the Wang’s paper (for those of us who got lost in the math)?
? - Convolution for Lie group (Chirikjian, 1998)
- Error propagation – 1st order (Wang and Chirikjian, 2006)
- Error propagation – 2nd order (Wang and Chirikjian, 2008)
Terry Taewoong Um (terry.t.um@gmail.com)
23
Thank you

Lie Group Formulation for Robot Mechanics

  • 1.
    Terry Taewoong Um(terry.t.um@gmail.com) University of Waterloo Department of Electrical & Computer Engineering Terry Taewoong Um LIE GROUP FORMULATION FOR ROBOT MECHANICS 1
  • 2.
    Terry Taewoong Um(terry.t.um@gmail.com) CONTENTS 1. Motion and Lie Group 2. Kinematics and Dynamics 3. Summary + Q&A 2
  • 3.
    Terry Taewoong Um(terry.t.um@gmail.com) CONTENTS 3 1. Motion and Lie Group
  • 4.
    Terry Taewoong Um(terry.t.um@gmail.com) MOTIVATION 4 • Coordinate-free approach http://arxiv.org/pdf/1404.1100.pdf - Which coordinate should we choose? - Let’s remove the dependency on the choice of reference frames! → Use the right representation for motion → Lie group & Lie algebra [Newton-Euler formulation] - Geodesic : a shortest path b/w two points - Euler angle-based trajectory is not a geodesic!
  • 5.
    Terry Taewoong Um(terry.t.um@gmail.com) PRELIMINARY 5 • Differential Manifolds Implicit representation Explicit representation Local coordinate n-dim manifold is a set that locally resembles n-dim Euclidean space - Each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. Local coordinate : vector space! Riemannian metric Minimal geodesics distortion
  • 6.
    Terry Taewoong Um(terry.t.um@gmail.com) 6 - General Linear Group, GL(n) : 𝑛 × 𝑛 invertible matrices with matrix multiplication PRELIMINARY - Special Linear Group, SL(n) : GL(n) with determinant 1 - Orthogonal Group, O(n) : 𝑄 ∈ 𝐺𝐿 𝑛 𝑄 𝑇 𝑄 = 𝑄𝑄 𝑇 = 𝐼} • Lie Group : a group that is also a differentiable manifold e.g.) • Lie Algebra : the tangent space at the identity of Lie group a vector space with Lie bracket operation [x, y] - Lie bracket Non-commutative Lie group Lie algebra
  • 7.
    Terry Taewoong Um(terry.t.um@gmail.com) 7 SO(3) : ROTATION • Special Orthogonal group, SO(3) 𝑅 𝑇 𝑅 = 𝑅𝑅 𝑇 = 𝐼det 𝑅 = 1 • Lie algebra of SO(3) : so(3) 𝑅 𝑎𝑏 = [𝑥 𝑎 𝑦𝑎 𝑧 𝑎] 𝑥 𝑦 𝑧 𝑥 of {b} w.r.t. {a} - You can express SO(3) with the rotation axis & angle! http://goo.gl/uqilDV so(3) : skew-symm. matrices • Exponential mapping exp ∶ 𝑠𝑜 3 → 𝑆𝑂(3) exp ∶ 𝑠𝑒 3 → 𝑆𝐸(3) exp ∶ 𝐿𝑖𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 → 𝐿𝑖𝑒 𝑔𝑟𝑜𝑢𝑝 𝑅 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎
  • 8.
    Terry Taewoong Um(terry.t.um@gmail.com) 8 SO(3) : ROTATION • Exponential mapping (Cont.) e.g.) 𝑅𝑜𝑡 𝑧, 𝜃 = 𝐼 + 𝑠𝑖𝑛𝜃 0 −1 0 1 0 0 0 0 0 + (1 − 𝑐𝑜𝑠𝜃) 0 −1 0 1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 = 1 0 0 0 1 0 0 0 1 + 0 −𝑠𝑖𝑛𝜃 0 𝑠𝑖𝑛𝜃 0 0 0 0 0 + (1 − 𝑐𝑜𝑠𝜃) −1 0 0 0 −1 0 0 0 0 = 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0 0 1 • Logarithm mapping log : 𝐿𝑖𝑒 𝑔𝑟𝑜𝑢𝑝 → 𝐿𝑖𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎
  • 9.
