Beginning Calculus
- Implicit Di¤erentiation and Inverse Functions -
Shahrizal Shamsuddin Norashiqin Mohd Idrus
Department of Mathematics,
FSMT - UPSI
(LECTURE SLIDES SERIES)
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 1 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Leraning Outcomes
Find the derivative of functions explicitly and Implicitly.
Compute the derivatives of Inverse Functions
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 2 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Know:
d
dx
(xn
) = nxn 1
, n 2 Z
Don’t know:
d
dx
xm/n
,
m
n
2 Q, n 6= 0
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 3 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Let y = xm/x .
y = xm/n
yn
= xm
d
dx
(yn
) =
d
dx
(xm
)
d
dy
(yn
)
dy
dx
= mxm 1
, chain rule:
dyn
dx
=
dyn
dy
dy
dx
nyn 1 dy
dx
= mxm 1
dy
dx
=
mxm 1
nyn 1
=
m
n
xm 1
xm/n n 1
= axa 1
with a =
m
n
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 4 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Let x2 + y2 = 25. This is not a function. The equation implicitly de…nes
y as several functions of x.
-2 -1 1 2
-2
-1
1
2
x
y
x2
+ y2
= 1
y =
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 5 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Explicit Di¤erentiation
Take the derivatives of y =
p
1 x2 and y =
p
1 x2 :
d
dx
p
1 x2 =
d
dx
1 x2
1/2
=
1
2
1 x2
1/2
( 2x)
=
x
p
1 x2
d
dx
p
1 x2 =
d
dx
1 x2
1/2
=
1
2
1 x2
1/2
( 2x)
=
x
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 6 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
But sometimes it is not easy to di¤erentiate such equations, for example
y4
+ xy2
= 2
) y2
=
x
p
x2 4 ( 2)
2
) y =
s
x
p
x2 + 8
2
for y de…ned explicitly as a function of x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 7 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
x2 + y2 = 1 :
dy
dx
=
x
y
=
x
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 8 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
x3 + y3 = 6xy :
dy
dx
=
x2 2y
2x y2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 9 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
y4 + xy2 = 2 :
d
dx
y4
+ xy2
=
d
dx
2
4y3 dy
dx
+ y2
+ 2xy
dy
dx
= 0
dy
dx
=
y2
4y3 + 2xy
At x = 1, y = 1. So,
d
dx
y4
+ xy2
= 2
x=1
=
1
6
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 10 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
sin (x + y) = y2 cos x :
dy
dx
=
cos (x + y) + y2 sin x
2y cos x cos (x + y)
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 11 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d2
dx2
x4 + y4 = 16 :
d2y
dx2
=
48x2
y7
First, …nd
dy
dx
. Then
d
dx
dy
dx
.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 12 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
The Inverse Function
Let y =
p
x, x > 0. Then, y2 = x. If we let f (x) =
p
x and
g (y) = x, then g (y) = y2.
-4 -2 2 4
-4
-2
2
4 g
f
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 13 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
In general, If y = f (x) and g (y) = x, then g (f (x)) = x.
g = f 1 and f = g 1.
y = f (x) , f 1
(y) = x
f f 1
(x) = x
Implicit di¤erentiation allows us to …nd the derivative of any inverse
function provided we know the derivative of the function.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 14 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
Let y = sin 1 x.
d
dx
sin 1 x =
1
p
1 x2
Use: sin y = x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 15 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
Let y = tan 1 x. (Note: tan 1 x = arctan x).
d
dx
tan 1 x = cos2 y =
1
x2 + 1
Use: tan y = x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 16 / 16

Benginning Calculus Lecture notes 6 - implicit differentiation

  • 1.
    Beginning Calculus - ImplicitDi¤erentiation and Inverse Functions - Shahrizal Shamsuddin Norashiqin Mohd Idrus Department of Mathematics, FSMT - UPSI (LECTURE SLIDES SERIES) VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 1 / 16
  • 2.
