SlideShare a Scribd company logo
1 of 82
Download to read offline
Section 3.5
Inverse Trigonometric
Functions
V63.0121.041, Calculus I
New York University
November 1, 2010
Announcements
Midterm grades have been submitted
Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2
Thank you for the evaluations
. . . . . .
. . . . . .
Announcements
Midterm grades have been
submitted
Quiz 3 this week in
recitation on Section 2.6,
2.8, 3.1, 3.2
Thank you for the
evaluations
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 2 / 32
. . . . . .
Objectives
Know the definitions,
domains, ranges, and
other properties of the
inverse trignometric
functions: arcsin, arccos,
arctan, arcsec, arccsc,
arccot.
Know the derivatives of the
inverse trignometric
functions.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 3 / 32
. . . . . .
What is an inverse function?
Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1
defined by:
f−1
(b) = a,
where a is chosen so that f(a) = b.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
. . . . . .
What is an inverse function?
Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1
defined by:
f−1
(b) = a,
where a is chosen so that f(a) = b.
So
f−1
(f(x)) = x, f(f−1
(x)) = x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
. . . . . .
What functions are invertible?
In order for f−1
to be a function, there must be only one a in D
corresponding to each b in E.
Such a function is called one-to-one
The graph of such a function passes the horizontal line test: any
horizontal line intersects the graph in exactly one point if at all.
If f is continuous, then f−1
is continuous.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 5 / 32
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 6 / 32
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.−
π
2
.
.
π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
.y = x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
.
..arcsin
The domain of arcsin is [−1, 1]
The range of arcsin is
[
−
π
2
,
π
2
]
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.0
.
.π
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
.y = x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
.
..arccos
The domain of arccos is [−1, 1]
The range of arccos is [0, π]
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.y = x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.arctan
.−
π
2
.
π
2
The domain of arctan is (−∞, ∞)
The range of arctan is
(
−
π
2
,
π
2
)
lim
x→∞
arctan x =
π
2
, lim
x→−∞
arctan x = −
π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.
.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.
.
.y = x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.
.
.
.
.
π
2
.
3π
2
The domain of arcsec is (−∞, −1] ∪ [1, ∞)
The range of arcsec is
[
0,
π
2
)
∪
(π
2
, π
]
lim
x→∞
arcsec x =
π
2
, lim
x→−∞
arcsec x =
3π
2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
. . . . . .
Values of Trigonometric Functions
x 0
π
6
π
4
π
3
π
2
sin x 0
1
2
√
2
2
√
3
2
1
cos x 1
√
3
2
√
2
2
1
2
0
tan x 0
1
√
3
1
√
3 undef
cot x undef
√
3 1
1
√
3
0
sec x 1
2
√
3
2
√
2
2 undef
csc x undef 2
2
√
2
2
√
3
1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 11 / 32
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(3π/4) =
√
2
2
.cos(3π/4) = −
√
2
2
Yes, tan
(
3π
4
)
= −1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(3π/4) =
√
2
2
.cos(3π/4) = −
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(π/4) = −
√
2
2
.cos(π/4) =
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
Another angle whose
tangent is −1 is −
π
4
, and
this is in the right range.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(π/4) = −
√
2
2
.cos(π/4) =
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
Another angle whose
tangent is −1 is −
π
4
, and
this is in the right range.
So arctan(−1) = −
π
4
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
−
π
4
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
−
π
4
3π
4
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
. . . . . .
Caution: Notational ambiguity
..sin2
x = (sin x)2
.sin−1
x = (sin x)−1
sinn
x means the nth power of sin x, except when n = −1!
The book uses sin−1
x for the inverse of sin x, and never for
(sin x)−1
.
I use csc x for
1
sin x
and arcsin x for the inverse of sin x.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 15 / 32
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 16 / 32
. . . . . .
The Inverse Function Theorem
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′
(a) ̸= 0. Then f−1
is defined in an
open interval containing b = f(a), and
(f−1
)′
(b) =
1
f′
(f−1
(b))
In Leibniz notation we have
dx
dy
=
1
dy/dx
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
. . . . . .
The Inverse Function Theorem
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′
(a) ̸= 0. Then f−1
is defined in an
open interval containing b = f(a), and
(f−1
)′
(b) =
1
f′
(f−1
(b))
In Leibniz notation we have
dx
dy
=
1
dy/dx
Upshot: Many times the derivative of f−1
(x) can be found by implicit
differentiation and the derivative of f:
