.

                     Section 5.3
             Evaluating Definite Integrals

                        V63.0121.041, Calculus I

                             New York University


                            December 6, 2010


    Announcements

       Today: Section 5.3
       Wednesday: Section 5.4
       Monday, December 13: Section 5.5
       ”Monday,” December 15: Review and Movie Day!
       Monday, December 20, 12:00–1:50pm: Final Exam
                                          .    .   .   .   .   .
Announcements



         Today: Section 5.3
         Wednesday: Section 5.4
         Monday, December 13:
         Section 5.5
         ”Monday,” December 15:
         Review and Movie Day!
         Monday, December 20,
         12:00–1:50pm: Final Exam




                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       2 / 41
Objectives




         Use the Evaluation
         Theorem to evaluate
         definite integrals.
         Write antiderivatives as
         indefinite integrals.
         Interpret definite integrals
         as “net change” of a
         function over an interval.




                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       3 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       4 / 41
The definite integral as a limit

Definition
If f is a function defined on [a, b], the definite integral of f from a to b
is the number           ∫ b                ∑n
                            f(x) dx = lim      f(ci ) ∆x
                                  a                    n→∞
                                                                 i=1

                    b−a
where ∆x =              , and for each i, xi = a + i∆x, and ci is a point in
                     n
[xi−1 , xi ].

Theorem
If f is continuous on [a, b] or if f has only finitely many jump
discontinuities, then f is integrable on [a, b]; that is, the definite integral
∫ b
      f(x) dx exists and is the same for any choice of ci .
 a
                                                                              .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals           December 6, 2010       5 / 41
Notation/Terminology


                                              ∫     b
                                                        f(x) dx
                                                a
      ∫
           — integral sign (swoopy S)
      f(x) — integrand
      a and b — limits of integration (a is the lower limit and b the
      upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
      The process of computing an integral is called integration



                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       6 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2




                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4        4          4          4
   M4 =                  +      +          +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2




                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4           4       4          4
   M4 =                  +        +        +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4     4    4
       =             +      +     +
         4 65/64 73/64 89/64 113/64


                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4            4      4          4
   M4 =                  +         +       +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4      4   4
       =             +       +     +
         4 65/64 73/64 89/64 113/64
         150, 166, 784
       =                ≈ 3.1468
          47, 720, 465
                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Properties of the integral


Theorem (Additive Properties of the Integral)
Let f and g be integrable functions on [a, b] and c a constant. Then
     ∫ b
 1.      c dx = c(b − a)
        a
      ∫     b                                ∫     b                ∫      b
 2.             [f(x) + g(x)] dx =                     f(x) dx +               g(x) dx.
        a                                      a                       a
      ∫     b                     ∫   b
 3.             cf(x) dx = c              f(x) dx.
        a                         a
      ∫     b                                ∫     b                ∫      b
 4.             [f(x) − g(x)] dx =                     f(x) dx −               g(x) dx.
        a                                      a                       a




                                                                                   .      .   .         .      .     .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals               December 6, 2010       8 / 41
More Properties of the Integral


Conventions:                           ∫                              ∫
                                             a                              b
                                                 f(x) dx = −                    f(x) dx
                                         b                              a
                                                  ∫     a
                                                            f(x) dx = 0
                                                    a
This allows us to have
Theorem
    ∫ c           ∫               b                   ∫       c
 5.     f(x) dx =                     f(x) dx +                   f(x) dx for all a, b, and c.
        a                    a                            b




                                                                                     .    .   .         .      .     .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals              December 6, 2010       9 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫      c
 5.     f(x) dx =                         f(x) dx +                f(x) dx for all a, b, and c.
         a                        a                        b



                             y




                                  .
                                              a                      b                  c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b
                                                           f(x) dx
                                                   a




                                  .
                                              a                        b                c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b                   ∫   c
                                                           f(x) dx                 f(x) dx
                                                   a                       b




