SlideShare a Scribd company logo
하용호
@kakao
하용호
용 호
오랜만이죠? 이 짤?
딥러닝이뜨긴떴습니다.
딥러닝가능케한3대장
빅데이터 GPU 알고리즘
이제는식상한용어지만

하여간있다!
다나와가서
사면된다! 아..
뭔가옛날에뉴럴넷은배웠는데..
혼자서공부하려고인터넷을뒤져보지만
빡셉니다…
예습,자습,복습-인간이할수없는세가지일
일단단어들부터보통이아닙니다.
ReLU
DropOut
MaxPooling
Stochastic
Gradient
Decent
Convolution
SoftMax
근데이것도한번보시죠
McFlurry
FrenchFries
McMuffin
Hash
Browns
BigMac
근데이것도한번보시죠
맥플러리
프렌치프라이
맥머핀
해시
브라운
빅맥
사실별거아닌건데외국인만난것처럼당황해서그렇습니다.
이시간을통해,딥러닝도
편안하게느끼게되셨으면좋겠습니다.
조선시대조상님이맥도날드메뉴보면

얼마나겁날까요?
근데사실그냥먹는이야기.별거없죠.
그분들도금방적응하실겁니다.
딥러닝이글케좋아?
컴퓨터에게그림을주고
개인지고양이인지판단하게하시오?
문제?
이프로그램어떻게짜지?
(이제는식상한짤…이짤을쓰는내가부끄럽네요)
딥러닝으로만든코드를봅시다.
basedonhttps://github.com/fastai/courses
정확도98.35%!!
엄청잘맞춘다!!
사진을보고개랑고양이를구분하는
신박한일을,달랑저짧은코드로할수있다!
패러다임쉬프트
기존의코딩:

조건을라인바이라인으로긴코드로써내려가는일
앞으로의코딩:

조건을학습모델의여러가중치로변환하는일
IF ~~~~~~~~~~
IF ~~~~~~~~~~
IF ~~~~~~~~~~
IF ~~~~~~~~~~
인풋
아웃풋
30.3
51.2
18.3
-30.2
14.9
7.9
인풋
아웃풋
basedon https://github.com/fastai/courses
딥러닝의정수중의하나:VGG16
강의가끝날때쯤다이해갈겁니다^^
일단뉴럴넷복습부터
일단뉴럴넷의한컴포넌트는일케생겼었죠
sigmoid
요런게모여서이런게되었었습니다.
계속층을쌓아나갈수도있습니다.
이렇게깊어지면딥뉴럴넷(DNN)이라하죠
사람의뇌신경을닮은뉴럴넷이니
사람이하는거다할수있지않을까?!
그런데잘안됨
세가지문제가있었다.
학습이잘안돼!
겨우되어도융통성이없다?!
Underfitting
덜하거나
Overfitting
과하거나
(하여간적당히가없어요)
도대체학습은언제끝나는건가?Slow
느리거나
Underfitting
Overfitting
학습이잘안돼!
겨우되어도융통성이없다?!
덜하거나
과하거나
Slow 도대체학습은언제끝나는건가?
느리거나
차근차근해결해봅시다!
Underfitting
Overfitting
학습이잘안돼!
겨우되어도융통성이없다?!
덜하거나
과하거나
Slow 도대체학습은언제끝나는건가?
느리거나
뭐를전달하는가?
현재내가틀린정도를‘미분(기울기)’한거
출력입력
입력 출력
미분하고,곱하고,더하고를역방향으로반복하며업데이트한다.
뉴럴넷의학습방법Backpropagation
(사실별거없고그냥“뒤로전달”)
근데문제는?
여기의미분(기울기)는뭐라도있다.다행
근데여기는기울기0..이런거중간에곱하면뭔가뒤로전달할게없다?!
그런상황에서이걸반복하면??????
우리가activation함수로sigmoid 를썼다는것
Vanishinggradient현상:
줄좀맞추자줄좀..줄..줄..줄..
교장샘끝줄학생
레이어가깊을수록업데이트가사라져간다.
그래서fitting이잘안됨(underfitting)
학습이잘안됨
ReLU
이녀석은양의구간에서전부미분값(1)이있다!
죽지않는activationfunc을쓰자!
(RectifiedLinearUnits)
줄좀맞추자
교장샘끝줄학생
줄좀맞추자줄좀맞추자줄좀맞추자줄좀맞추자
사그라드는sigmoid대신
끝줄학생까지이야기가전달이잘되고위치를고친다!
sigmoid->ReLU=뒤로전달오케이!
전달하다가,사그라져버린다(vanishinggradient)
문제?
해결!
Underfitting
Overfitting
학습이잘안돼!
겨우되어도융통성이없다?!
덜하거나
과하거나
Slow 도대체학습은언제끝나는건가?
느리거나
GradientDecent
lossfuncion의현가중치에서의기울기(gradient)를구해서
loss를줄이는방향으로 업데이트해나간다.
기존뉴럴넷이가중치parameter들을
최적화(optimize)하는방법
뉴럴넷은loss(orcost)function을

