Physics Helpline
L K Satapathy
Permutation & Combination 2
10/11/2015
Permutation and Combination 2
Physics Helpline
L K Satapathy
Correct option = (b)
Question : The number of integers greater than 6000 , that can be formed , using
the digits 3 , 5 , 6 , 7 and 8 , without repetition is
(a) 216 (b) 192 (c) 120 (d) 72
Answer :
Any 5 digit number is > 6000  5 digit numbers using 5 digits = 5  = 120
4 digit numbers using 5 digits : 1000th place can have 3 digits ( 6 , 7 or 8 )
 1000th place can be filled in 3 ways
For each of these , the 100th place can be filled in 4 ways
For each of these , the 10th place can be filled in 3 ways
For each of these , the unit place can be filled in 2 ways
 Total 4-digit numbers = 3432 = 72
 Total numbers > 6000 = 120 + 72 = 192
10/11/2015
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Permutation and Combination 2

  • 1.
    Physics Helpline L KSatapathy Permutation & Combination 2
  • 2.
    10/11/2015 Permutation and Combination2 Physics Helpline L K Satapathy Correct option = (b) Question : The number of integers greater than 6000 , that can be formed , using the digits 3 , 5 , 6 , 7 and 8 , without repetition is (a) 216 (b) 192 (c) 120 (d) 72 Answer : Any 5 digit number is > 6000  5 digit numbers using 5 digits = 5  = 120 4 digit numbers using 5 digits : 1000th place can have 3 digits ( 6 , 7 or 8 )  1000th place can be filled in 3 ways For each of these , the 100th place can be filled in 4 ways For each of these , the 10th place can be filled in 3 ways For each of these , the unit place can be filled in 2 ways  Total 4-digit numbers = 3432 = 72  Total numbers > 6000 = 120 + 72 = 192
  • 3.
    10/11/2015 Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline