Section 3.5
        Inverse Trigonometric
              Functions
                   V63.0121.002.2010Su, Calculus I

                           New York University


                            June 7, 2010


Announcements

   Exams not graded yet
   Written HW due tomorrow
   Quiz 3 on Thursday covering 3.3, 3.4, 3.5, 3.7
Announcements




           Exams not graded yet
           Written HW due tomorrow
           Quiz 3 on Thursday covering
           3.3, 3.4, 3.5, 3.7




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   2 / 30
Objectives



           Know the definitions,
           domains, ranges, and other
           properties of the inverse
           trignometric functions:
           arcsin, arccos, arctan,
           arcsec, arccsc, arccot.
           Know the derivatives of the
           inverse trignometric
           functions.




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   3 / 30
What is an inverse function?



 Definition
 Let f be a function with domain D and range E . The inverse of f is the
 function f −1 defined by:
                               f −1 (b) = a,
 where a is chosen so that f (a) = b.




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   4 / 30
What is an inverse function?



 Definition
 Let f be a function with domain D and range E . The inverse of f is the
 function f −1 defined by:
                               f −1 (b) = a,
 where a is chosen so that f (a) = b.

 So
                                f −1 (f (x)) = x,                 f (f −1 (x)) = x




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   4 / 30
What functions are invertible?




 In order for f −1 to be a function, there must be only one a in D
 corresponding to each b in E .
         Such a function is called one-to-one
         The graph of such a function passes the horizontal line test: any
         horizontal line intersects the graph in exactly one point if at all.
         If f is continuous, then f −1 is continuous.




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   5 / 30
Outline



 Inverse Trigonometric Functions


 Derivatives of Inverse Trigonometric Functions
    Arcsine
    Arccosine
    Arctangent
    Arcsecant


 Applications




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   6 / 30
arcsin

 Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
                                                         y



                                                                                                     x
                                             π                       π                       sin
                                           −
                                             2                       2




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       7 / 30
arcsin

 Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
                                                         y



                                                                                                     x
                                             π                       π                       sin
                                           −
                                             2                       2




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       7 / 30
arcsin

 Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
                                                         y
                                                                           y =x


                                                                                                     x
                                             π                       π                       sin
                                           −
                                             2                       2




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       7 / 30
arcsin

 Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
                                                         y
                                                                    arcsin

                                                                                                     x
                                             π                       π                       sin
                                           −
                                             2                       2



         The domain of arcsin is [−1, 1]
                                  π π
         The range of arcsin is − ,
                                  2 2


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       7 / 30
arccos

 Arccos is the inverse of the cosine function after restriction to [0, π]


                                                         y


                                                                                             cos
                                                                                                     x
                                                          0                       π




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       8 / 30
arccos

 Arccos is the inverse of the cosine function after restriction to [0, π]


                                                         y


                                                                                             cos
                                                                                                     x
                                                          0                       π




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       8 / 30
arccos

 Arccos is the inverse of the cosine function after restriction to [0, π]


                                                         y
                                                                           y =x

                                                                                             cos
                                                                                                     x
                                                          0                       π




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       8 / 30
arccos

 Arccos is the inverse of the cosine function after restriction to [0, π]
                                                    arccos
                                                       y


                                                                                             cos
                                                                                                     x
                                                          0                       π




         The domain of arccos is [−1, 1]
         The range of arccos is [0, π]


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       8 / 30
arctan

 Arctan is the inverse of the tangent yfunction after restriction to [−π/2, π/2].




                                                                                                           x
                     3π                         π                     π               3π
                   −                        −
                      2                         2                     2                2




                                                                                           tan



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions         June 7, 2010       9 / 30
arctan

 Arctan is the inverse of the tangent yfunction after restriction to [−π/2, π/2].




                                                                                                           x
                     3π                         π                     π               3π
                   −                        −
                      2                         2                     2                2




                                                                                           tan



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions         June 7, 2010       9 / 30
arctan
                                                                                      y =x
 Arctan is the inverse of the tangent yfunction after restriction to [−π/2, π/2].




                                                                                                            x
                     3π                         π                     π               3π
                   −                        −
                      2                         2                     2                2




                                                                                           tan



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010       9 / 30
arctan

 Arctan is the inverse of the tangent yfunction after restriction to [−π/2, π/2].

