SlideShare a Scribd company logo
Section	2.7
                     Related	Rates

                 V63.0121.027, Calculus	I



                      October	20, 2009


Announcements
   Midterm	average	57.69/75	(77%), median	59/75	(79%),
   standard	deviation	11%
   Solutions	soon.

                                         .   .   .   .   .   .
“Is	there	a	curve?”



     Midterm
         Mean	was	77%	and
         standard	deviation
         was	11%
         So	scores	average	are
         good
         Scores	above	66/75
         (88%)	are	great
     For	final	letter	grades,
     refer	to	syllabus




                                 .   .   .   .   .   .
What	are	related	rates	problems?




   Today	we’ll	look	at	a	direct	application	of	the	chain	rule	to
   real-world	problems. Examples	of	these	can	be	found	whenever
   you	have	some	system	or	object	changing, and	you	want	to
   measure	the	rate	of	change	of	something	related	to	it.




                                             .   .   .   .    .    .
Problem




  Example
  An	oil	slick	in	the	shape	of	a	disk	is	growing. At	a	certain	time,
  the	radius	is	1	km	and	the	volume	is	growing	at	the	rate	of
  10,000	liters	per	second. If	the	slick	is	always	20	cm	deep, how
  fast	is	the	radius	of	the	disk	growing	at	the	same	time?
                                               .    .   .    .    .    .
A solution



  The	volume	of	the	disk	is

             V = π r2 h .
                                            .       r
                                                    .
                  dV
  We	are	given        , a	certain                               h
                                                                .
                   dt
  value	of r, and	the	object	is
         dr
  to	find      at	that	instant.
         dt




                                    .   .       .       .   .       .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !
                 = 2π rh + π r2 ¡
              dt        dt     ¡dt




                                                .    .   .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !   dr    1     dV
                 = 2π rh + π r2 ¡ =⇒    =      ·    .
              dt        dt     ¡dt   dt   2π rh dt




                                                .    .   .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !   dr    1     dV
                 = 2π rh + π r2 ¡ =⇒    =      ·    .
              dt        dt     ¡dt   dt   2π rh dt
   Now	we	evaluate:
                dr                       1          10, 000 L
                              =                   ·
                dt   r=1 km       2π(1 km)(20 cm)       s




                                                    .   .       .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                     0
                dV        dr     dh¡
                                   !   dr    1     dV
                   = 2π rh + π r2 ¡ =⇒    =      ·    .
                dt        dt     ¡dt   dt   2π rh dt
   Now	we	evaluate:
                  dr                       1          10, 000 L
                                =                   ·
                  dt   r=1 km       2π(1 km)(20 cm)       s

   Converting	every	length	to	meters	we	have

           dr                        1           10 m3    1 m
                         =                     ·       =
           dt   r=1 km       2π(1000 m)(0.2 m)     s     40π s


                                                      .   .       .   .   .   .
Outline




  Strategy



  Examples




             .   .   .   .   .   .
Strategies	for	Problem	Solving




   1. Understand	the	problem
   2. Devise	a	plan
   3. Carry	out	the	plan
   4. Review	and	extend



                                     György	Pólya
                                 (Hungarian, 1887–1985)


                                    .   .   .   .   .     .
Strategies	for	Related	Rates	Problems




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)




                                               .   .    .    .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives




                                               .   .    .    .   .    .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.




                                               .    .    .   .    .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.
    6. Use	the	Chain	Rule	to	differentiate	both	sides	with	respect	to
       t.




                                               .    .    .   .    .     .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.
    6. Use	the	Chain	Rule	to	differentiate	both	sides	with	respect	to
       t.
    7. Substitute	the	given	information	into	the	resulting	equation
       and	solve	for	the	unknown	rate.

                                               .    .    .   .    .     .
Outline




  Strategy



  Examples




             .   .   .   .   .   .
Another	one




  Example
  A man	starts	walking	north	at	4ft/sec from	a	point P. Five	minutes
  later	a	woman	starts	walking	south	at	4ft/sec from	a	point	500	ft
  due	east	of P. At	what	rate	are	the	people	walking	apart	15	min
  after	the	woman	starts	walking?




                                               .    .    .   .    .    .
Diagram

          4
          . 	ft/sec




                      m
                      .



                          .




                              .   .   .   .   .   .
Diagram

          4
          . 	ft/sec




                      m
                      .



                          .   5
                              . 00



                                         w
                                         .