가지고있습니다.쉽게말하면“틀린정도”
현재가진weight세팅(내자리)에서,
내가가진데이터를다넣으면
전체에러가계산됩니다.
현지점의기울기

(gradient)
거기서미분하면에러를줄이는방향을알수있습니다.

(내자리의기울기*반대방향)
그방향으로정해진스텝량(learningrate)을
곱해서weight을이동시킵니다.이걸반복~~
weight의업데이트 = 에러낮추는방향

(decent)
XX
한발자국크기

(learningrate)
아그렇구나.
..잠깐?이상한게지나갔는데?
현재가진weight세팅(내자리)에서,
내가가진데이터를다넣으면
전체에러가계산됩니다.
현지점의기울기

(gradient)
에러낮추는방향

(decent)
한발자국크기

(learningrate)
거기서미분하면에러를줄이는방향을알수있습니다.

(내자리의기울기*반대방향)
그방향으로정해진스텝량(learningrate)을
곱해서weight을이동시킵니다.이걸반복~~
XXweight의업데이트 =
“내가가진데이터를다넣으면?”
트레이닝데이터가몇억건인데…
한발자국갈때마다몇억건을넣어?
뉴럴넷loss(orcost)function을

가지고있습니다.쉽게말하면“틀린정도”
어느천년에다하는가.
GD보다빠른옵티마이저는없을까?
StochasticGradientDecent!!
SGD의컨셉:느린완벽보다조금만훓어보고일단빨리가봅시다.
(이거랑 닮음. 하지만 done도 better도 perfect도 실패하는 우리네 삶.. ㅠㅠ)
학습데이터
Gradient
Decent
Stochastic

Gradient
Decent
작은 토막마다
일단 1스텝간다.
전부다 읽고나서

최적의 1스텝 간다.
full-batch
mini-batch
mini-batch
mini-batch
mini-batch
mini-batch
GDvsSGD
목적지
모든 걸 계산(1시간)후 

최적의 한스텝
일부만 검토(5분)
틀려도 일단 간다! 빠른 스텝!
6스텝 * 1시간 = 6시간
11스텝 * 5분 = 55분 < 1시간
Gradient Decent
Stochastic 

Gradient Descent
최적인데 너무 느리다!
조금 헤매도 어쨌든 인근에
아주 빨리 갔다!
걸음마다batch로전부다계산하려니
GD가너무오래걸린다
SGD로mini-batch마다움직여