                                                       π
                                                       2                                             arctan

                                                                                                     x

                                                       π
                                                   −
                                                       2

         The domain of arctan is (−∞, ∞)
                                  π π
         The range of arctan is − ,
                                  2 2
                         π                  π
          lim arctan x = , lim arctan x = −
         x→∞             2 x→−∞             2

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       9 / 30
arcsec
                                     y
 Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].




                                                                                                          x
                     3π                       π                       π               3π
                   −                        −
                      2                       2                       2                2




                                                                          sec



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        June 7, 2010       10 / 30
arcsec
                                     y
 Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].




                                                                                                          x
                     3π                       π                       π               3π
                   −                        −
                      2                       2                       2                2




                                                                          sec



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        June 7, 2010       10 / 30
arcsec
                                                         y =x
                                     y restriction to [0, π/2) ∪ (π, 3π/2].
 Arcsecant is the inverse of secant after




                                                                                                          x
                     3π                       π                       π               3π
                   −                        −
                      2                       2                       2                2




                                                                          sec



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        June 7, 2010       10 / 30
3π
arcsec
                                                      2
                                     y
 Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].

                                                       π
                                                       2

                                                                                                     x




         The domain of arcsec is (−∞, −1] ∪ [1, ∞)
                                   π    π
         The range of arcsec is 0,   ∪    ,π
                                   2    2
                         π                  3π
          lim arcsec x = , lim arcsec x =
         x→∞             2  x→−∞             2

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010       10 / 30
Values of Trigonometric Functions

                                    π                      π                     π       π
         x     0
                                    6                      4                     3       2
                                                           √                     √
                                    1                        2                    3
     sin x     0                                                                         1
                                    2                      2                     2
                                    √                      √
                                     3                       2                  1
    cos x      1                                                                         0
                                    2                      2                    2
                                    1                                           √
    tan x      0                   √                      1                       3      undef
                                     3
                                   √                                             1
    cot x      undef                 3                    1                      √       0
                                                                                   3
                                    2                      2
    sec x      1                    √                      √                    2        undef
                                      3                      2
                                                           2                     2
    csc x      undef               2                       √                     √       1
                                                             2                     3
V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions    June 7, 2010   11 / 30
Check: Values of inverse trigonometric functions
 Example
 Find
         arcsin(1/2)
         arctan(−1)
                  √
                           2
         arccos −
                          2




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   12 / 30
Check: Values of inverse trigonometric functions
 Example
 Find
         arcsin(1/2)
         arctan(−1)
                  √
                           2
         arccos −
                          2


 Solution
     π
     6




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   12 / 30
What is arctan(−1)?




       3π/4




                                                             −π/4


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   13 / 30
What is arctan(−1)?




       3π/4                                                                           3π
                                                                          Yes, tan         = −1
                                                                                       4
                                        √
                                          2
                  sin(3π/4) =
                                         2

                                    √
                                         2
            cos(3π/4) = −
                                        2



                                                             −π/4


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        June 7, 2010   13 / 30
What is arctan(−1)?




       3π/4                                                                         3π
                                                                          Yes, tan       = −1
                                                                                     4
                                        √                                 But, the range of arctan is
                                          2                                  π π
                  sin(3π/4) =                                              − ,
                                         2                                   2 2
                                    √
                                         2
            cos(3π/4) = −
                                        2



                                                             −π/4


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions      June 7, 2010   13 / 30
What is arctan(−1)?




       3π/4                                                                           3π
                                                                          Yes, tan          = −1
                                                                                       4
                                                                          But, the range of arctan is
                                              √                               π π
                                               2                           − ,
                                   cos(π/4) =                                 2 2
                                              2                           Another angle whose
                                                                                               π
                                                                          tangent is −1 is − , and
                                                    √                                          4
                                                       2                  this is in the right range.
                             sin(π/4) = −
                                                      2

                                                             −π/4


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions      June 7, 2010   13 / 30
What is arctan(−1)?