                                                 4
                                                 . 	ft/sec
                                     .       .       .       .   .   .
Diagram

          4
          . 	ft/sec




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                                             w
                                             .



                                                     4
                                                     . 	ft/sec
                                         .       .       .       .   .   .
Diagram

          4
          . 	ft/sec




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                      w
                      .                      w
                                             .

                                  5
                                  . 00
                                                     4
                                                     . 	ft/sec
                                         .       .       .       .   .   .
Diagram

          4
          . 	ft/sec

                                         √
                                   s
                                   .=        (m + w)2 + 5002




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                      w
                      .                              w
                                                     .

                                  5
                                  . 00
                                                             4
                                                             . 	ft/sec
                                                 .       .       .       .   .   .
Expressing	what	is	known	and	unknown


  15	minutes	after	the	woman	starts	walking, the	woman	has
  traveled       (      )(       )
                    4ft    60sec
                                   (15min) = 3600ft
                   sec      min
  while	the	man	has	traveled
                (     )(        )
                  4ft     60sec
                                  (20min) = 4800ft
                  sec      min

                    ds                          dm
  We	want	to	know      when m = 4800, w = 3600,    = 4, and
                    dt                          dt
   dw
      = 4.
   dt



                                            .   .    .   .   .   .
Differentiation


   We	have
                                                  (             )
       ds   1(                 )−1/2                  dm dw
          =    (m + w)2 + 5002       (2)(m + w)          +
       dt   2                                         dt   dt
                  (           )
            m + w dm dw
          =             +
              s      dt    dt

   At	our	particular	point	in	time

   ds           4800 + 3600                  672
      =√                          (4 + 4) = √      ≈ 7.98587ft/s
   dt                    2 + 5002             7081
            (4800 + 3600)




                                            .     .     .   .       .   .

More Related Content

What's hot

shaper machine, planer machines, and milling machine ppt
shaper machine, planer machines, and milling machine pptshaper machine, planer machines, and milling machine ppt
shaper machine, planer machines, and milling machine ppt
Greater Noida Institute of technology
 
Engineering drawing
Engineering  drawing Engineering  drawing
Engineering drawing
Selva Prakash
 
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Romne Ryan Portacion
 
Chapter 6 - Gyroscope Notes.pdf
Chapter 6 - Gyroscope Notes.pdfChapter 6 - Gyroscope Notes.pdf
Chapter 6 - Gyroscope Notes.pdf
EMII014922021NISSIEL
 
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
Khagendra Gautam
 
Gear trains
Gear trainsGear trains
Gear trains
ashok340
 
angle of projections
angle of projectionsangle of projections
angle of projections
Chukka Nikhil Chakravarthy
 
TYPES OF sYMMETRY
TYPES OF sYMMETRYTYPES OF sYMMETRY
TYPES OF sYMMETRY
agabo75
 
Bab 2 mechanical behavior
Bab 2 mechanical behaviorBab 2 mechanical behavior
Bab 2 mechanical behaviorFatimah Nasir
 
Engineering Drawing Step by step
Engineering Drawing Step by stepEngineering Drawing Step by step
Engineering Drawing Step by step
Manzoor Ali Rahimoon
 
B.tech i eg u1 basics of engineering graphics
B.tech  i eg u1 basics of engineering graphicsB.tech  i eg u1 basics of engineering graphics
B.tech i eg u1 basics of engineering graphics
Rai University
 
Grinding machine report
Grinding machine reportGrinding machine report
Grinding machine report
vivek vala
 
10-2 Measuring/Classifying Angles
10-2 Measuring/Classifying Angles10-2 Measuring/Classifying Angles
10-2 Measuring/Classifying Angles
Rudy Alfonso
 
Inversion of mechanism
Inversion of mechanismInversion of mechanism
Inversion of mechanism
R A Shah
 
Simple Indexing
Simple IndexingSimple Indexing
Simple Indexing
Rayon Johnson
 
Work holding on lathe machine
Work holding on lathe machineWork holding on lathe machine
Work holding on lathe machine
garfield Tulloch
 
Non traditional machining processes
Non traditional machining processesNon traditional machining processes
Non traditional machining processes
MECHV
 
METROLOGY LAB MANUAL 26 12-16
METROLOGY LAB MANUAL 26 12-16METROLOGY LAB MANUAL 26 12-16
METROLOGY LAB MANUAL 26 12-16
Dr B Sudarshan
 
Unit II
Unit IIUnit II
Unit II
DEVARAJMECH
 
BASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERINGBASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERING
NAGorao SURNER
 

What's hot (20)

shaper machine, planer machines, and milling machine ppt
shaper machine, planer machines, and milling machine pptshaper machine, planer machines, and milling machine ppt
shaper machine, planer machines, and milling machine ppt
 
Engineering drawing
Engineering  drawing Engineering  drawing
Engineering drawing
 
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
 
Chapter 6 - Gyroscope Notes.pdf
Chapter 6 - Gyroscope Notes.pdfChapter 6 - Gyroscope Notes.pdf
Chapter 6 - Gyroscope Notes.pdf
 
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
Strength of Material 1 (SOM) Mechanical Engineering Handwritten classes Notes...
 
Gear trains
Gear trainsGear trains
Gear trains
 
angle of projections
angle of projectionsangle of projections
angle of projections
 
TYPES OF sYMMETRY
TYPES OF sYMMETRYTYPES OF sYMMETRY
TYPES OF sYMMETRY
 
Bab 2 mechanical behavior
Bab 2 mechanical behaviorBab 2 mechanical behavior
Bab 2 mechanical behavior
 
Engineering Drawing Step by step
Engineering Drawing Step by stepEngineering Drawing Step by step
Engineering Drawing Step by step
 
B.tech i eg u1 basics of engineering graphics
B.tech  i eg u1 basics of engineering graphicsB.tech  i eg u1 basics of engineering graphics
B.tech i eg u1 basics of engineering graphics
 
Grinding machine report
Grinding machine reportGrinding machine report
Grinding machine report
 
10-2 Measuring/Classifying Angles
10-2 Measuring/Classifying Angles10-2 Measuring/Classifying Angles
10-2 Measuring/Classifying Angles
 
Inversion of mechanism
Inversion of mechanismInversion of mechanism
Inversion of mechanism
 
Simple Indexing
Simple IndexingSimple Indexing
Simple Indexing
 
Work holding on lathe machine
Work holding on lathe machineWork holding on lathe machine
Work holding on lathe machine
 
Non traditional machining processes
Non traditional machining processesNon traditional machining processes
Non traditional machining processes
 
METROLOGY LAB MANUAL 26 12-16
METROLOGY LAB MANUAL 26 12-16METROLOGY LAB MANUAL 26 12-16
METROLOGY LAB MANUAL 26 12-16
 
Unit II
Unit IIUnit II
Unit II
 
BASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERINGBASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERING
 

Similar to Lesson 13: Related Rates of Change

Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
Matthew Leingang
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
Matthew Leingang
 
2 direct proportions
2 direct proportions2 direct proportions
2 direct proportions
frangargil
 
2.3 Linear Models and Applications
2.3 Linear Models and Applications2.3 Linear Models and Applications
2.3 Linear Models and Applications
smiller5
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
Mel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
Matthew Leingang
 
Introdution to differential forms
Introdution to differential formsIntrodution to differential forms
Introdution to differential forms
Dunga Pessoa
 
Integration basics
Integration basicsIntegration basics
Integration basics
Tarun Gehlot
 
Lesson 7: The Derivative
Lesson 7: The DerivativeLesson 7: The Derivative
Lesson 7: The Derivative
Matthew Leingang
 
Direct proportion
Direct proportionDirect proportion
Algebra Readiness Page 10 HW
Algebra Readiness Page 10 HWAlgebra Readiness Page 10 HW
Algebra Readiness Page 10 HW
mathriot
 
Calc 2.6
Calc 2.6Calc 2.6
Calc 2.6
hartcher
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp science
Raghu nath
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
Matthew Leingang
 
Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)
Matthew Leingang
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
Matthew Leingang
 
Application of Calculus in Real World
Application of Calculus in Real World Application of Calculus in Real World
Application of Calculus in Real World
milanmath
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
Matthew Leingang
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates ppt
Ron Eick
 
re:mobidyc the overview
re:mobidyc the overviewre:mobidyc the overview
re:mobidyc the overview
ESUG
 

Similar to Lesson 13: Related Rates of Change (20)

Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
2 direct proportions
2 direct proportions2 direct proportions
2 direct proportions
 
2.3 Linear Models and Applications
2.3 Linear Models and Applications2.3 Linear Models and Applications
2.3 Linear Models and Applications
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Introdution to differential forms
Introdution to differential formsIntrodution to differential forms
Introdution to differential forms
 
Integration basics
Integration basicsIntegration basics
Integration basics
 
Lesson 7: The Derivative
Lesson 7: The DerivativeLesson 7: The Derivative
Lesson 7: The Derivative
 