    Implicit Di¤erentiation Derivativeof Inverse Functions Leraning Outcomes Find the derivative of functions explicitly and Implicitly. Compute the derivatives of Inverse Functions VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 2 / 16
  • 3.
    Implicit Di¤erentiation Derivativeof Inverse Functions Know: d dx (xn ) = nxn 1 , n 2 Z Don’t know: d dx xm/n , m n 2 Q, n 6= 0 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 3 / 16
  • 4.
    Implicit Di¤erentiation Derivativeof Inverse Functions Let y = xm/x . y = xm/n yn = xm d dx (yn ) = d dx (xm ) d dy (yn ) dy dx = mxm 1 , chain rule: dyn dx = dyn dy dy dx nyn 1 dy dx = mxm 1 dy dx = mxm 1 nyn 1 = m n xm 1 xm/n n 1 = axa 1 with a = m n VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 4 / 16
  • 5.
    Implicit Di¤erentiation Derivativeof Inverse Functions Let x2 + y2 = 25. This is not a function. The equation implicitly de…nes y as several functions of x. -2 -1 1 2 -2 -1 1 2 x y x2 + y2 = 1 y = p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 5 / 16
  • 6.
    Implicit Di¤erentiation Derivativeof Inverse Functions Explicit Di¤erentiation Take the derivatives of y = p 1 x2 and y = p 1 x2 : d dx p 1 x2 = d dx 1 x2 1/2 = 1 2 1 x2 1/2 ( 2x) = x p 1 x2 d dx p 1 x2 = d dx 1 x2 1/2 = 1 2 1 x2 1/2 ( 2x) = x p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 6 / 16
  • 7.
    Implicit Di¤erentiation Derivativeof Inverse Functions But sometimes it is not easy to di¤erentiate such equations, for example y4 + xy2 = 2 ) y2 = x p x2 4 ( 2) 2 ) y = s x p x2 + 8 2 for y de…ned explicitly as a function of x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 7 / 16
  • 8.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example d dx x2 + y2 = 1 : dy dx = x y = x p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 8 / 16
  • 9.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example d dx x3 + y3 = 6xy : dy dx = x2 2y 2x y2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 9 / 16
  • 10.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example d dx y4 + xy2 = 2 : d dx y4 + xy2 = d dx 2 4y3 dy dx + y2 + 2xy dy dx = 0 dy dx = y2 4y3 + 2xy At x = 1, y = 1. So, d dx y4 + xy2 = 2 x=1 = 1 6 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 10 / 16
  • 11.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example d dx sin (x + y) = y2 cos x : dy dx = cos (x + y) + y2 sin x 2y cos x cos (x + y) VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 11 / 16
  • 12.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example d2 dx2 x4 + y4 = 16 : d2y dx2 = 48x2 y7 First, …nd dy dx . Then d dx dy dx . VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 12 / 16
  • 13.
    Implicit Di¤erentiation Derivativeof Inverse Functions The Inverse Function Let y = p x, x > 0. Then, y2 = x. If we let f (x) = p x and g (y) = x, then g (y) = y2. -4 -2 2 4 -4 -2 2 4 g f VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 13 / 16
  • 14.
    Implicit Di¤erentiation Derivativeof Inverse Functions In general, If y = f (x) and g (y) = x, then g (f (x)) = x. g = f 1 and f = g 1. y = f (x) , f 1 (y) = x f f 1 (x) = x Implicit di¤erentiation allows us to …nd the derivative of any inverse function provided we know the derivative of the function. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 14 / 16
  • 15.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example Let y = sin 1 x. d dx sin 1 x = 1 p 1 x2 Use: sin y = x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 15 / 16
  • 16.
    Implicit Di¤erentiation Derivativeof Inverse Functions Example Let y = tan 1 x. (Note: tan 1 x = arctan x). d dx tan 1 x = cos2 y = 1 x2 + 1 Use: tan y = x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 16 / 16