같은시간에훨씬더많이진행해서해결!
문제?
해결!
다시생각해봐도이건,굴곡많은산을

좋은오솔길을찾아잘내려가는일과참비슷
근데미니배치를하다보니와리가리(?)방향문제가있다.
딱봐도더잘갈수있는데
훨씬더헤매면서간다.
훑기도잘훑으면서,
좀더휙휙더좋은방향으로갈순없을까?
스텝사이즈(learningrate)도문제가된다.
보폭이너무작으면오래헤매고(파란라인)
보폭이너무크면,오솔길을지나친다(녹색라인)
이과가또.jpg
산을잘타고내려오는것은
어느방향으로발을디딜지
얼마보폭으로발을디딜지
두가지를잘잡아야빠르게타고내려온다.
SGD를더개선한멋진optimizer가많다!
SGD의개선된후계자들
여러가지방법이있다!
http://imgur.com/NKsFHJb
산내려오는작은오솔길잘찾기(Optimizer)의발달계보
SGD
Momentum
NAG
Adagrad
RMSProp
AdaDelta
Adam
Nadam
스텝계산해서움직인후,

아까내려오던관성방향또가자
일단관성방향먼저움직이고,

움직인자리에스텝을계산하니

더빠르더라
안가본곳은성큼빠르게걸어훓고
많이가본곳은잘아니까
갈수록보폭을줄여세밀히탐색
보폭을줄이는건좋은데

이전맥락상황봐가며하자.
종종걸음너무작아져서
정지하는걸막아보자.
RMSProp+Momentum
방향도스텝사이즈도적절하게!
전부다봐야한걸음은
너무오래걸리니까

조금만보고빨리판단한다

같은시간에더많이간다
Adam에Momentum

대신NAG를붙이자.
스
텝
사
이
즈
스텝방향
GD
모든자료를다검토해서
내위치의산기울기를계산해서

갈방향을찾겠다.
NesterovAcceleratedGradient
잘모르겠으면Adam!
SGD가빠른데좀헤맨다
SGD의개선된버전을골라
더빠르고더정확하게!
문제?
해결!
Underfitting
Overfitting
학습이잘안돼!
겨우되어도융통성이없다?!
덜하거나
과하거나
Slow 도대체학습은언제끝나는건가?
느리거나
열심히뉴럴넷에게고양이
뚱뚱하니까고양이아님 갈색이니까고양이아님 귀처졌으니까고양이아님
를가르쳤더니..
융통성이라곤눈꼽만큼도없다! Overfitting
뉴럴넷에게융통성을기르는방법은?
가르칠때부터,좀가리면서가르친다!
DropOut!
학습시킬때,
일부러정보를누락시키거나
중간중간노드를끈다.
얼굴위주 색지우고 귀빼고
dropout으로
일부에집착하지않고
중요한요소가무엇인지
터득해나간다.
과적합으로융통성이없다.
DropOut으로
유연성을획득시킨다.
문제?
해결!
Underfitting
Overfitting
학습잘되고
융통성도생겼다!
덜하거나
과하거나
Slow 이젠빠르고
느리거나
문제해결완료!
DropOut
ReLU SGD
Adam
Adam Vanishinggradient
LearningRate
mini-batch
RmsProp
딥러닝을가능하게한개념들을배웠다!
등등등~
깊은뉴럴넷의학습이가능해졌다.
이제이것들을잘쌓아서일을해보자.
문제의유형에따라적절한아키텍쳐를!
스냅샷성데이터
snapshot
시퀀스성데이터
sequence
이미지,영상,바둑(?) CNN
Convolutional

neuralnetwork
음성,언어,주식가격,맥락 LSTMrecurrent

neuralnetwork
LongShort
TermMemory
orRNN
아까봤던VGG도
유명한CNN구조중의하나.
이바닥에유명한녀석으로
AlexNet(구형),

VGG(인기많고많이씀,그냥믿고쓰는허브솔트같은느낌),

GoogleNet(첨에인기없고,뒤에Inception버전업되고좀씀),

ResNet(레이어짱많음, 최근많이쓰임)
이런거다어디서나오나요?
영상인식관련천하제일무술대회가있습니다.
TheImageNetLargeScaleVisualRecognitionChallenge(ILSVRC)
길어서보통ImageNet대회라고합니다.ㅎㅎ
연구자들이자웅을겨루며,좋은구조가많이나왔습니다.
최신 과거
VGG는구조가직관적이고

