SlideShare a Scribd company logo
Section 2.7
                    Related Rates

                V63.0121.002.2010Su, Calculus I

                        New York University


                         May 27, 2010



Announcements

   No class Monday, May 31
   Assignment 2 due Tuesday, June 1

                                              .   .   .   .   .   .
Announcements




           No class Monday, May 31
           Assignment 2 due
           Tuesday, June 1




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       2 / 18
Objectives




           Use derivatives to
           understand rates of
           change.
           Model word problems




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       3 / 18
What are related rates problems?
 Today we’ll look at a direct application of the chain rule to real-world
 problems. Examples of these can be found whenever you have some
 system or object changing, and you want to measure the rate of
 change of something related to it.




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       4 / 18
Problem




 Example
 An oil slick in the shape of a disk is growing. At a certain time, the
 radius is 1 km and the volume is growing at the rate of 10,000 liters per
 second. If the slick is always 20 cm deep, how fast is the radius of the
 disk growing at the same time?
                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       5 / 18
A solution



 Solution
    The volume of the disk is

                      V = πr2 h.
                                                                            .       r
                                                                                    .
                    dV
    We are given        , a certain                                                                  h
                                                                                                     .
                     dt
    value of r, and the object is to
         dr
    find    at that instant.
         dt




                                                                    .   .       .         .      .       .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                       May 27, 2010         6 / 18
Solution

 Differentiating V = πr2 h with respect to time we have

                                          0
                       dV       dr    dh¡
                                        !
                          = 2πrh + πr2 ¡
                       dt       dt    ¡dt




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       7 / 18
Solution

 Differentiating V = πr2 h with respect to time we have

                                          0
                       dV       dr    dh¡
                                        !   dr    1    dV
                          = 2πrh + πr2 ¡ =⇒    =     ·    .
                       dt       dt    ¡dt   dt   2πrh dt




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       7 / 18
Solution

 Differentiating V = πr2 h with respect to time we have

                                          0
                       dV       dr    dh¡
                                        !   dr    1    dV
                          = 2πrh + πr2 ¡ =⇒    =     ·    .
                       dt       dt    ¡dt   dt   2πrh dt
 Now we evaluate:
                           dr                       1          10, 000 L
                                         =                   ·
                           dt   r=1 km       2π(1 km)(20 cm)       s




                                                                         .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 2.7 Related Rates               May 27, 2010       7 / 18
Solution

 Differentiating V = πr2 h with respect to time we have

                                           0
                        dV       dr    dh¡
                                         !   dr    1    dV
                           = 2πrh + πr2 ¡ =⇒    =     ·    .
                        dt       dt    ¡dt   dt   2πrh dt
 Now we evaluate:
                           dr                       1          10, 000 L
                                         =                   ·
                           dt   r=1 km       2π(1 km)(20 cm)       s

 Converting every length to meters we have

                   dr                           1           10 m3    1 m
                                  =                       ·       =
                   dt   r=1 km          2π(1000 m)(0.2 m)     s     40π s


                                                                         .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)        Section 2.7 Related Rates               May 27, 2010       7 / 18
Outline




 Strategy



 Examples




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       8 / 18
Strategies for Problem Solving




     1. Understand the problem
     2. Devise a plan
     3. Carry out the plan
     4. Review and extend




                                                                   György Pólya
                                                               (Hungarian, 1887–1985)
                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010       9 / 18
Strategies for Related Rates Problems




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.
    3. Introduce notation. Give symbols to all quantities that are
       functions of time (and maybe some constants)




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.
    3. Introduce notation. Give symbols to all quantities that are
       functions of time (and maybe some constants)
    4. Express the given information and the required rate in terms of
       derivatives




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.
    3. Introduce notation. Give symbols to all quantities that are
       functions of time (and maybe some constants)
    4. Express the given information and the required rate in terms of
       derivatives
    5. Write an equation that relates the various quantities of the
       problem. If necessary, use the geometry of the situation to
       eliminate all but one of the variables.




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.
    3. Introduce notation. Give symbols to all quantities that are
       functions of time (and maybe some constants)
    4. Express the given information and the required rate in terms of
       derivatives
    5. Write an equation that relates the various quantities of the
       problem. If necessary, use the geometry of the situation to
       eliminate all but one of the variables.
    6. Use the Chain Rule to differentiate both sides with respect to t.