                                  .
                                              a                        b                     c x
                                                                                       .      .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals              December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b      ∫ c ∫ c
                                                           f(x) dxf(x) dxf(x) dx
                                                   a             a         b




                                  .
                                              a                        b                c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫       c
 5.     f(x) dx =                         f(x) dx +                 f(x) dx for all a, b, and c.
         a                        a                         b



                             y




                                  .
                                  a                     c                                       x
                                                                                        b
                                                                                    .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals               December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                   ∫       c
 5.     f(x) dx =                         f(x) dx +                   f(x) dx for all a, b, and c.
         a                        a                           b



                             y



                                                      ∫     b
                                                                  f(x) dx
                                                        a




                                  .
                                  a                       c                                     x
                                                                                        b
                                                                                    .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals               December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫       c
 5.     f(x) dx =                         f(x) dx +                 f(x) dx for all a, b, and c.
         a                        a                         b



                             y


                                                                    ∫   c
                                                                            f(x) dx =
                                                                     b∫
                                                                                b
                                                                    −               f(x) dx
                                                                            c
                                  .
                                  a                     c                                             x
                                                                                              b
                                                                                          .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals                     December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                       ∫       c
 5.     f(x) dx =                         f(x) dx +                       f(x) dx for all a, b, and c.
         a                        a                               b



                             y


                                      ∫       c                           ∫   c
                                                  f(x) dx                         f(x) dx =
                                          a                                b∫
                                                                                      b
                                                                          −               f(x) dx
                                                                                  c
                                  .
                                  a                           c                                             x
                                                                                                    b
                                                                                                .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)                   Section 5.3 Evaluating Definite Integrals                     December 6, 2010   10 / 41
Definite Integrals We Know So Far


       If the integral computes an
       area and we know the
       area, we can use that. For
       instance,
                                                                              y
            ∫ 1√
                              π
                  1 − x2 dx =
             0                4

       By brute force we
                                                                                  .
       computed                                                                                      x
       ∫     1                    ∫   1
                           1                          1
                 x2 dx =                  x3 dx =
         0                 3      0                   4


                                                                              .       .   .      .       .   .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals           December 6, 2010   11 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                          a




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   12 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                          a
 7. If f(x) ≥ g(x) for all x in [a, b], then
                                     ∫     b                  ∫    b
                                               f(x) dx ≥               g(x) dx
                                       a                       a




                                                                           .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals          December 6, 2010   12 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                               a
 7. If f(x) ≥ g(x) for all x in [a, b], then
                                        ∫     b                    ∫   b
                                                  f(x) dx ≥                g(x) dx
                                          a                        a


 8. If m ≤ f(x) ≤ M for all x in [a, b], then
                                                     ∫    b
                                  m(b − a) ≤                  f(x) dx ≤ M(b − a)
                                                      a


                                                                               .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)      Section 5.3 Evaluating Definite Integrals           December 6, 2010   12 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   13 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x

Solution
Since
                                                              1  1  1
                                  1 ≤ x ≤ 2 =⇒                  ≤ ≤
                                                              2  x  1
we have                                         ∫       2
                             1                              1
                               · (2 − 1) ≤                    dx ≤ 1 · (2 − 1)
                             2                      1       x
or                                              ∫       2
                                        1                   1
                                          ≤                   dx ≤ 1
                                        2           1       x

                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   13 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   14 / 41
Socratic proof


       The definite integral of
       velocity measures
       displacement (net
       distance)
       The derivative of
       displacement is velocity
       So we can compute
       displacement with the
       definite integral or the
       antiderivative of velocity
       But any function can be a
       velocity function, so . . .

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   15 / 41
Theorem of the Day


Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′ for another function F, then
                                  ∫    b
                                           f(x) dx = F(b) − F(a).
                                  a




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   16 / 41
Theorem of the Day


Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′ for another function F, then
                                  ∫    b
                                           f(x) dx = F(b) − F(a).
                                  a



Note
In Section 5.3, this theorem is called “The Evaluation Theorem”.
Nobody else in the world calls it that.