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
Solution (Newtonian notation)
Let f(x) = x2
so that f−1
(y) =
√
y. Then f′
(u) = 2u so for any b > 0 we have
(f−1
)′
(b) =
1
2
√
b
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
Solution (Newtonian notation)
Let f(x) = x2
so that f−1
(y) =
√
y. Then f′
(u) = 2u so for any b > 0 we have
(f−1
)′
(b) =
1
2
√
b
Solution (Leibniz notation)
If the original function is y = x2
, then the inverse function is defined by x = y2
.
Differentiate implicitly:
1 = 2y
dy
dx
=⇒
dy
dx
=
1
2
√
x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
.1
.x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
.1
.x
.
.y = arcsin x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
.1
.x
.
.y = arcsin x
.
√
1 − x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
cos(arcsin x) =
√
1 − x2
.
.1
.x
.
.y = arcsin x
.
√
1 − x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
cos(arcsin x) =
√
1 − x2
So
d
dx
arcsin(x) =
1
√
1 − x2 .
.1
.x
.
.y = arcsin x
.
√
1 − x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
. . . . . .
Graphing arcsin and its derivative
The domain of f is [−1, 1],
but the domain of f′
is
(−1, 1)
lim
x→1−
f′
(x) = +∞
lim
x→−1+
f′
(x) = +∞ ..|
.−1
.|
.1
.
..arcsin
.
1
√
1 − x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 20 / 32
. . . . . .
Composing with arcsin
Example
Let f(x) = arcsin(x3
+ 1). Find f′
(x).
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
. . . . . .
Composing with arcsin
Example
Let f(x) = arcsin(x3
+ 1). Find f′
(x).
Solution
We have
d
dx
arcsin(x3
+ 1) =
1
√
1 − (x3 + 1)2
d
dx
(x3
+ 1)
=
3x2
√
−x6 − 2x3
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
. . . . . .
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
− sin y
dy
dx
= 1 =⇒
dy
dx
=
1
− sin y
=
1
− sin(arccos x)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
. . . . . .
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
− sin y
dy
dx
= 1 =⇒
dy
dx
=
1
− sin y
=
1
− sin(arccos x)
To simplify, look at a right
triangle:
sin(arccos x) =
√
1 − x2
So
d
dx
arccos(x) = −
1
√
1 − x2 .
.1
.
√
1 − x2
.x
.
.y = arccos x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
. . . . . .
Graphing arcsin and arccos
..|
.−1
.|
.1
.
..arcsin
.
..arccos
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
. . . . . .
Graphing arcsin and arccos
..|
.−1
.|
.1
.
..arcsin
.
..arccos
Note
cos θ = sin
(π
2
− θ
)
=⇒ arccos x =
π
2
− arcsin x
So it’s not a surprise that their
derivatives are opposites.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.x
.1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.x
.1
.
.y = arctan x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.x
.1
.
.y = arctan x
.
√
1 + x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
cos(arctan x) =
1
√
1 + x2
.
.x
.1
.
.y = arctan x
.
√
1 + x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
cos(arctan x) =
1
√
1 + x2
So
d
dx
arctan(x) =
1
1 + x2 .
.x
.1
.
.y = arctan x
.
√
1 + x2
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
. . . . . .
Graphing arctan and its derivative
. .x
.y
.arctan
.
1
1 + x2
.π/2
.−π/2
The domain of f and f′
are both (−∞, ∞)
Because of the horizontal asymptotes, lim
x→±∞
f′
(x) = 0
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 25 / 32
. . . . . .
Composing with arctan
Example
Let f(x) = arctan
√
x. Find f′
(x).
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
. . . . . .
Composing with arctan
Example
Let f(x) = arctan
√
x. Find f′
(x).
Solution
d
dx
arctan
√
x =
1
1 +
(√
x
)2
d
dx
√
x =
1
1 + x
·
1
2
√
x
=
1
2
√
x + 2x
√
x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
.x
.1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
.x
.1
.
.y = arcsec x
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
tan(arcsec x) =
√
x2 − 1
1
.
.x
.1
.
.y = arcsec x
.
√
x2 − 1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
tan(arcsec x) =
√
x2 − 1
1
So
d
dx
arcsec(x) =
1
x
√
x2 − 1 .
.x
.1
.
.y = arcsec x
.
√
x2 − 1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
. . . . . .
Another Example
Example
Let f(x) = earcsec 3x
. Find f′
(x).
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
. . . . . .
Another Example
Example
Let f(x) = earcsec 3x
. Find f′
(x).
Solution
f′
(x) = earcsec 3x
·
1
3x
√
(3x)2 − 1
· 3
=
3earcsec 3x
3x
√
9x2 − 1
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 29 / 32
. . . . . .
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
. . . . . .
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
When y = 0 and y′
= −130,
then
dθ
dt y=0
=
1
1 + 0
·
1
2
(−130) = −65 rad/sec
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
When y = 0 and y′
= −130,
then
dθ
dt y=0
=
1
1 + 0
·
1
2
(−130) = −65 rad/sec
The human eye can only track
at 3 rad/sec!
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
. . . . . .
Summary
y y′
arcsin x
1
√
1 − x2
arccos x −
1
√
1 − x2
arctan x
1
1 + x2
arccot x −
1
1 + x2
arcsec x
1
x
√
x2 − 1
arccsc x −
1
x
√
x2 − 1
Remarkable that the
derivatives of these
transcendental functions
are algebraic (or even
rational!)
V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 32 / 32

More Related Content

What's hot

Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mappingLinh Tran
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Me6603 sd by easy engineering.net
Me6603 sd by easy engineering.netMe6603 sd by easy engineering.net
Me6603 sd by easy engineering.netZackVizeman1
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015Edhole.com
 
Finite Element Analysis - The Basics
Finite Element Analysis - The BasicsFinite Element Analysis - The Basics
Finite Element Analysis - The BasicsSujith Jose
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationIJRES Journal
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2propaul
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisDrASSayyad
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertaintiesUniversity of Glasgow
 
Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus P Venkateswalu
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)Sreekanth G
 

What's hot (19)

FEM
FEMFEM
FEM
 
Lecture3
Lecture3Lecture3
Lecture3
 
1 d analysis
1 d analysis1 d analysis
1 d analysis
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mapping
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Fem lecture
Fem lectureFem lecture
Fem lecture
 
Me6603 sd by easy engineering.net
Me6603 sd by easy engineering.netMe6603 sd by easy engineering.net
Me6603 sd by easy engineering.net
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
 
Finite Element Analysis - The Basics
Finite Element Analysis - The BasicsFinite Element Analysis - The Basics
Finite Element Analysis - The Basics
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First Equation
 
fea qb
 fea qb fea qb
fea qb
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural Analysis
 
Ic ii-10
Ic ii-10Ic ii-10
Ic ii-10
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertainties
 
Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus Finite element analysis of space truss by abaqus
Finite element analysis of space truss by abaqus
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 

Viewers also liked

XNA L09–2D Graphics and Particle Engines
XNA L09–2D Graphics and Particle EnginesXNA L09–2D Graphics and Particle Engines
XNA L09–2D Graphics and Particle EnginesMohammad Shaker
 
12X1 T05 02 inverse trig functions (2010)
12X1 T05 02 inverse trig functions (2010)12X1 T05 02 inverse trig functions (2010)
12X1 T05 02 inverse trig functions (2010)Nigel Simmons
 
Matrices - álgebra lineal
Matrices - álgebra linealMatrices - álgebra lineal
Matrices - álgebra linealAlbert Page
 
Math 1300: Section 4-2 Systems of Linear Equations; Augmented Matrices
Math 1300: Section 4-2 Systems of Linear Equations; Augmented MatricesMath 1300: Section 4-2 Systems of Linear Equations; Augmented Matrices
Math 1300: Section 4-2 Systems of Linear Equations; Augmented MatricesJason Aubrey
 