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Strategies for Related Rates Problems


    1. Read the problem.
    2. Draw a diagram.
    3. Introduce notation. Give symbols to all quantities that are
       functions of time (and maybe some constants)
    4. Express the given information and the required rate in terms of
       derivatives
    5. Write an equation that relates the various quantities of the
       problem. If necessary, use the geometry of the situation to
       eliminate all but one of the variables.
    6. Use the Chain Rule to differentiate both sides with respect to t.
    7. Substitute the given information into the resulting equation and
       solve for the unknown rate.

                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   10 / 18
Outline




 Strategy



 Examples




                                                                    .   .   .     .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   11 / 18
Another one




 Example
 A man starts walking north at 4ft/sec from a point P. Five minutes later a
 woman starts walking south at 4ft/sec from a point 500 ft due east of P.
 At what rate are the people walking apart 15 min after the woman
 starts walking?




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   12 / 18
Diagram

               4
               . ft/sec



                                                                        .
                               m
                               .



                                    .
                               P
                               .




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   13 / 18
Diagram

               4
               . ft/sec



                                                                              .
                               m
                               .



                                    .      5
                                           . 00
                               P
                               .

                                                                    w
                                                                    .



                                                                            4
                                                                            . ft/sec
                                                                        .     .    .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                      May 27, 2010   13 / 18
Diagram

               4
               . ft/sec



                                                                              .


                                        .
                                        s
                               m
                               .



                                    .       5
                                            . 00
                               P
                               .

                                                                    w
                                                                    .



                                                                            4
                                                                            . ft/sec
                                                                        .     .    .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                      May 27, 2010   13 / 18
Diagram

               4
               . ft/sec



                                                                              .


                                        .
                                        s
                               m
                               .



                                    .       5
                                            . 00
                               P
                               .

                                w
                                .                                   w
                                                                    .

                                            5
                                            . 00
                                                                            4
                                                                            . ft/sec
                                                                        .     .    .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                      May 27, 2010   13 / 18
Diagram

               4
               . ft/sec




                                                 √           .


                                        .
                                        s
                               m
                               .
                                              s
                                              . = (m + w)2 + 5002




                                    .       5
                                            . 00
                               P
                               .

                                w
                                .                                   w
                                                                    .

                                            5
                                            . 00
                                                                            4
                                                                            . ft/sec
                                                                        .     .    .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                      May 27, 2010   13 / 18
Expressing what is known and unknown


 15 minutes after the woman starts walking, the woman has traveled
                   (     )(       )
                     4ft    60sec
                                    (15min) = 3600ft
                     sec     min

 while the man has traveled
                  (      )(       )
                     4ft    60sec
                                    (20min) = 4800ft
                    sec      min

                              ds                          dm          dw
 We want to know                 when m = 4800, w = 3600,    = 4, and    = 4.
                              dt                          dt          dt



                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   14 / 18
Differentiation


 We have
                                                      (         )
             ds   1(        2      2
                                     )−1/2              dm dw
                =    (m + w) + 500         (2)(m + w)      +
             dt   2                                     dt   dt
                        (          )
                  m + w dm dw
                =             +
                    s     dt    dt

 At our particular point in time

        ds                  4800 + 3600               672
           =√                              (4 + 4) = √     ≈ 7.98587ft/s
        dt                        2 + 5002            7081
                     (4800 + 3600)




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   15 / 18
An example from electricity


 Example
 If two resistors with resistances
 R1 and R2 are connected in
 parallel, as in the figure, then                                       .         .
 the total resistance R,
 measured in Ohms (Ω), is given                                             R
                                                                            . 1           R
                                                                                          . 2
 by                                                                     .         .
            1     1      1
              =      +
           R     R1 R2
 (a) Suppose R1 = 80 Ω and R2 = 100 Ω. What is R?
 (b) If at some point R′ = 0.3 Ω/s and R′ = 0.2 Ω/s, what is R′ at the
                       1                2
     same time?