       3π/4                                                                           3π
                                                                          Yes, tan          = −1
                                                                                       4
                                                                          But, the range of arctan is
                                              √                               π π
                                               2                           − ,
                                   cos(π/4) =                                 2 2
                                              2                           Another angle whose
                                                                                               π
                                                                          tangent is −1 is − , and
                                                    √                                          4
                                                       2                  this is in the right range.
                             sin(π/4) = −                                                       π
                                                      2                   So arctan(−1) = −
                                                                                                4
                                                             −π/4


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions      June 7, 2010   13 / 30
Check: Values of inverse trigonometric functions
 Example
 Find
         arcsin(1/2)
         arctan(−1)
                  √
                           2
         arccos −
                          2


 Solution
     π
     6
       π
     −
        4



V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   14 / 30
Check: Values of inverse trigonometric functions
 Example
 Find
         arcsin(1/2)
         arctan(−1)
                  √
                           2
         arccos −
                          2


 Solution
     π
     6
       π
     −
        4
     3π
      4

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   14 / 30
Caution: Notational ambiguity




                       sin2 x = (sin x)2                               sin−1 x = (sin x)−1




         sinn x means the nth power of sin x, except when n = −1!
         The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 .
                           1
         I use csc x for       and arcsin x for the inverse of sin x.
                         sin x

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions     June 7, 2010   15 / 30
Outline



 Inverse Trigonometric Functions


 Derivatives of Inverse Trigonometric Functions
    Arcsine
    Arccosine
    Arctangent
    Arcsecant


 Applications




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   16 / 30
The Inverse Function Theorem



 Theorem (The Inverse Function Theorem)
 Let f be differentiable at a, and f (a) = 0. Then f −1 is defined in an open
 interval containing b = f (a), and

                                                                    1
                                         (f −1 ) (b) =
                                                               f (f −1 (b))




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   17 / 30
The Inverse Function Theorem



 Theorem (The Inverse Function Theorem)
 Let f be differentiable at a, and f (a) = 0. Then f −1 is defined in an open
 interval containing b = f (a), and

                                                                    1
                                         (f −1 ) (b) =
                                                               f (f −1 (b))


 Upshot: Many times the derivative of f −1 (x) can be found by implicit
 differentiation and the derivative of f :




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   17 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                                                      1
                                                                                             x




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                                                          1
                                                                                                  x


                                                                                      y = arcsin x




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                                                          1
                                                                                                    x


                                                                                      y = arcsin x

                                                                                        1 − x2


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions              June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

         cos(arcsin x) =                1 − x2                                             1
                                                                                                     x


                                                                                       y = arcsin x

                                                                                         1 − x2


V63.0121.002.2010Su, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions              June 7, 2010   18 / 30
Derivation: The derivative of arcsin

 Let y = arcsin x, so x = sin y . Then
                               dy        dy     1           1
                      cos y       = 1 =⇒    =       =
                               dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

          cos(arcsin x) =               1 − x2                                             1
                                                                                                     x
     So
          d                  1
             arcsin(x) = √                                                             y = arcsin x
          dx               1 − x2
                                                                                         1 − x2


V63.0121.002.2010Su, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions              June 7, 2010   18 / 30
Graphing arcsin and its derivative


                                                                                                1
                                                                                          √
                                                                                              1 − x2
          The domain of f is [−1, 1],
          but the domain of f is                                                          arcsin
          (−1, 1)
           lim f (x) = +∞
          x→1−
                                                                                |     |
            lim f (x) = +∞                                                    −1      1
          x→−1+




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010     19 / 30
Derivation: The derivative of arccos

 Let y = arccos x, so x = cos y . Then
                             dy        dy      1             1
                  − sin y       = 1 =⇒    =         =
                             dx        dx   − sin y   − sin(arccos x)




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   20 / 30
Derivation: The derivative of arccos

 Let y = arccos x, so x = cos y . Then
                             dy        dy      1             1
                  − sin y       = 1 =⇒    =         =
                             dx        dx   − sin y   − sin(arccos x)

  To simplify, look at a right
  triangle:

         sin(arccos x) =                1 − x2                                         1
                                                                                               1 − x2
  So
        d                    1                                                 y = arccos x
           arccos(x) = − √
        dx                 1 − x2                                                 x


V63.0121.002.2010Su, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions          June 7, 2010   20 / 30
Graphing arcsin and arccos



                arccos



                                   arcsin


            |                  |
          −1                  1




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   21 / 30
Graphing arcsin and arccos



                arccos
                                                      Note
                                                                                   π
                                   arcsin                              cos θ = sin   −θ
                                                                                   2
                                                                               π
                                                                 =⇒ arccos x = − arcsin x
                                                                               2
            |                  |
          −1                  1                       So it’s not a surprise that their
                                                      derivatives are opposites.