                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   16 / 41
Proving the Second FTC


                                                                                  b−a
      Divide up [a, b] into n pieces of equal width ∆x =                              as usual.
                                                                                   n




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proving the Second FTC


                                                                b−a
      Divide up [a, b] into n pieces of equal width ∆x =            as usual.
                                                                 n
      For each i, F is continuous on [xi−1 , xi ] and differentiable on
      (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                                  F(xi ) − F(xi−1 )
                                                    = F′ (ci ) = f(ci )
                                     xi − xi−1




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proving the Second FTC


                                                                b−a
      Divide up [a, b] into n pieces of equal width ∆x =            as usual.
                                                                 n
      For each i, F is continuous on [xi−1 , xi ] and differentiable on
      (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                                  F(xi ) − F(xi−1 )
                                                    = F′ (ci ) = f(ci )
                                     xi − xi−1

      Or
                                     f(ci )∆x = F(xi ) − F(xi−1 )




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proof continued


      We have for each i

                                    f(ci )∆x = F(xi ) − F(xi−1 )




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                    f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
              = F(xn ) − F(x0 ) = F(b) − F(a)



                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof Completed



      We have shown for each n,

                                          Sn = F(b) − F(a)

      Which does not depend on n.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   19 / 41
Proof Completed



      We have shown for each n,

                                           Sn = F(b) − F(a)

      Which does not depend on n.
      So in the limit
           ∫ b
               f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a)
                a                 n→∞              n→∞




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   19 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.




                                                                              .




                                                                          .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.

Solution


           ∫      1                    1
                                  x4            1
    A=                x3 dx =               =
              0                   4    0        4                                      .




                                                                                   .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.

Solution


           ∫      1                    1
                                  x4            1
    A=                x3 dx =               =
              0                   4    0        4                                      .

Here we use the notation F(x)|b or [F(x)]b to mean F(b) − F(a).
                              a          a




                                                                                   .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.



                                                  1


                                                       .
                                  −1                                       1




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.



                                                       1


                                                           .
                                      −1                                       1

Solution

                        ∫   1                      [       ]1              (  [ )]
                            x3                                          1     1      4
         A=2−    x dx = 2 −       2
                                                                    =2−   − −      =
              −1            3                                  −1       3     3      3
                                                                               .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing an integral we estimated before

Example
                                  ∫   1
                                            4
Evaluate the integral                            dx.
                                  0       1 + x2




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   22 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4            4      4          4
   M4 =                  +         +       +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4      4   4
       =             +       +     +
         4 65/64 73/64 89/64 113/64
         150, 166, 784
       =                ≈ 3.1468
          47, 720, 465
                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   23 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)
                                                        (π     )
                                                    =4      −0
                                                          4

                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)
                                                        (π     )
                                                    =4      −0 =π
                                                          4

                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   25 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x

Solution
Since
                                                              1  1  1
                                  1 ≤ x ≤ 2 =⇒                  ≤ ≤
                                                              2  x  1
we have                                         ∫       2
                             1                              1
                               · (2 − 1) ≤                    dx ≤ 1 · (2 − 1)
                             2                      1       x
or                                              ∫       2
                                        1                   1
                                          ≤                   dx ≤ 1
                                        2           1       x

                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   26 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx
                                     1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x
                                                  = ln 2 − ln 1




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x
                                                  = ln 2 − ln 1
                                                   = ln 2



                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   28 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                          F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                           F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If v(t) represents the velocity of a particle moving rectilinearly, then
                                  ∫    t1
                                            v(t) dt = s(t1 ) − s(t0 ).
                                      t0


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫     b
                                            F′ (x) dx = F(b) − F(a),
                                    a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If MC(x) represents the marginal cost of making x units of a product,
then                               ∫ x
                                  C(x) = C(0) +                   MC(q) dq.
                                                              0


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                          F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If ρ(x) represents the density of a thin rod at a distance of x from its
end, then the mass of the rod up to x is
                                    ∫ x
                          m(x) =        ρ(s) ds.
                                                         0
                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   30 / 41
A new notation for antiderivatives



To emphasize the relationship between antidifferentiation and
integration, we use the indefinite integral notation
                                 ∫
                                    f(x) dx

for any function whose derivative is f(x).