성능도상당히쓸만해서
대중적으로많이쓰입니다.
(다른많은구조의재료가되곤합니다)
VGGNET의구조
Imagefromhttp://file.scirp.org/Html/4-7800353_65406.htm
이해를하기위해,우리가그림을본다고상상해봅시다.
그림을눈앞1cm거리에서본다고생각해보자.
처음에는점과선,이상한질감몇개밖에모르겠다.
점과선,질감을충분히배우고,조금떨어져서보자.
점과선이질감이합쳐져삼각형,동그라미,북실함이보인다.
삼각형,원,사각형,북실함등을조합해서보니
뾰족귀와땡그란눈과복실한발을배웠다.
더멀리서보니,그것들이모아져있다.이것은?
고양이!!
이방식을흉내내면컴퓨터도그림을잘볼수있겠지?
조각을보고,패턴을익히고,점점멀리서조합을본다.
계산량측면에서도!
이미지에서는인근픽셀끼리만상관있지않나?
가까운것들끼리만묶어서계산하면의미도있고
계산량도줄겠는데?
이런생각을해봤다.
보통뉴럴넷은서로가서로에게전부다연결되어있는데
이러다보니맞춰야할weight들도많아..
Convolution박스로밀고나면,숫자가나옴
그숫자를Activation(주로ReLU)에넣어나온값
Convolution:특정패턴이있는지박스로훓으며마킹
이걸로이미지지도를새로그린다.
위아래선필터,좌우선필터,대각선필터,이런질감필터,

요런질감필터,동그라미필터등등여러가지“조각”필터로
해당패턴이그림위에있는지확인한다.
이게Conv필터한개예제 이런걸밀고다닌다.
사소하지만중요한거하나.Zeropadding
귀퉁이가짤리다보니,사이즈유지를위해conv전에0을모서리에보태고한다.
Convolution의멋진점은
간단한필터들이쌓여가면서
엄청나게복잡한필터를만들어나가는것
이런필터를뉴럴넷이알아서찾아주는것
Convolution의좋은점 부품을조립해더복잡한부품을만든다
Convolution Convolution Convolution
가
로
세로
필터수
https://arxiv.org/pdf/1311.2901.pdf
점점더멀리서보는법?
우리가멀어져도되지만
그림을줄여도되겠구나?
사이즈를점진적으로줄이는법MaxPooling
nxn(Pool)을중요한정보(Max)한개로줄인다.
선명한정보만남겨서,판단과학습이쉬워지고

노이즈가줄면서,덤으로융통성도확보된다.
4 3 3 2
1 0 0 8
0 1 2 2
2 7 9 1
4 8
7 9
보통2x2로화면전역에적용한다
stride라고해서

좌우로몇칸씩뛸지설정.보통(2x2)
그러면절반짜리

이미지가완성!
패턴들을쌓아가며점차복잡한패턴을인식한다(conv)
사이즈를줄여가며,더욱추상화해나간다(maxpooling)
눈 눈
코 입 귀
목
티 티 티
후반부에는추상화부품으로남는다.
우리는궁극적으로
이런녀석을가지게된다.
시작은이렇게256*256

픽셀을다보았어야해도
Conv와
MaxPooling

의반복
막판,추상화가끝난데이터를FC에넣어판단한다
(fully connected layer)
눈 눈
코 입 귀
목
티 티 티
눈과코와귀가있고
티를입고있으니
최종판단은FullyConnectedLayer에게먹여서하게한다.
“사람”
“고양이”
“개”
“말”
X
X
O
X
뉴럿넷에게답을회신받는3가지방법
output을