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   21 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:



                                                                                                x




                                                                                      1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:



                                                                                                   x


                                                                                      y = arctan x
                                                                                         1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:



                                                                                      1 + x2             x


                                                                                        y = arctan x
                                                                                               1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions                June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:
                                          1
         cos(arctan x) = √
                                        1 + x2
                                                                                      1 + x2             x


                                                                                        y = arctan x
                                                                                               1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions                June 7, 2010   22 / 30
Derivation: The derivative of arctan

 Let y = arctan x, so x = tan y . Then
                              dy        dy     1
                    sec2 y       = 1 =⇒    =        = cos2 (arctan x)
                              dx        dx   sec2 y

  To simplify, look at a right
  triangle:
                                          1
          cos(arctan x) = √
                                        1 + x2
                                                                                      1 + x2             x
     So
           d                1
              arctan(x) =                                                               y = arctan x
           dx             1 + x2
                                                                                               1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions                June 7, 2010   22 / 30
Graphing arctan and its derivative

                                                     y
                                                         π/2
                                                                                            arctan
                                                                                               1
                                                                                            1 + x2
                                                                                            x



                                                         −π/2


         The domain of f and f are both (−∞, ∞)
         Because of the horizontal asymptotes, lim f (x) = 0
                                                                       x→±∞


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   23 / 30
Example
                   √
 Let f (x) = arctan x. Find f (x).




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   24 / 30
Example
                   √
 Let f (x) = arctan x. Find f (x).

 Solution


                     d        √        1     d √    1      1
                     dx
                        arctan x =     √ 2 dx x = 1 + x · 2√x
                                   1+     x
                                         1
                                 = √        √
                                   2 x + 2x x




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   24 / 30
Derivation: The derivative of arcsec

 Try this first.




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:



                                                                                  x




                                                                                      1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:



                                                                                  x


                                                                              y = arcsec x
                                                                                      1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:
                       √
                          x2 − 1
       tan(arcsec x) =
                            1
                                                                                  x           x2 − 1


                                                                              y = arcsec x
                                                                                      1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   25 / 30
Derivation: The derivative of arcsec

 Try this first. Let y = arcsec x, so x = sec y . Then
                            dy        dy        1                1
            sec y tan y        = 1 =⇒    =             =
                            dx        dx   sec y tan y   x tan(arcsec(x))

  To simplify, look at a right
  triangle:
                       √
                          x2 − 1
       tan(arcsec x) =
                            1
                                                                                  x           x2 − 1
     So
        d                1
           arcsec(x) = √                                                      y = arcsec x
        dx            x x2 − 1
                                                                                      1


V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   25 / 30
Another Example




 Example
 Let f (x) = e arcsec x . Find f (x).




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   26 / 30
Another Example




 Example
 Let f (x) = e arcsec x . Find f (x).

 Solution

                                                               1
                                        f (x) = e arcsec x · √
                                                            x x2 − 1




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   26 / 30
Outline



 Inverse Trigonometric Functions


 Derivatives of Inverse Trigonometric Functions
    Arcsine
    Arccosine
    Arctangent
    Arcsecant


 Applications




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   27 / 30
Application


 Example

  One of the guiding principles of
  most sports is to “keep your eye
  on the ball.” In baseball, a batter
  stands 2 ft away from home plate
  as a pitch is thrown with a
  velocity of 130 ft/sec (about
  90 mph). At what rate does the
  batter’s angle of gaze need to
  change to follow the ball as it
  crosses home plate?




V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions   June 7, 2010   28 / 30
Solution
 Let y (t) be the distance from the ball to home plate, and θ the angle the
 batter’s eyes make with home plate while following the ball. We know
 y = −130 and we want θ at the moment that y = 0.




                                                                                             y


                                                                                             130 ft/sec

                                                                                      θ
                                                                                      2 ft

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   29 / 30
Solution
 Let y (t) be the distance from the ball to home plate, and θ the angle the
 batter’s eyes make with home plate while following the ball. We know
 y = −130 and we want θ at the moment that y = 0.
  We have θ = arctan(y /2). Thus

          dθ        1       1 dy
             =            ·
          dt   1 + (y /2)2 2 dt


                                                                                             y


                                                                                             130 ft/sec

                                                                                      θ
                                                                                      2 ft

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   29 / 30
Solution
 Let y (t) be the distance from the ball to home plate, and θ the angle the
 batter’s eyes make with home plate while following the ball. We know
 y = −130 and we want θ at the moment that y = 0.
  We have θ = arctan(y /2). Thus

          dθ        1       1 dy
             =            ·
          dt   1 + (y /2)2 2 dt