    Terry Taewoong Um(terry.t.um@gmail.com) 9 SE(3) : ROTATION + TRANSLATION • Special Euclidean group, SE(3) 𝑋 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎 • Exp & Log • se(3) 𝑣 {𝑏} {𝑎}
  • 10.
    Terry Taewoong Um(terry.t.um@gmail.com) 10 ADJOINT MAPPING • Lie Algebra : the tangent space at the identity of Lie group a vector space with Lie bracket operation [x, y] • Small adjoint mapping • Large adjoint mapping cross product For so(3), For se(3), For so(3), For se(3), coordinate change
  • 11.
    Terry Taewoong Um(terry.t.um@gmail.com) CONTENTS 11 2. Kinematics & Dynamics
  • 12.
    Terry Taewoong Um(terry.t.um@gmail.com) 12 FORWARD KINEMATICS • Product of Exponential (POE) Formula - D-H Convention - POE formula from robot configuration h = pitch (m/𝑟𝑎𝑑) (0 for rev. joint) q = a point on the axis variableconstant c.f.) A seen from {0} 𝑅 𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎 𝑇𝑎𝑏 𝑣 𝑏 = 𝑣 𝑎 𝐴𝑑 𝑇 𝑎𝑏 [𝐴] 𝑏= [𝐴] 𝑎 Coord. change SE(3) from {0} to {n} at home position
  • 13.
    Terry Taewoong Um(terry.t.um@gmail.com) 13 FORWARD KINEMATICS
  • 14.
    Terry Taewoong Um(terry.t.um@gmail.com) 14 DIFFERENTIAL KINEMATICS • Angular velocity by rotational motion from space(fixed frame) to body c.f.) body velocity 𝝎/𝒗 : angular/linear velocity of the {body} attached to the body relative to the {space} but expressed @{body} • Spatial velocity by screw motion • Jacobian From 𝜃 = 𝐽𝑠 𝜃
  • 15.
    Terry Taewoong Um(terry.t.um@gmail.com) 15 PRELIMINARY FOR DYNAMICS • Coordinate transformation rules for velocity-like se(3) for force-like se(3) generalized momentum dual map c • Time derivatives : : c.f.) whole derivative component-wise derivative 𝑉 is required
  • 16.
    Terry Taewoong Um(terry.t.um@gmail.com) 16 INVERSE DYNAMICS • 𝑽 : • 𝑽 : c.f.) • 𝑭𝒐𝒓𝒄𝒆 ∶ propagated forces
  • 17.
    Terry Taewoong Um(terry.t.um@gmail.com) 17 INVERSE DYNAMICS
  • 18.
    Terry Taewoong Um(terry.t.um@gmail.com) CONTENTS 18 3. Summary + Q&A
  • 19.
    Terry Taewoong Um(terry.t.um@gmail.com) 19 SUMMARY • Lie Group : a group that is also a differentiable manifold • Lie Algebra : the tangent space at the identity of Lie group • SO(3), so(3), SE(3), se(3), exp, log, Ad, ad coord. trans. for se(3) cross product for se(3) • Forward Kinematics • Lie algebra is vector space! (easier to apply pdf) • Inverse Dynamics • Differential Kinematics 𝜃 = 𝐽𝑠 𝜃
  • 20.
    Terry Taewoong Um(terry.t.um@gmail.com) 20 Q & A • What are the benefits/drawbacks of using Lie group for rigid body dynamics? • What are the key differences between Lie groups and other 6D formulations (e.g., Featherstone's spatial notation)? [Featherstone's cross operation] skew-symmetric Lie bracket
  • 21.
    Terry Taewoong Um(terry.t.um@gmail.com) 21 Q & A [From Featherstone's book]
  • 22.
    Terry Taewoong Um(terry.t.um@gmail.com) 22 Q & A • Can you do a high-level overview of the mathematical details of the Wang’s paper (for those of us who got lost in the math)? ? - Convolution for Lie group (Chirikjian, 1998) - Error propagation – 1st order (Wang and Chirikjian, 2006) - Error propagation – 2nd order (Wang and Chirikjian, 2008)
  • 23.
    Terry Taewoong Um(terry.t.um@gmail.com) 23 Thank you