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   31 / 41
A new notation for antiderivatives



To emphasize the relationship between antidifferentiation and
integration, we use the indefinite integral notation
                                 ∫
                                    f(x) dx

for any function whose derivative is f(x). Thus
                         ∫
                            x2 dx = 1 x3 + C.
                                      3




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   31 / 41
My first table of integrals
.

       ∫                        ∫           ∫
           [f(x) + g(x)] dx = f(x) dx + g(x) dx
            ∫                                      ∫                ∫
                           xn+1
                 n
                x dx =          + C (n ̸= −1)         cf(x) dx = c f(x) dx
                          n+1                        ∫
                     ∫
                                                          1
                        ex dx = ex + C                      dx = ln |x| + C
                                                          x
                ∫                                     ∫
                                                                   ax
                    sin x dx = − cos x + C                ax dx =       +C
                                                                  ln a
                  ∫                               ∫
                     cos x dx = sin x + C            csc2 x dx = − cot x + C
                 ∫                              ∫
                    sec2 x dx = tan x + C         csc x cot x dx = − csc x + C
              ∫                                 ∫
                                                        1
                 sec x tan x dx = sec x + C        √          dx = arcsin x + C
              ∫                                      1 − x2
                     1
                           dx = arctan x + C
                  1 + x2


                                                                             .   .   .      .      .    .

    V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   32 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   33 / 41
Computing Area with integrals



Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex .




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   34 / 41
Computing Area with integrals



Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex .

Solution
The answer is                     ∫    4
                                                             4
                                           ex dx = ex |1 = e4 − e.
                                  1




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   34 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.



                                                                                                .
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π
         −      sin y dy                                                                        .
       2 0
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π                  π          π/2
         −      sin y dy = −[− cos x]0                                                          .
       2 0                2
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π                  π          π/2 π
         −      sin y dy = −[− cos x]0 = −1                                                     .
       2 0                2              2
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   36 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
               ∫     3
Consider                 (x − 1)(x − 2) dx.
                 0




                                                                            .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals       December 6, 2010   36 / 41
Graph

                 y




                  .                                                                           x
                                     1                          2                     3

                                                                          .   .   .       .       .   .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010    37 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
               ∫     3
Consider                 (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1)
                 0
and (2, 3], and negative on (1, 2).




                                                                            .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals       December 6, 2010   38 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
                 ∫   3
Consider                 (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1)
                 0
and (2, 3], and negative on (1, 2). If we want the area of the region, we
have to do
     ∫ 1                     ∫ 2                     ∫ 3
A=       (x − 1)(x − 2) dx −     (x − 1)(x − 2) dx +     (x − 1)(x − 2) dx
           0                                1                                       2
       [                        ]1 [               ]2 [               ]3
   =   −   1 3
           3x
                     3 2
                     2x     + 2x − 1 x3 − 3 x2 + 2x + 1 x3 − 3 x2 + 2x
                                     3    2             3    2
      (    )    0                                                     1                                   2
    5    1    5   11
   = − −     + =     .
    6    6    6    6

                                                                            .   .       .      .      .       .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals           December 6, 2010      38 / 41
Interpretation of “negative area" in motion




There is an analog in rectlinear motion:
    ∫ t1
         v(t) dt is net distance traveled.
        t0
      ∫   t1
               |v(t)| dt is total distance traveled.
        t0




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   39 / 41
What about the constant?