   When y = 0 and y = −130,
  then                                                                                       y

   dθ                1 1
                =      · (−130) = −65 rad/sec                                                130 ft/sec
   dt    y =0       1+0 2
                                                                                      θ
                                                                                      2 ft

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   29 / 30
Solution
 Let y (t) be the distance from the ball to home plate, and θ the angle the
 batter’s eyes make with home plate while following the ball. We know
 y = −130 and we want θ at the moment that y = 0.
  We have θ = arctan(y /2). Thus

          dθ        1       1 dy
             =            ·
          dt   1 + (y /2)2 2 dt

   When y = 0 and y = −130,
  then                                                                                       y

   dθ                1 1
                =      · (−130) = −65 rad/sec                                                130 ft/sec
   dt    y =0       1+0 2

   The human eye can only track                                                       θ
  at 3 rad/sec!                                                                       2 ft

V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions          June 7, 2010   29 / 30
Summary


                y                  y

                                 1
            arcsin x         √
                               1 − x2
                                  1
           arccos x        −√
                                1 − x2                                    Remarkable that the
                                 1                                        derivatives of these
           arctan x                                                       transcendental functions are
                              1 + x2
                                  1                                       algebraic (or even rational!)
           arccot x         −
                               1 + x2
                                 1
           arcsec x          √
                            x x2 − 1
                                  1
           arccsc x        − √
                             x x2 − 1
V63.0121.002.2010Su, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       June 7, 2010   30 / 30