                                                                    .       .         .         .    .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates                          May 27, 2010   16 / 18
Solution

 Solution
            R1 R2      80 · 100       4
 (a) R =            =             = 44 Ω.
          R1 + R2      80 + 100       9
 (b) Differentiating the relation between R1 , R2 , and R we get

                                            1                  1            1
                                        −       2
                                                    R′ = −         R′ −
                                                                    1            R′
                                                                                  2
                                            R                 R2
                                                               1            R2
                                                                             2

        So when R′ = 0.3 Ω/s and R′ = 0.2 Ω/s,
                  1                 2
                      (           )               (          )
               ′    2   R′
                         1    R′2        R2 R2
                                           1 2      R′
                                                     1   R′2
             R =R          +         =                 +
                        R2 R2
                         1      2
                                       (R1 + R2 )2 R2 R2
                                                     1     2
                   (     )2 (                )
                     400      3/10 2/10          107
                 =                2
                                     +     2
                                               =     ≈ 0.132098 Ω/s
                      9        80      100       810

                                                                             .        .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)           Section 2.7 Related Rates                     May 27, 2010   17 / 18
Summary




         Related Rates problems are an application of the chain rule to
         modeling
         Similar triangles, the Pythagorean Theorem, trigonometric
         functions are often clues to finding the right relation.
         Problem solving techniques: understand, strategize, solve, review.




                                                                    .   .   .      .      .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 2.7 Related Rates               May 27, 2010   18 / 18

More Related Content

What's hot

Math ict lesson area of parallelogram and trapezium kenneth lui
Math ict lesson area of parallelogram and trapezium kenneth luiMath ict lesson area of parallelogram and trapezium kenneth lui
Math ict lesson area of parallelogram and trapezium kenneth luibryan
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)anil7nayak
 
Graphs of Log functions
Graphs of Log functionsGraphs of Log functions
Graphs of Log functionslesurhommemega
 
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTER
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTERTHE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTER
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTERRicksCeleste
 
Logarithms and exponents solve equations
Logarithms and exponents solve equationsLogarithms and exponents solve equations
Logarithms and exponents solve equationssrobbins4
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lecture 10(asymptotes)
Lecture 10(asymptotes)Lecture 10(asymptotes)
Lecture 10(asymptotes)FahadYaqoob5
 
Chapter 12 rotational motion
Chapter 12 rotational motionChapter 12 rotational motion
Chapter 12 rotational motionLisa Stack
 
Introduction to calculus
Introduction to calculusIntroduction to calculus
Introduction to calculussheetslibrary
 
Motion under gravity By ghumare s m
Motion under gravity By ghumare s mMotion under gravity By ghumare s m
Motion under gravity By ghumare s msmghumare
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first orderUzair Saiyed
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functionsSelvaraj John
 
GENERAL-PHYSICS-1-Q2W1.pptx
GENERAL-PHYSICS-1-Q2W1.pptxGENERAL-PHYSICS-1-Q2W1.pptx
GENERAL-PHYSICS-1-Q2W1.pptxjuweniber
 
General Mathematics: most essential learning competencies-(MELCs)
General Mathematics: most essential learning competencies-(MELCs)General Mathematics: most essential learning competencies-(MELCs)
General Mathematics: most essential learning competencies-(MELCs)Carlito Garcia Jr.
 
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Matthew Leingang
 

What's hot (20)

Math ict lesson area of parallelogram and trapezium kenneth lui
Math ict lesson area of parallelogram and trapezium kenneth luiMath ict lesson area of parallelogram and trapezium kenneth lui
Math ict lesson area of parallelogram and trapezium kenneth lui
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)
 
Graphs of Log functions
Graphs of Log functionsGraphs of Log functions
Graphs of Log functions
 
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTER
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTERTHE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTER
THE MIDLINE THEOREM-.pptx GRADE 9 MATHEMATICS THIRD QUARTER
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Logarithms and exponents solve equations
Logarithms and exponents solve equationsLogarithms and exponents solve equations
Logarithms and exponents solve equations
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lecture 10(asymptotes)
Lecture 10(asymptotes)Lecture 10(asymptotes)
Lecture 10(asymptotes)
 
Chapter 12 rotational motion
Chapter 12 rotational motionChapter 12 rotational motion
Chapter 12 rotational motion
 
Introduction to calculus
Introduction to calculusIntroduction to calculus
Introduction to calculus
 
Motion under gravity By ghumare s m
Motion under gravity By ghumare s mMotion under gravity By ghumare s m
Motion under gravity By ghumare s m
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Circular functions
Circular functionsCircular functions
Circular functions
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
2.1 Kinematics
2.1 Kinematics 2.1 Kinematics
2.1 Kinematics
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
GENERAL-PHYSICS-1-Q2W1.pptx
GENERAL-PHYSICS-1-Q2W1.pptxGENERAL-PHYSICS-1-Q2W1.pptx
GENERAL-PHYSICS-1-Q2W1.pptx
 
General Mathematics: most essential learning competencies-(MELCs)
General Mathematics: most essential learning competencies-(MELCs)General Mathematics: most essential learning competencies-(MELCs)
General Mathematics: most essential learning competencies-(MELCs)
 
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)
 

Viewers also liked

Calc i derivatives
Calc i derivativesCalc i derivatives
Calc i derivativesViorica Tonu
 
Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)Matthew Leingang
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMatthew Leingang
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMatthew Leingang
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18  -maximum_and_minimum_values_slidesLesson18  -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesMatthew Leingang
 
Lesson 20: Derivatives and the shapes of curves
Lesson 20: Derivatives and the shapes of curvesLesson 20: Derivatives and the shapes of curves
Lesson 20: Derivatives and the shapes of curvesMatthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of CalculusLesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of CalculusMatthew Leingang
 
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2jeksespina
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and DistancesMatthew Leingang
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMatthew Leingang
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve SketchingMatthew Leingang
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slidesMatthew Leingang
 

Viewers also liked (20)

Related Rates
Related RatesRelated Rates
Related Rates
 
Related rates
Related ratesRelated rates
Related rates
 
Calc i derivatives
Calc i derivativesCalc i derivatives
Calc i derivatives
 
Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18  -maximum_and_minimum_values_slidesLesson18  -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 20: Derivatives and the shapes of curves
Lesson 20: Derivatives and the shapes of curvesLesson 20: Derivatives and the shapes of curves
Lesson 20: Derivatives and the shapes of curves
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of CalculusLesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2Silberberg   Chemistry   Molecular Nature Of Matter And Change 4e   Copy2
Silberberg Chemistry Molecular Nature Of Matter And Change 4e Copy2
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slides
 

Similar to Lesson 13: Related Rates Problems

Lesson 8: Basic Differentiation Rules (Section 41 handout)
Lesson 8: Basic Differentiation Rules (Section 41 handout)Lesson 8: Basic Differentiation Rules (Section 41 handout)
Lesson 8: Basic Differentiation Rules (Section 41 handout)Matthew Leingang
 
Lesson 10: The Chain Rule (Section 21 handout)
Lesson 10: The Chain Rule (Section 21 handout)Lesson 10: The Chain Rule (Section 21 handout)
Lesson 10: The Chain Rule (Section 21 handout)Matthew Leingang
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMel Anthony Pepito
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeMatthew Leingang
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeMatthew Leingang
 
Lesson 8: Basic Differentiation Rules (Section 21 handout)
Lesson 8: Basic Differentiation Rules (Section 21 handout)Lesson 8: Basic Differentiation Rules (Section 21 handout)
Lesson 8: Basic Differentiation Rules (Section 21 handout)Matthew Leingang
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeMatthew Leingang
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeMatthew Leingang
 
Lesson 12: Linear Approximation and Differentials (Section 21 handout)
Lesson 12: Linear Approximation and Differentials (Section 21 handout)Lesson 12: Linear Approximation and Differentials (Section 21 handout)
Lesson 12: Linear Approximation and Differentials (Section 21 handout)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMatthew Leingang
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMel Anthony Pepito
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility usingkkislas
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
Lesson 12: Linear Approximation (Section 41 handout)
Lesson 12: Linear Approximation (Section 41 handout)Lesson 12: Linear Approximation (Section 41 handout)
Lesson 12: Linear Approximation (Section 41 handout)Matthew Leingang
 
lec_slides.pdf
lec_slides.pdflec_slides.pdf
lec_slides.pdfMalluKomar
 
Lesson 9: The Product and Quotient Rules (Section 41 handout)
Lesson 9: The Product and Quotient Rules (Section 41 handout)Lesson 9: The Product and Quotient Rules (Section 41 handout)
Lesson 9: The Product and Quotient Rules (Section 41 handout)Matthew Leingang
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 