Grammar book linares espanol
Grammar book linares espanolGrammar book linares espanol
Grammar book linares espanolJenni Karpowich
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functionsJessica Garcia
 
XNA L02–Basic Matrices and Transformations
XNA L02–Basic Matrices and TransformationsXNA L02–Basic Matrices and Transformations
XNA L02–Basic Matrices and TransformationsMohammad Shaker
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Calculus II - 17
Calculus II - 17Calculus II - 17
Calculus II - 17David Mao
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalinishalini singh
 
Spherical Polar Coordinate System- physics II
Spherical Polar Coordinate System- physics IISpherical Polar Coordinate System- physics II
Spherical Polar Coordinate System- physics IISonya Akter Rupa
 
Solving digit problems
Solving digit problemsSolving digit problems
Solving digit problemsYanie
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinatesEmiey Shaari
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functionsLeo Crisologo
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 

Viewers also liked (20)

XNA L05–Texturing
XNA L05–TexturingXNA L05–Texturing
XNA L05–Texturing
 
XNA L09–2D Graphics and Particle Engines
XNA L09–2D Graphics and Particle EnginesXNA L09–2D Graphics and Particle Engines
XNA L09–2D Graphics and Particle Engines
 
12X1 T05 02 inverse trig functions (2010)
12X1 T05 02 inverse trig functions (2010)12X1 T05 02 inverse trig functions (2010)
12X1 T05 02 inverse trig functions (2010)
 
Matrices - álgebra lineal
Matrices - álgebra linealMatrices - álgebra lineal
Matrices - álgebra lineal
 
Math 1300: Section 4-2 Systems of Linear Equations; Augmented Matrices
Math 1300: Section 4-2 Systems of Linear Equations; Augmented MatricesMath 1300: Section 4-2 Systems of Linear Equations; Augmented Matrices
Math 1300: Section 4-2 Systems of Linear Equations; Augmented Matrices
 
Grammar book linares espanol
Grammar book linares espanolGrammar book linares espanol
Grammar book linares espanol
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functions
 
XNA L02–Basic Matrices and Transformations
XNA L02–Basic Matrices and TransformationsXNA L02–Basic Matrices and Transformations
XNA L02–Basic Matrices and Transformations
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
Calculus II - 17
Calculus II - 17Calculus II - 17
Calculus II - 17
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Spherical Polar Coordinate System- physics II
Spherical Polar Coordinate System- physics IISpherical Polar Coordinate System- physics II
Spherical Polar Coordinate System- physics II
 
Algebra word problems
Algebra word problemsAlgebra word problems
Algebra word problems
 
Solving digit problems
Solving digit problemsSolving digit problems
Solving digit problems
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
co-ordinate systems
 co-ordinate systems co-ordinate systems
co-ordinate systems
 
Matrices
MatricesMatrices
Matrices
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 

Similar to Lesson 16: Inverse Trigonometric Functions (Section 041 slides)

Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handoutMatthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Mel Anthony Pepito
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMatthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMel Anthony Pepito
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Mel Anthony Pepito
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Mel Anthony Pepito
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Mel Anthony Pepito
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMel Anthony Pepito
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMel Anthony Pepito
 

Similar to Lesson 16: Inverse Trigonometric Functions (Section 041 slides) (20)

Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handout
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Esercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfEsercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdf
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 041 handout)
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Mi2
Mi2Mi2
Mi2
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Lesson 16: Inverse Trigonometric Functions (Section 041 slides)