Lesson 16: Inverse Trigonometric Functions

  • 1.
    Section 3.5 Inverse Trigonometric Functions V63.0121.002.2010Su, Calculus I New York University June 7, 2010 Announcements Exams not graded yet Written HW due tomorrow Quiz 3 on Thursday covering 3.3, 3.4, 3.5, 3.7
  • 2.
    Announcements Exams not graded yet Written HW due tomorrow Quiz 3 on Thursday covering 3.3, 3.4, 3.5, 3.7 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 2 / 30
  • 3.
    Objectives Know the definitions, domains, ranges, and other properties of the inverse trignometric functions: arcsin, arccos, arctan, arcsec, arccsc, arccot. Know the derivatives of the inverse trignometric functions. V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 3 / 30
  • 4.
    What is aninverse function? Definition Let f be a function with domain D and range E . The inverse of f is the function f −1 defined by: f −1 (b) = a, where a is chosen so that f (a) = b. V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 4 / 30
  • 5.
    What is aninverse function? Definition Let f be a function with domain D and range E . The inverse of f is the function f −1 defined by: f −1 (b) = a, where a is chosen so that f (a) = b. So f −1 (f (x)) = x, f (f −1 (x)) = x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 4 / 30
  • 6.
    What functions areinvertible? In order for f −1 to be a function, there must be only one a in D corresponding to each b in E . Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f −1 is continuous. V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 5 / 30
  • 7.
    Outline Inverse TrigonometricFunctions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 6 / 30
  • 8.
    arcsin Arcsin isthe inverse of the sine function after restriction to [−π/2, π/2]. y x π π sin − 2 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30
  • 9.
    arcsin Arcsin isthe inverse of the sine function after restriction to [−π/2, π/2]. y x π π sin − 2 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30
  • 10.
    arcsin Arcsin isthe inverse of the sine function after restriction to [−π/2, π/2]. y y =x x π π sin − 2 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30
  • 11.
    arcsin Arcsin isthe inverse of the sine function after restriction to [−π/2, π/2]. y arcsin x π π sin − 2 2 The domain of arcsin is [−1, 1] π π The range of arcsin is − , 2 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30
  • 12.
    arccos Arccos isthe inverse of the cosine function after restriction to [0, π] y cos x 0 π V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30
  • 13.
    arccos Arccos isthe inverse of the cosine function after restriction to [0, π] y cos x 0 π V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30
  • 14.
    arccos Arccos isthe inverse of the cosine function after restriction to [0, π] y y =x cos x 0 π V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30
  • 15.
    arccos Arccos isthe inverse of the cosine function after restriction to [0, π] arccos y cos x 0 π The domain of arccos is [−1, 1] The range of arccos is [0, π] V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30
  • 16.
    arctan Arctan isthe inverse of the tangent yfunction after restriction to [−π/2, π/2]. x 3π π π 3π − − 2 2 2 2 tan V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30
  • 17.
    arctan Arctan isthe inverse of the tangent yfunction after restriction to [−π/2, π/2]. x 3π π π 3π − − 2 2 2 2 tan V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30
  • 18.
    arctan y =x Arctan is the inverse of the tangent yfunction after restriction to [−π/2, π/2]. x 3π π π 3π − − 2 2 2 2 tan V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30
  • 19.
    arctan Arctan isthe inverse of the tangent yfunction after restriction to [−π/2, π/2]. π 2 arctan x π − 2 The domain of arctan is (−∞, ∞) π π The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30
  • 20.
    arcsec y Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. x 3π π π 3π − − 2 2 2 2 sec V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30
  • 21.
    arcsec y Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. x 3π π π 3π − − 2 2 2 2 sec V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30
  • 22.
    arcsec y =x y restriction to [0, π/2) ∪ (π, 3π/2]. Arcsecant is the inverse of secant after x 3π π π 3π − − 2 2 2 2 sec V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30
  • 23.
    3π arcsec 2 y Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. π 2 x The domain of arcsec is (−∞, −1] ∪ [1, ∞) π π The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30
  • 24.
    Values of TrigonometricFunctions π π π π x 0 6 4 3 2 √ √ 1 2 3 sin x 0 1 2 2 2 √ √ 3 2 1 cos x 1 0 2 2 2 1 √ tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 11 / 30
  • 25.
    Check: Values ofinverse trigonometric functions Example Find arcsin(1/2) arctan(−1) √ 2 arccos − 2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 12 / 30
  • 26.
    Check: Values ofinverse trigonometric functions Example Find arcsin(1/2) arctan(−1) √ 2 arccos − 2 Solution π 6 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 12 / 30
  • 27.
    What is arctan(−1)? 3π/4 −π/4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30
  • 28.
    What is arctan(−1)? 3π/4 3π Yes, tan = −1 4 √ 2 sin(3π/4) = 2 √ 2 cos(3π/4) = − 2 −π/4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30
  • 29.
    What is arctan(−1)? 3π/4 3π Yes, tan = −1 4 √ But, the range of arctan is 2 π π sin(3π/4) = − , 2 2 2 √ 2 cos(3π/4) = − 2 −π/4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30
  • 30.
    What is arctan(−1)? 3π/4 3π Yes, tan = −1 4 But, the range of arctan is √ π π 2 − , cos(π/4) = 2 2 2 Another angle whose π tangent is −1 is − , and √ 4 2 this is in the right range. sin(π/4) = − 2 −π/4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30
  • 31.
    What is arctan(−1)? 3π/4 3π Yes, tan = −1 4 But, the range of arctan is √ π π 2 − , cos(π/4) = 2 2 2 Another angle whose π tangent is −1 is − , and √ 4 2 this is in the right range. sin(π/4) = − π 2 So arctan(−1) = − 4 −π/4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30
  • 32.
    Check: Values ofinverse trigonometric functions Example Find arcsin(1/2) arctan(−1) √ 2 arccos − 2 Solution π 6 π − 4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 14 / 30
  • 33.
    Check: Values ofinverse trigonometric functions Example Find arcsin(1/2) arctan(−1) √ 2 arccos − 2 Solution π 6 π − 4 3π 4 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 14 / 30
  • 34.
    Caution: Notational ambiguity sin2 x = (sin x)2 sin−1 x = (sin x)−1 sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . 1 I use csc x for and arcsin x for the inverse of sin x. sin x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 15 / 30