Similar to Lesson 13: Related Rates Problems (20)

Lesson 6: The Derivative
Lesson 6: The DerivativeLesson 6: The Derivative
Lesson 6: The Derivative
 
Lesson 8: Basic Differentiation Rules (Section 41 handout)
Lesson 8: Basic Differentiation Rules (Section 41 handout)Lesson 8: Basic Differentiation Rules (Section 41 handout)
Lesson 8: Basic Differentiation Rules (Section 41 handout)
 
Lesson 10: The Chain Rule (Section 21 handout)
Lesson 10: The Chain Rule (Section 21 handout)Lesson 10: The Chain Rule (Section 21 handout)
Lesson 10: The Chain Rule (Section 21 handout)
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 8: Basic Differentiation Rules (Section 21 handout)
Lesson 8: Basic Differentiation Rules (Section 21 handout)Lesson 8: Basic Differentiation Rules (Section 21 handout)
Lesson 8: Basic Differentiation Rules (Section 21 handout)
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 13: Related Rates of Change
Lesson 13: Related Rates of ChangeLesson 13: Related Rates of Change
Lesson 13: Related Rates of Change
 
Lesson 12: Linear Approximation and Differentials (Section 21 handout)
Lesson 12: Linear Approximation and Differentials (Section 21 handout)Lesson 12: Linear Approximation and Differentials (Section 21 handout)
Lesson 12: Linear Approximation and Differentials (Section 21 handout)
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
Lesson 12: Linear Approximation (Section 41 handout)
Lesson 12: Linear Approximation (Section 41 handout)Lesson 12: Linear Approximation (Section 41 handout)
Lesson 12: Linear Approximation (Section 41 handout)
 
lec_slides.pdf
lec_slides.pdflec_slides.pdf
lec_slides.pdf
 
Lesson 9: The Product and Quotient Rules (Section 41 handout)
Lesson 9: The Product and Quotient Rules (Section 41 handout)Lesson 9: The Product and Quotient Rules (Section 41 handout)
Lesson 9: The Product and Quotient Rules (Section 41 handout)
 
Lecture notes 02
Lecture notes 02Lecture notes 02
Lecture notes 02
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 

Recently uploaded

10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka DoktorováCzechDreamin
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekCzechDreamin
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCzechDreamin
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupCatarinaPereira64715
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfChristopherTHyatt
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationZilliz
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor TurskyiFwdays
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersSafe Software
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualityInflectra
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...Product School
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...Product School
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIES VE
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfCheryl Hung
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxDavid Michel
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...CzechDreamin
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutesconfluent
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backElena Simperl
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxAbida Shariff
 

Recently uploaded (20)

10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdf
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG Evaluation
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 