그냥받는다.
output에
sigmoid를먹인다.
output에
softmax를먹인다.
O/X
기냐?아니냐?
Category
종류중에요건뭐냐?
Value
이게얼마가될거같니?
그래서1000개종류분류하는
아키텍쳐는
끝이SoftMax로되어있다.
이제다시처음의코드를봅시다!
Conv블럭은
1)사이즈안줄어들게가장자리채워주고
2)3x3사이즈패턴으로, 

filter갯수만큼패턴을찾겠구나.

activation은ReLU를쓰네?
3)그런Conv를layes수만큼겹겹히쌓는구나.
4)그렇지.충분히했으면사이즈줄여줘야지
Conv+MaxPooling덩어리를

필터갯수늘리면서

그림사이즈는점점줄어들게

쌓아올리는구만.
이걸FC에먹이려고좌악펴주고
1)출력4096짜리,

FullyConnectedNN이군
2)ReLU썼고
3)그렇지.오버피팅방지로DropOut들어가야지
FC블럭은
마지막엔1000개출력인데,
그중하나고르는(Category)니까softmax구만
그렇지.길찾는법은믿고쓰는Adam이지.
Clear!!!!!!
축하드립니다!
여러분은지금실제돌아가는코드를
왜그런지를알면서
읽어낼수있게되었어요!
인스톨완료!
부분부분만공부하면어렵게느껴지던딥러닝
왜그렇게만들어졌는지를따져보면구조가그려집니다.
구조를알면어렵지않아요.
(LSTM편과강화학습편은다음에또선보일게요
그리고저희사람뽑습니다.곧공고할게요~~)

More Related Content

What's hot

2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
Yongho Ha
 
[모두의연구소] 쫄지말자딥러닝
[모두의연구소] 쫄지말자딥러닝[모두의연구소] 쫄지말자딥러닝
[모두의연구소] 쫄지말자딥러닝
Modulabs
 
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출 NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
정주 김
 
기계학습 / 딥러닝이란 무엇인가
기계학습 / 딥러닝이란 무엇인가기계학습 / 딥러닝이란 무엇인가
기계학습 / 딥러닝이란 무엇인가
Yongha Kim
 
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA) 오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
Yongho Ha
 
데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.
Yongho Ha
 
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Yongho Ha
 
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
Dylan Ko
 
인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템
NAVER D2
 
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
CONNECT FOUNDATION
 
화성에서 온 개발자, 금성에서 온 기획자
화성에서 온 개발자, 금성에서 온 기획자화성에서 온 개발자, 금성에서 온 기획자
화성에서 온 개발자, 금성에서 온 기획자
Yongho Ha
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
NAVER Engineering
 
데이터 분석가는 어떤 SKILLSET을 가져야 하는가? - 데이터 분석가 되기
데이터 분석가는 어떤 SKILLSET을 가져야 하는가?  - 데이터 분석가 되기데이터 분석가는 어떤 SKILLSET을 가져야 하는가?  - 데이터 분석가 되기
데이터 분석가는 어떤 SKILLSET을 가져야 하는가? - 데이터 분석가 되기
Hui Seo
 
알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기
Kwangsik Lee
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
deepseaswjh
 
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
BOAZ Bigdata
 
boosting 기법 이해 (bagging vs boosting)
boosting 기법 이해 (bagging vs boosting)boosting 기법 이해 (bagging vs boosting)
boosting 기법 이해 (bagging vs boosting)
SANG WON PARK
 
[NDC 발표] 모바일 게임데이터분석 및 실전 활용
[NDC 발표] 모바일 게임데이터분석 및 실전 활용[NDC 발표] 모바일 게임데이터분석 및 실전 활용
[NDC 발표] 모바일 게임데이터분석 및 실전 활용
Tapjoy X 5Rocks
 
밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장
Sunggon Song
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitions
Owen Zhang
 

What's hot (20)