  • 35.
    Outline Inverse TrigonometricFunctions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 16 / 30
  • 36.
    The Inverse FunctionTheorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f (a) = 0. Then f −1 is defined in an open interval containing b = f (a), and 1 (f −1 ) (b) = f (f −1 (b)) V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 17 / 30
  • 37.
    The Inverse FunctionTheorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f (a) = 0. Then f −1 is defined in an open interval containing b = f (a), and 1 (f −1 ) (b) = f (f −1 (b)) Upshot: Many times the derivative of f −1 (x) can be found by implicit differentiation and the derivative of f : V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 17 / 30
  • 38.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 39.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 40.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 41.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 x y = arcsin x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 42.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 x y = arcsin x 1 − x2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 43.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = 1 − x2 1 x y = arcsin x 1 − x2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 44.
    Derivation: The derivativeof arcsin Let y = arcsin x, so x = sin y . Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = 1 − x2 1 x So d 1 arcsin(x) = √ y = arcsin x dx 1 − x2 1 − x2 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30
  • 45.
    Graphing arcsin andits derivative 1 √ 1 − x2 The domain of f is [−1, 1], but the domain of f is arcsin (−1, 1) lim f (x) = +∞ x→1− | | lim f (x) = +∞ −1 1 x→−1+ V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 19 / 30
  • 46.
    Derivation: The derivativeof arccos Let y = arccos x, so x = cos y . Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 20 / 30
  • 47.
    Derivation: The derivativeof arccos Let y = arccos x, so x = cos y . Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: sin(arccos x) = 1 − x2 1 1 − x2 So d 1 y = arccos x arccos(x) = − √ dx 1 − x2 x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 20 / 30
  • 48.
    Graphing arcsin andarccos arccos arcsin | | −1 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 21 / 30
  • 49.
    Graphing arcsin andarccos arccos Note π arcsin cos θ = sin −θ 2 π =⇒ arccos x = − arcsin x 2 | | −1 1 So it’s not a surprise that their derivatives are opposites. V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 21 / 30
  • 50.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 51.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 52.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 53.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x y = arctan x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 54.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 + x2 x y = arctan x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 55.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 1 + x2 x y = arctan x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 56.
    Derivation: The derivativeof arctan Let y = arctan x, so x = tan y . Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 1 + x2 x So d 1 arctan(x) = y = arctan x dx 1 + x2 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30
  • 57.
    Graphing arctan andits derivative y π/2 arctan 1 1 + x2 x −π/2 The domain of f and f are both (−∞, ∞) Because of the horizontal asymptotes, lim f (x) = 0 x→±∞ V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 23 / 30
  • 58.
    Example √ Let f (x) = arctan x. Find f (x). V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 24 / 30
  • 59.
    Example √ Let f (x) = arctan x. Find f (x). Solution d √ 1 d √ 1 1 dx arctan x = √ 2 dx x = 1 + x · 2√x 1+ x 1 = √ √ 2 x + 2x x V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 24 / 30
  • 60.
    Derivation: The derivativeof arcsec Try this first. V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 61.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 62.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 63.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 64.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 65.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x y = arcsec x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 66.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = 1 x x2 − 1 y = arcsec x 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 67.
    Derivation: The derivativeof arcsec Try this first. Let y = arcsec x, so x = sec y . Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = 1 x x2 − 1 So d 1 arcsec(x) = √ y = arcsec x dx x x2 − 1 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30
  • 68.
    Another Example Example Let f (x) = e arcsec x . Find f (x). V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 26 / 30
  • 69.
    Another Example Example Let f (x) = e arcsec x . Find f (x). Solution 1 f (x) = e arcsec x · √ x x2 − 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 26 / 30
  • 70.
    Outline Inverse TrigonometricFunctions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 27 / 30
  • 71.
    Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 28 / 30
  • 72.
    Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y = −130 and we want θ at the moment that y = 0. y 130 ft/sec θ 2 ft V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30
  • 73.
    Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y = −130 and we want θ at the moment that y = 0. We have θ = arctan(y /2). Thus dθ 1 1 dy = · dt 1 + (y /2)2 2 dt y 130 ft/sec θ 2 ft V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30
  • 74.
    Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y = −130 and we want θ at the moment that y = 0. We have θ = arctan(y /2). Thus dθ 1 1 dy = · dt 1 + (y /2)2 2 dt When y = 0 and y = −130, then y dθ 1 1 = · (−130) = −65 rad/sec 130 ft/sec dt y =0 1+0 2 θ 2 ft V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30
  • 75.
    Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y = −130 and we want θ at the moment that y = 0. We have θ = arctan(y /2). Thus dθ 1 1 dy = · dt 1 + (y /2)2 2 dt When y = 0 and y = −130, then y dθ 1 1 = · (−130) = −65 rad/sec 130 ft/sec dt y =0 1+0 2 The human eye can only track θ at 3 rad/sec! 2 ft V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30
  • 76.
    Summary y y 1 arcsin x √ 1 − x2 1 arccos x −√ 1 − x2 Remarkable that the 1 derivatives of these arctan x transcendental functions are 1 + x2 1 algebraic (or even rational!) arccot x − 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 30 / 30