Lesson 13: Related Rates Problems

  • 1. Section 2.7 Related Rates V63.0121.002.2010Su, Calculus I New York University May 27, 2010 Announcements No class Monday, May 31 Assignment 2 due Tuesday, June 1 . . . . . .
  • 2. Announcements No class Monday, May 31 Assignment 2 due Tuesday, June 1 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 2 / 18
  • 3. Objectives Use derivatives to understand rates of change. Model word problems . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 3 / 18
  • 4. What are related rates problems? Today we’ll look at a direct application of the chain rule to real-world problems. Examples of these can be found whenever you have some system or object changing, and you want to measure the rate of change of something related to it. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 4 / 18
  • 5. Problem Example An oil slick in the shape of a disk is growing. At a certain time, the radius is 1 km and the volume is growing at the rate of 10,000 liters per second. If the slick is always 20 cm deep, how fast is the radius of the disk growing at the same time? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 5 / 18
  • 6. A solution Solution The volume of the disk is V = πr2 h. . r . dV We are given , a certain h . dt value of r, and the object is to dr find at that instant. dt . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 6 / 18
  • 7. Solution Differentiating V = πr2 h with respect to time we have 0 dV dr dh¡ ! = 2πrh + πr2 ¡ dt dt ¡dt . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 7 / 18
  • 8. Solution Differentiating V = πr2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2πrh + πr2 ¡ =⇒ = · . dt dt ¡dt dt 2πrh dt . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 7 / 18
  • 9. Solution Differentiating V = πr2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2πrh + πr2 ¡ =⇒ = · . dt dt ¡dt dt 2πrh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 7 / 18
  • 10. Solution Differentiating V = πr2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2πrh + πr2 ¡ =⇒ = · . dt dt ¡dt dt 2πrh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s Converting every length to meters we have dr 1 10 m3 1 m = · = dt r=1 km 2π(1000 m)(0.2 m) s 40π s . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 7 / 18
  • 11. Outline Strategy Examples . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 8 / 18
  • 12. Strategies for Problem Solving 1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Review and extend György Pólya (Hungarian, 1887–1985) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 9 / 18
  • 13. Strategies for Related Rates Problems . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 14. Strategies for Related Rates Problems 1. Read the problem. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 15. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 16. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 17. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 18. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 19. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 20. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. 7. Substitute the given information into the resulting equation and solve for the unknown rate. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 10 / 18
  • 21. Outline Strategy Examples . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 11 / 18
  • 22. Another one Example A man starts walking north at 4ft/sec from a point P. Five minutes later a woman starts walking south at 4ft/sec from a point 500 ft due east of P. At what rate are the people walking apart 15 min after the woman starts walking? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 12 / 18
  • 23. Diagram 4 . ft/sec . m . . P . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 13 / 18
  • 24. Diagram 4 . ft/sec . m . . 5 . 00 P . w . 4 . ft/sec . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 13 / 18
  • 25. Diagram 4 . ft/sec . . s m . . 5 . 00 P . w . 4 . ft/sec . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 13 / 18
  • 26. Diagram 4 . ft/sec . . s m . . 5 . 00 P . w . w . 5 . 00 4 . ft/sec . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 13 / 18
  • 27. Diagram 4 . ft/sec √ . . s m . s . = (m + w)2 + 5002 . 5 . 00 P . w . w . 5 . 00 4 . ft/sec . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 13 / 18
  • 28. Expressing what is known and unknown 15 minutes after the woman starts walking, the woman has traveled ( )( ) 4ft 60sec (15min) = 3600ft sec min while the man has traveled ( )( ) 4ft 60sec (20min) = 4800ft sec min ds dm dw We want to know when m = 4800, w = 3600, = 4, and = 4. dt dt dt . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 14 / 18
  • 29. Differentiation We have ( ) ds 1( 2 2 )−1/2 dm dw = (m + w) + 500 (2)(m + w) + dt 2 dt dt ( ) m + w dm dw = + s dt dt At our particular point in time ds 4800 + 3600 672 =√ (4 + 4) = √ ≈ 7.98587ft/s dt 2 + 5002 7081 (4800 + 3600) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 15 / 18
  • 30. An example from electricity Example If two resistors with resistances R1 and R2 are connected in parallel, as in the figure, then . . the total resistance R, measured in Ohms (Ω), is given R . 1 R . 2 by . . 1 1 1 = + R R1 R2 (a) Suppose R1 = 80 Ω and R2 = 100 Ω. What is R? (b) If at some point R′ = 0.3 Ω/s and R′ = 0.2 Ω/s, what is R′ at the 1 2 same time? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 16 / 18
  • 31. Solution Solution R1 R2 80 · 100 4 (a) R = = = 44 Ω. R1 + R2 80 + 100 9 (b) Differentiating the relation between R1 , R2 , and R we get 1 1 1 − 2 R′ = − R′ − 1 R′ 2 R R2 1 R2 2 So when R′ = 0.3 Ω/s and R′ = 0.2 Ω/s, 1 2 ( ) ( ) ′ 2 R′ 1 R′2 R2 R2 1 2 R′ 1 R′2 R =R + = + R2 R2 1 2 (R1 + R2 )2 R2 R2 1 2 ( )2 ( ) 400 3/10 2/10 107 = 2 + 2 = ≈ 0.132098 Ω/s 9 80 100 810 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 17 / 18
  • 32. Summary Related Rates problems are an application of the chain rule to modeling Similar triangles, the Pythagorean Theorem, trigonometric functions are often clues to finding the right relation. Problem solving techniques: understand, strategize, solve, review. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 2.7 Related Rates May 27, 2010 18 / 18