2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
2011 H3 컨퍼런스-파이썬으로 클라우드 하고 싶어요
 
[모두의연구소] 쫄지말자딥러닝
[모두의연구소] 쫄지말자딥러닝[모두의연구소] 쫄지말자딥러닝
[모두의연구소] 쫄지말자딥러닝
 
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출 NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
NDC 2016 김정주 - 기계학습을 활용한 게임어뷰징 검출
 
기계학습 / 딥러닝이란 무엇인가
기계학습 / 딥러닝이란 무엇인가기계학습 / 딥러닝이란 무엇인가
기계학습 / 딥러닝이란 무엇인가
 
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA) 오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
 
데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.
 
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
 
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
 
인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템
 
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
[부스트캠프 Tech Talk] 김봉진_WandB로 Auto ML 뿌수기
 
화성에서 온 개발자, 금성에서 온 기획자
화성에서 온 개발자, 금성에서 온 기획자화성에서 온 개발자, 금성에서 온 기획자
화성에서 온 개발자, 금성에서 온 기획자
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
 
데이터 분석가는 어떤 SKILLSET을 가져야 하는가? - 데이터 분석가 되기
데이터 분석가는 어떤 SKILLSET을 가져야 하는가?  - 데이터 분석가 되기데이터 분석가는 어떤 SKILLSET을 가져야 하는가?  - 데이터 분석가 되기
데이터 분석가는 어떤 SKILLSET을 가져야 하는가? - 데이터 분석가 되기
 
알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
 
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
제 14회 보아즈(BOAZ) 빅데이터 컨퍼런스 - [BICS팀] : Boaz Industry Classification Standard
 
boosting 기법 이해 (bagging vs boosting)
boosting 기법 이해 (bagging vs boosting)boosting 기법 이해 (bagging vs boosting)
boosting 기법 이해 (bagging vs boosting)
 
[NDC 발표] 모바일 게임데이터분석 및 실전 활용
[NDC 발표] 모바일 게임데이터분석 및 실전 활용[NDC 발표] 모바일 게임데이터분석 및 실전 활용
[NDC 발표] 모바일 게임데이터분석 및 실전 활용
 
밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장밑바닥부터 시작하는딥러닝 8장
밑바닥부터 시작하는딥러닝 8장
 
Tips for data science competitions
Tips for data science competitionsTips for data science competitions
Tips for data science competitions
 

Viewers also liked

China Internet Report 2017 by Edith Yeung
China Internet Report 2017 by Edith YeungChina Internet Report 2017 by Edith Yeung
China Internet Report 2017 by Edith Yeung
Edith Yeung
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Girish Khanzode
 
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
Yoon Sup Choi
 
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
cbs15min
 
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트) 마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
딥러닝을 11번가 영상 검색에 활용한 경험 공유
딥러닝을 11번가 영상 검색에 활용한 경험 공유딥러닝을 11번가 영상 검색에 활용한 경험 공유
딥러닝을 11번가 영상 검색에 활용한 경험 공유
혁준 전
 
자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP
Eunjeong (Lucy) Park
 
인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기
Byoung-Hee Kim
 
keras 빨리 훑어보기(intro)
keras 빨리 훑어보기(intro)keras 빨리 훑어보기(intro)
keras 빨리 훑어보기(intro)
beom kyun choi
 
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
Doran Hwang
 
Video Analysis in Hadoop
Video Analysis in HadoopVideo Analysis in Hadoop
Video Analysis in Hadoop
DataWorks Summit
 
머신러닝의 개념과 실습
머신러닝의 개념과 실습머신러닝의 개념과 실습
머신러닝의 개념과 실습
Byoung-Hee Kim
 
[154] 데이터 센터의 오픈 소스 open compute project (ocp)
[154] 데이터 센터의 오픈 소스 open compute project (ocp)[154] 데이터 센터의 오픈 소스 open compute project (ocp)
[154] 데이터 센터의 오픈 소스 open compute project (ocp)
NAVER D2
 