Direct proportion
Direct proportionDirect proportion
Direct proportion
 
Algebra Readiness Page 10 HW
Algebra Readiness Page 10 HWAlgebra Readiness Page 10 HW
Algebra Readiness Page 10 HW
 
Calc 2.6
Calc 2.6Calc 2.6
Calc 2.6
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp science
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Application of Calculus in Real World
Application of Calculus in Real World Application of Calculus in Real World
Application of Calculus in Real World
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates ppt
 
re:mobidyc the overview
re:mobidyc the overviewre:mobidyc the overview
re:mobidyc the overview
 

More from Matthew Leingang

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
Matthew Leingang
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
Matthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
Matthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 

Recently uploaded (20)

How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 

Lesson 13: Related Rates of Change

  • 1. Section 2.7 Related Rates V63.0121.027, Calculus I October 20, 2009 Announcements Midterm average 57.69/75 (77%), median 59/75 (79%), standard deviation 11% Solutions soon. . . . . . .
  • 2. “Is there a curve?” Midterm Mean was 77% and standard deviation was 11% So scores average are good Scores above 66/75 (88%) are great For final letter grades, refer to syllabus . . . . . .
  • 3. What are related rates problems? Today we’ll look at a direct application of the chain rule to real-world problems. Examples of these can be found whenever you have some system or object changing, and you want to measure the rate of change of something related to it. . . . . . .
  • 4. Problem Example An oil slick in the shape of a disk is growing. At a certain time, the radius is 1 km and the volume is growing at the rate of 10,000 liters per second. If the slick is always 20 cm deep, how fast is the radius of the disk growing at the same time? . . . . . .
  • 5. A solution The volume of the disk is V = π r2 h . . r . dV We are given , a certain h . dt value of r, and the object is dr to find at that instant. dt . . . . . .
  • 6. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! = 2π rh + π r2 ¡ dt dt ¡dt . . . . . .
  • 7. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt . . . . . .
  • 8. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s . . . . . .
  • 9. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s Converting every length to meters we have dr 1 10 m3 1 m = · = dt r=1 km 2π(1000 m)(0.2 m) s 40π s . . . . . .
  • 10. Outline Strategy Examples . . . . . .
  • 11. Strategies for Problem Solving 1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Review and extend György Pólya (Hungarian, 1887–1985) . . . . . .
  • 13. Strategies for Related Rates Problems 1. Read the problem. . . . . . .
  • 14. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. . . . . . .
  • 15. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) . . . . . .
  • 16. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives . . . . . .
  • 17. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. . . . . . .
  • 18. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. . . . . . .
  • 19. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. 7. Substitute the given information into the resulting equation and solve for the unknown rate. . . . . . .
  • 20. Outline Strategy Examples . . . . . .
  • 21. Another one Example A man starts walking north at 4ft/sec from a point P. Five minutes later a woman starts walking south at 4ft/sec from a point 500 ft due east of P. At what rate are the people walking apart 15 min after the woman starts walking? . . . . . .
  • 22. Diagram 4 . ft/sec m . . . . . . . .
  • 23. Diagram 4 . ft/sec m . . 5 . 00 w . 4 . ft/sec . . . . . .
  • 24. Diagram 4 . ft/sec . s m . . 5 . 00 w . 4 . ft/sec . . . . . .
  • 25. Diagram 4 . ft/sec . s m . . 5 . 00 w . w . 5 . 00 4 . ft/sec . . . . . .
  • 26. Diagram 4 . ft/sec √ s .= (m + w)2 + 5002 . s m . . 5 . 00 w . w . 5 . 00 4 . ft/sec . . . . . .
  • 27. Expressing what is known and unknown 15 minutes after the woman starts walking, the woman has traveled ( )( ) 4ft 60sec (15min) = 3600ft sec min while the man has traveled ( )( ) 4ft 60sec (20min) = 4800ft sec min ds dm We want to know when m = 4800, w = 3600, = 4, and dt dt dw = 4. dt . . . . . .
  • 28. Differentiation We have ( ) ds 1( )−1/2 dm dw = (m + w)2 + 5002 (2)(m + w) + dt 2 dt dt ( ) m + w dm dw = + s dt dt At our particular point in time ds 4800 + 3600 672 =√ (4 + 4) = √ ≈ 7.98587ft/s dt 2 + 5002 7081 (4800 + 3600) . . . . . .