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.041, Calculus I New York University November 1, 2010 Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . .
  • 2. . . . . . . Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 2 / 32
  • 3. . . . . . . Objectives Know the definitions, domains, ranges, and other properties of the inverse trignometric functions: arcsin, arccos, arctan, arcsec, arccsc, arccot. Know the derivatives of the inverse trignometric functions. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 3 / 32
  • 4. . . . . . . What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
  • 5. . . . . . . What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
  • 6. . . . . . . What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 5 / 32
  • 7. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 6 / 32
  • 8. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . .− π 2 . . π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 9. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 10. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 .y = x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 11. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 . ..arcsin The domain of arcsin is [−1, 1] The range of arcsin is [ − π 2 , π 2 ] V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 12. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . .0 . .π V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 13. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 14. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π .y = x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 15. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π . ..arccos The domain of arccos is [−1, 1] The range of arccos is [0, π] V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 16. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 17. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 18. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 .y = x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 19. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .arctan .− π 2 . π 2 The domain of arctan is (−∞, ∞) The range of arctan is ( − π 2 , π 2 ) lim x→∞ arctan x = π 2 , lim x→−∞ arctan x = − π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 20. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 21. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 22. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 . . .y = x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 23. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y . . . . . π 2 . 3π 2 The domain of arcsec is (−∞, −1] ∪ [1, ∞) The range of arcsec is [ 0, π 2 ) ∪ (π 2 , π ] lim x→∞ arcsec x = π 2 , lim x→−∞ arcsec x = 3π 2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 24. . . . . . . Values of Trigonometric Functions x 0 π 6 π 4 π 3 π 2 sin x 0 1 2 √ 2 2 √ 3 2 1 cos x 1 √ 3 2 √ 2 2 1 2 0 tan x 0 1 √ 3 1 √ 3 undef cot x undef √ 3 1 1 √ 3 0 sec x 1 2 √ 3 2 √ 2 2 undef csc x undef 2 2 √ 2 2 √ 3 1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 11 / 32
  • 25. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
  • 26. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
  • 27. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 28. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(3π/4) = √ 2 2 .cos(3π/4) = − √ 2 2 Yes, tan ( 3π 4 ) = −1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 29. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(3π/4) = √ 2 2 .cos(3π/4) = − √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 30. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(π/4) = − √ 2 2 .cos(π/4) = √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) Another angle whose tangent is −1 is − π 4 , and this is in the right range. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 31. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(π/4) = − √ 2 2 .cos(π/4) = √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) Another angle whose tangent is −1 is − π 4 , and this is in the right range. So arctan(−1) = − π 4 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 32. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 − π 4 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
  • 33. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 − π 4 3π 4 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
  • 34. . . . . . . Caution: Notational ambiguity ..sin2 x = (sin x)2 .sin−1 x = (sin x)−1 sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . I use csc x for 1 sin x and arcsin x for the inverse of sin x. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 15 / 32
  • 35. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 16 / 32
  • 36. . . . . . . The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and (f−1 )′ (b) = 1 f′ (f−1 (b)) In Leibniz notation we have dx dy = 1 dy/dx V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
  • 37. . . . . . . The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and (f−1 )′ (b) = 1 f′ (f−1 (b)) In Leibniz notation we have dx dy = 1 dy/dx Upshot: Many times the derivative of f−1 (x) can be found by implicit differentiation and the derivative of f: V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
  • 38. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 39. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) Let f(x) = x2 so that f−1 (y) = √ y. Then f′ (u) = 2u so for any b > 0 we have (f−1 )′ (b) = 1 2 √ b V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 40. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) Let f(x) = x2 so that f−1 (y) = √ y. Then f′ (u) = 2u so for any b > 0 we have (f−1 )′ (b) = 1 2 √ b Solution (Leibniz notation) If the original function is y = x2 , then the inverse function is defined by x = y2 . Differentiate implicitly: 1 = 2y dy dx =⇒ dy dx = 1 2 √ x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 41. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 42. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 43. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . .1 .x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 44. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . .1 .x . .y = arcsin x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 45. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . .1 .x . .y = arcsin x . √ 1 − x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 46. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = √ 1 − x2 . .1 .x . .y = arcsin x . √ 1 − x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 47. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = √ 1 − x2 So d dx arcsin(x) = 1 √ 1 − x2 . .1 .x . .y = arcsin x . √ 1 − x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 48. . . . . . . Graphing arcsin and its derivative The domain of f is [−1, 1], but the domain of f′ is (−1, 1) lim x→1− f′ (x) = +∞ lim x→−1+ f′ (x) = +∞ ..| .−1 .| .1 . ..arcsin . 1 √ 1 − x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 20 / 32
  • 49. . . . . . . Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
  • 50. . . . . . . Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). Solution We have d dx arcsin(x3 + 1) = 1 √ 1 − (x3 + 1)2 d dx (x3 + 1) = 3x2 √ −x6 − 2x3 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
  • 51. . . . . . . Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then − sin y dy dx = 1 =⇒ dy dx = 1 − sin y = 1 − sin(arccos x) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
  • 52. . . . . . . Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then − sin y dy dx = 1 =⇒ dy dx = 1 − sin y = 1 − sin(arccos x) To simplify, look at a right triangle: sin(arccos x) = √ 1 − x2 So d dx arccos(x) = − 1 √ 1 − x2 . .1 . √ 1 − x2 .x . .y = arccos x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
  • 53. . . . . . . Graphing arcsin and arccos ..| .−1 .| .1 . ..arcsin . ..arccos V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
  • 54. . . . . . . Graphing arcsin and arccos ..| .−1 .| .1 . ..arcsin . ..arccos Note cos θ = sin (π 2 − θ ) =⇒ arccos x = π 2 − arcsin x So it’s not a surprise that their derivatives are opposites. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
  • 55. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 56. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 57. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . .x .1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 58. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . .x .1 . .y = arctan x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 59. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . .x .1 . .y = arctan x . √ 1 + x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 60. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: cos(arctan x) = 1 √ 1 + x2 . .x .1 . .y = arctan x . √ 1 + x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 61. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: cos(arctan x) = 1 √ 1 + x2 So d dx arctan(x) = 1 1 + x2 . .x .1 . .y = arctan x . √ 1 + x2 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 62. . . . . . . Graphing arctan and its derivative . .x .y .arctan . 1 1 + x2 .π/2 .−π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim x→±∞ f′ (x) = 0 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 25 / 32
  • 63. . . . . . . Composing with arctan Example Let f(x) = arctan √ x. Find f′ (x). V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
  • 64. . . . . . . Composing with arctan Example Let f(x) = arctan √ x. Find f′ (x). Solution d dx arctan √ x = 1 1 + (√ x )2 d dx √ x = 1 1 + x · 1 2 √ x = 1 2 √ x + 2x √ x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
  • 65. . . . . . . Derivation: The derivative of arcsec Try this first. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 66. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 67. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 68. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 69. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . .x .1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 70. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . .x .1 . .y = arcsec x V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 71. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: tan(arcsec x) = √ x2 − 1 1 . .x .1 . .y = arcsec x . √ x2 − 1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 72. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: tan(arcsec x) = √ x2 − 1 1 So d dx arcsec(x) = 1 x √ x2 − 1 . .x .1 . .y = arcsec x . √ x2 − 1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 73. . . . . . . Another Example Example Let f(x) = earcsec 3x . Find f′ (x). V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
  • 74. . . . . . . Another Example Example Let f(x) = earcsec 3x . Find f′ (x). Solution f′ (x) = earcsec 3x · 1 3x √ (3x)2 − 1 · 3 = 3earcsec 3x 3x √ 9x2 − 1 V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
  • 75. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 29 / 32
  • 76. . . . . . . Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
  • 77. . . . . . . Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
  • 78. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. . .2 ft .y .130 ft/sec . .θ V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 79. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt . .2 ft .y .130 ft/sec . .θ V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 80. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt When y = 0 and y′ = −130, then dθ dt y=0 = 1 1 + 0 · 1 2 (−130) = −65 rad/sec . .2 ft .y .130 ft/sec . .θ V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 81. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt When y = 0 and y′ = −130, then dθ dt y=0 = 1 1 + 0 · 1 2 (−130) = −65 rad/sec The human eye can only track at 3 rad/sec! . .2 ft .y .130 ft/sec . .θ V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 82. . . . . . . Summary y y′ arcsin x 1 √ 1 − x2 arccos x − 1 √ 1 − x2 arctan x 1 1 + x2 arccot x − 1 1 + x2 arcsec x 1 x √ x2 − 1 arccsc x − 1 x √ x2 − 1 Remarkable that the derivatives of these transcendental functions are algebraic (or even rational!) V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 32 / 32