보고서 쓸 때 문장 줄이기 연습
보고서 쓸 때 문장 줄이기 연습보고서 쓸 때 문장 줄이기 연습
보고서 쓸 때 문장 줄이기 연습
Sungchul CHOI
 
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
BOAZ Bigdata
 
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
BOAZ Bigdata
 
[분석] DeepTitle : 한국어 기사 자동 요약
[분석] DeepTitle : 한국어 기사 자동 요약[분석] DeepTitle : 한국어 기사 자동 요약
[분석] DeepTitle : 한국어 기사 자동 요약
BOAZ Bigdata
 
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
BOAZ Bigdata
 
[시각화] 통계로 본 서울시 유기동물 정보 시각화
[시각화] 통계로 본 서울시 유기동물 정보 시각화[시각화] 통계로 본 서울시 유기동물 정보 시각화
[시각화] 통계로 본 서울시 유기동물 정보 시각화
BOAZ Bigdata
 
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
BOAZ Bigdata
 

Viewers also liked (20)

China Internet Report 2017 by Edith Yeung
China Internet Report 2017 by Edith YeungChina Internet Report 2017 by Edith Yeung
China Internet Report 2017 by Edith Yeung
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
한국에서 혁신적인 헬스케어 스타트업을 위해 필요한 것은
 
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
세바시 15분 데이터로 세상이 다시 한번 바뀝니다 @하용호 SK Telecom
 
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트) 마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
 
딥러닝을 11번가 영상 검색에 활용한 경험 공유
딥러닝을 11번가 영상 검색에 활용한 경험 공유딥러닝을 11번가 영상 검색에 활용한 경험 공유
딥러닝을 11번가 영상 검색에 활용한 경험 공유
 
자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP자바, 미안하다! 파이썬 한국어 NLP
자바, 미안하다! 파이썬 한국어 NLP
 
인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기
 
keras 빨리 훑어보기(intro)
keras 빨리 훑어보기(intro)keras 빨리 훑어보기(intro)
keras 빨리 훑어보기(intro)
 
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
넷플릭스의 문화 : 자유와 책임 (한국어 번역본)
 
Video Analysis in Hadoop
Video Analysis in HadoopVideo Analysis in Hadoop
Video Analysis in Hadoop
 
머신러닝의 개념과 실습
머신러닝의 개념과 실습머신러닝의 개념과 실습
머신러닝의 개념과 실습
 
[154] 데이터 센터의 오픈 소스 open compute project (ocp)
[154] 데이터 센터의 오픈 소스 open compute project (ocp)[154] 데이터 센터의 오픈 소스 open compute project (ocp)
[154] 데이터 센터의 오픈 소스 open compute project (ocp)
 
보고서 쓸 때 문장 줄이기 연습
보고서 쓸 때 문장 줄이기 연습보고서 쓸 때 문장 줄이기 연습
보고서 쓸 때 문장 줄이기 연습
 
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
[분석+시각화] 위기탈출 경전철! - 신설 경전철 노선의 역별 수송수요 예측
 
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
[분석]서울시 2030 나홀로족을 위한 라이프 가이드북
 
[분석] DeepTitle : 한국어 기사 자동 요약
[분석] DeepTitle : 한국어 기사 자동 요약[분석] DeepTitle : 한국어 기사 자동 요약
[분석] DeepTitle : 한국어 기사 자동 요약
 
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
[분석] 베이지안 분석방법을 이용한 손상된 이미지 복구
 
[시각화] 통계로 본 서울시 유기동물 정보 시각화
[시각화] 통계로 본 서울시 유기동물 정보 시각화[시각화] 통계로 본 서울시 유기동물 정보 시각화
[시각화] 통계로 본 서울시 유기동물 정보 시각화
 
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
[시각화] 소고기와 돼지고기에 대한 정보 시각화 압축
 

자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.