      It seems we forgot about the +C when we say for instance
                                  ∫    1                       1
                                                  x4                   1     1
                                            3
                                           x dx =                  =     −0=
                                  0               4            0       4     4

      But notice
             [ 4   ]1 (      )
               x        1                1          1
                 +C =     + C − (0 + C) = + C − C =
               4    0   4                4          4

      no matter what C is.
      So in antidifferentiation for definite integrals, the constant is
      immaterial.


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   40 / 41
Summary



     The second Fundamental Theorem of Calculus:
                      ∫ b
                          f(x) dx = F(b) − F(a)
                                     a

     where F′ = f.
     Definite integrals represent net change of a function over an
     interval.                                        ∫
     We write antiderivatives as indefinite integrals                            f(x) dx




                                                                         .   .   .      .      .    .

V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   41 / 41

Lesson 25: Evaluating Definite Integrals (Section 041 slides)

  • 1.
    . Section 5.3 Evaluating Definite Integrals V63.0121.041, Calculus I New York University December 6, 2010 Announcements Today: Section 5.3 Wednesday: Section 5.4 Monday, December 13: Section 5.5 ”Monday,” December 15: Review and Movie Day! Monday, December 20, 12:00–1:50pm: Final Exam . . . . . .
  • 2.
    Announcements Today: Section 5.3 Wednesday: Section 5.4 Monday, December 13: Section 5.5 ”Monday,” December 15: Review and Movie Day! Monday, December 20, 12:00–1:50pm: Final Exam . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 2 / 41
  • 3.
    Objectives Use the Evaluation Theorem to evaluate definite integrals. Write antiderivatives as indefinite integrals. Interpret definite integrals as “net change” of a function over an interval. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 3 / 41
  • 4.
    Outline Last time: TheDefinite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 4 / 41
  • 5.
    The definite integralas a limit Definition If f is a function defined on [a, b], the definite integral of f from a to b is the number ∫ b ∑n f(x) dx = lim f(ci ) ∆x a n→∞ i=1 b−a where ∆x = , and for each i, xi = a + i∆x, and ci is a point in n [xi−1 , xi ]. Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite integral ∫ b f(x) dx exists and is the same for any choice of ci . a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 5 / 41
  • 6.
    Notation/Terminology ∫ b f(x) dx a ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of computing an integral is called integration . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 6 / 41
  • 7.
    Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 8.
    Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 9.
    Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 10.
    Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 = ≈ 3.1468 47, 720, 465 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 11.
    Properties of theintegral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then ∫ b 1. c dx = c(b − a) a ∫ b ∫ b ∫ b 2. [f(x) + g(x)] dx = f(x) dx + g(x) dx. a a a ∫ b ∫ b 3. cf(x) dx = c f(x) dx. a a ∫ b ∫ b ∫ b 4. [f(x) − g(x)] dx = f(x) dx − g(x) dx. a a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 8 / 41
  • 12.
    More Properties ofthe Integral Conventions: ∫ ∫ a b f(x) dx = − f(x) dx b a ∫ a f(x) dx = 0 a This allows us to have Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 9 / 41
  • 13.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 14.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 15.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c f(x) dx f(x) dx a b . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 16.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c ∫ c f(x) dxf(x) dxf(x) dx a a b . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 17.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 18.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 19.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c f(x) dx = b∫ b − f(x) dx c . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 20.
    Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c ∫ c f(x) dx f(x) dx = a b∫ b − f(x) dx c . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 21.
    Definite Integrals WeKnow So Far If the integral computes an area and we know the area, we can use that. For instance, y ∫ 1√ π 1 − x2 dx = 0 4 By brute force we . computed x ∫ 1 ∫ 1 1 1 x2 dx = x3 dx = 0 3 0 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 11 / 41
  • 22.
    Comparison Properties ofthe Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 23.
    Comparison Properties ofthe Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b ∫ b f(x) dx ≥ g(x) dx a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 24.
    Comparison Properties ofthe Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b ∫ b f(x) dx ≥ g(x) dx a a 8. If m ≤ f(x) ≤ M for all x in [a, b], then ∫ b m(b − a) ≤ f(x) dx ≤ M(b − a) a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 25.
    Estimating an integralwith inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 13 / 41
  • 26.
    Estimating an integralwith inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x Solution Since 1 1 1 1 ≤ x ≤ 2 =⇒ ≤ ≤ 2 x 1 we have ∫ 2 1 1 · (2 − 1) ≤ dx ≤ 1 · (2 − 1) 2 1 x or ∫ 2 1 1 ≤ dx ≤ 1 2 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 13 / 41
  • 27.
    Outline Last time: TheDefinite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 14 / 41
  • 28.
    Socratic proof The definite integral of velocity measures displacement (net distance) The derivative of displacement is velocity So we can compute displacement with the definite integral or the antiderivative of velocity But any function can be a velocity function, so . . . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 15 / 41
  • 29.
    Theorem of theDay Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another function F, then ∫ b f(x) dx = F(b) − F(a). a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 16 / 41
  • 30.
    Theorem of theDay Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another function F, then ∫ b f(x) dx = F(b) − F(a). a Note In Section 5.3, this theorem is called “The Evaluation Theorem”. Nobody else in the world calls it that. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 16 / 41
  • 31.
    Proving the SecondFTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 32.
    Proving the SecondFTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n For each i, F is continuous on [xi−1 , xi ] and differentiable on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 33.
    Proving the SecondFTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n For each i, F is continuous on [xi−1 , xi ] and differentiable on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 Or f(ci )∆x = F(xi ) − F(xi−1 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 34.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 35.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 36.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 37.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 38.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 39.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 40.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 41.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 42.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 43.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 44.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 45.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 46.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 47.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 48.
    Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) = F(xn ) − F(x0 ) = F(b) − F(a) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 49.
    Proof Completed We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 19 / 41
  • 50.
    Proof Completed We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a) a n→∞ n→∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 19 / 41
  • 51.
    Computing area withthe Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 52.
    Computing area withthe Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solution ∫ 1 1 x4 1 A= x3 dx = = 0 4 0 4 . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 53.
    Computing area withthe Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solution ∫ 1 1 x4 1 A= x3 dx = = 0 4 0 4 . Here we use the notation F(x)|b or [F(x)]b to mean F(b) − F(a). a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 54.
    Computing area withthe Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 55.
    Computing area withthe Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 56.
    Computing area withthe Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1 Solution ∫ 1 [ ]1 ( [ )] x3 1 1 4 A=2− x dx = 2 − 2 =2− − − = −1 3 −1 3 3 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 57.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 22 / 41
  • 58.
    Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 = ≈ 3.1468 47, 720, 465 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 23 / 41
  • 59.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 60.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 61.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 62.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) (π ) =4 −0 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 63.
    Computing an integralwe estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) (π ) =4 −0 =π 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 64.
    Computing an integralwe estimated before Example ∫ 2 1 Evaluate dx. 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 25 / 41
  • 65.
    Estimating an integralwith inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x Solution Since 1 1 1 1 ≤ x ≤ 2 =⇒ ≤ ≤ 2 x 1 we have ∫ 2 1 1 · (2 − 1) ≤ dx ≤ 1 · (2 − 1) 2 1 x or ∫ 2 1 1 ≤ dx ≤ 1 2 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 26 / 41
  • 66.
    Computing an integralwe estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 67.
    Computing an integralwe estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 68.
    Computing an integralwe estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x = ln 2 − ln 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 69.
    Computing an integralwe estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x = ln 2 − ln 1 = ln 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 70.
    Outline Last time: TheDefinite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 28 / 41
  • 71.
    The Integral asTotal Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 72.
    The Integral asTotal Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If v(t) represents the velocity of a particle moving rectilinearly, then ∫ t1 v(t) dt = s(t1 ) − s(t0 ). t0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 73.
    The Integral asTotal Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If MC(x) represents the marginal cost of making x units of a product, then ∫ x C(x) = C(0) + MC(q) dq. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 74.
    The Integral asTotal Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is ∫ x m(x) = ρ(s) ds. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 75.
    Outline Last time: TheDefinite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 30 / 41
  • 76.
    A new notationfor antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation ∫ f(x) dx for any function whose derivative is f(x). . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 31 / 41
  • 77.
    A new notationfor antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation ∫ f(x) dx for any function whose derivative is f(x). Thus ∫ x2 dx = 1 x3 + C. 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 31 / 41
  • 78.
    My first tableof integrals . ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx ∫ ∫ ∫ xn+1 n x dx = + C (n ̸= −1) cf(x) dx = c f(x) dx n+1 ∫ ∫ 1 ex dx = ex + C dx = ln |x| + C x ∫ ∫ ax sin x dx = − cos x + C ax dx = +C ln a ∫ ∫ cos x dx = sin x + C csc2 x dx = − cot x + C ∫ ∫ sec2 x dx = tan x + C csc x cot x dx = − csc x + C ∫ ∫ 1 sec x tan x dx = sec x + C √ dx = arcsin x + C ∫ 1 − x2 1 dx = arctan x + C 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 32 / 41
  • 79.
    Outline Last time: TheDefinite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 33 / 41
  • 80.
    Computing Area withintegrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 34 / 41
  • 81.
    Computing Area withintegrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solution The answer is ∫ 4 4 ex dx = ex |1 = e4 − e. 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 34 / 41
  • 82.
    Computing Area withintegrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 83.
    Computing Area withintegrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. . x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 84.
    Computing Area withintegrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π − sin y dy . 2 0 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 85.
    Computing Area withintegrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π π π/2 − sin y dy = −[− cos x]0 . 2 0 2 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 86.
    Computing Area withintegrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π π π/2 π − sin y dy = −[− cos x]0 = −1 . 2 0 2 2 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 87.
    Example Find the areabetween the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 36 / 41
  • 88.
    Example Find the areabetween the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 36 / 41
  • 89.
    Graph y . x 1 2 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 37 / 41
  • 90.
    Example Find the areabetween the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1) 0 and (2, 3], and negative on (1, 2). . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 38 / 41
  • 91.
    Example Find the areabetween the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1) 0 and (2, 3], and negative on (1, 2). If we want the area of the region, we have to do ∫ 1 ∫ 2 ∫ 3 A= (x − 1)(x − 2) dx − (x − 1)(x − 2) dx + (x − 1)(x − 2) dx 0 1 2 [ ]1 [ ]2 [ ]3 = − 1 3 3x 3 2 2x + 2x − 1 x3 − 3 x2 + 2x + 1 x3 − 3 x2 + 2x 3 2 3 2 ( ) 0 1 2 5 1 5 11 = − − + = . 6 6 6 6 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 38 / 41
  • 92.
    Interpretation of “negativearea" in motion There is an analog in rectlinear motion: ∫ t1 v(t) dt is net distance traveled. t0 ∫ t1 |v(t)| dt is total distance traveled. t0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 39 / 41
  • 93.
    What about theconstant? It seems we forgot about the +C when we say for instance ∫ 1 1 x4 1 1 3 x dx = = −0= 0 4 0 4 4 But notice [ 4 ]1 ( ) x 1 1 1 +C = + C − (0 + C) = + C − C = 4 0 4 4 4 no matter what C is. So in antidifferentiation for definite integrals, the constant is immaterial. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 40 / 41
  • 94.
    Summary The second Fundamental Theorem of Calculus: ∫ b f(x) dx = F(b) − F(a) a where F′ = f. Definite integrals represent net change of a function over an interval. ∫ We write antiderivatives as indefinite integrals f(x) dx . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 41 / 41