SlideShare a Scribd company logo
Investigating the 3D structure of the genome with
Hi-C data analysis
Sylvain Foissac & Nathalie Villa-Vialaneix
prenom.nom@inra.fr
Séminaire MIAT - Toulouse, 2 juin 2017
SF & NV2 | Hi-C data analysis 1/28
Sommaire
1 Normalization
2 TAD identification
3 A/B compartments
4 Differential analysis
SF & NV2 | Hi-C data analysis 2/28
Sommaire
1 Normalization
2 TAD identification
3 A/B compartments
4 Differential analysis
SF & NV2 | Hi-C data analysis 3/28
Purpose of normalization
1 within matrix normalization: make bins comparable within a matrix
(not needed for differential analysis)
SF & NV2 | Hi-C data analysis 4/28
Purpose of normalization
1 within matrix normalization: make bins comparable within a matrix
(not needed for differential analysis)
2 between matrix normalization: make the same bin pair comparable
between two matrices (needed for differential analysis)
SF & NV2 | Hi-C data analysis 4/28
Different within matrix normalizations
to correct technical biases
(GC content, mappability...)
explicit correction [Yaffe and Tanay, 2011, Hu et al., 2012]: every factor
causing bais is identified and estimated
SF & NV2 | Hi-C data analysis 5/28
Different within matrix normalizations
to correct technical biases
(GC content, mappability...)
explicit correction [Yaffe and Tanay, 2011, Hu et al., 2012]: every factor
causing bais is identified and estimated
non parametric correction ICE correction using matrix balancing
[Imakaev et al., 2012]
K = b Kb for a K st ∀ i = 1, . . . , p,
p
j=1
Kij is constant
SF & NV2 | Hi-C data analysis 5/28
Different within matrix normalizations
to correct technical biases
picture from [Schmitt et al., 2016]
SF & NV2 | Hi-C data analysis 5/28
Different within matrix normalizations
to take distances into account
theoretical distribution taken from [Belton et al., 2012]
Kd
ij =
Kij − Kd(i,j)
σ(Dd(i,j))
with
Kd average counts at distance d
σ(Dd) standard deviation
available in HiTC [Servant et al., 2012]
SF & NV2 | Hi-C data analysis 6/28
Between matrix normalization
correct for differences in sequencing depth
standard approach: similar to RNA-seq normalization
SF & NV2 | Hi-C data analysis 7/28
Between matrix normalization
correct for differences in sequencing depth
standard approach: similar to RNA-seq normalization
However...
SF & NV2 | Hi-C data analysis 7/28
Between matrix normalization
correct for differences in sequencing depth
standard approach: similar to RNA-seq normalization
However...
density adjustment by LOESS fit [Robinson and Oshlack, 2010]
(implemented in csaw)
SF & NV2 | Hi-C data analysis 7/28
Sommaire
1 Normalization
2 TAD identification
3 A/B compartments
4 Differential analysis
SF & NV2 | Hi-C data analysis 8/28
Topologically Associated Domains (TADs)
[Rao et al., 2014]
SF & NV2 | Hi-C data analysis 9/28
TAD method jungle
Directionality index [Dixon et al., 2012]: compute divergence between
up/downstream interaction counts + HMM to identify TADs
SF & NV2 | Hi-C data analysis 10/28
TAD method jungle
Directionality index [Dixon et al., 2012]: compute divergence between
up/downstream interaction counts + HMM to identify TADs
armatus [Filippova et al., 2013]: maximize a criteria which evaluate a
within/between count ratio + combine multi-resolution results in a
consensual segmentation
SF & NV2 | Hi-C data analysis 10/28
TAD method jungle
Directionality index [Dixon et al., 2012]: compute divergence between
up/downstream interaction counts + HMM to identify TADs
armatus [Filippova et al., 2013]: maximize a criteria which evaluate a
within/between count ratio + combine multi-resolution results in a
consensual segmentation
segmentation method [Brault et al., 2017]: block boundary estimation in
matrix
SF & NV2 | Hi-C data analysis 10/28
TAD method jungle
Directionality index [Dixon et al., 2012]: compute divergence between
up/downstream interaction counts + HMM to identify TADs
armatus [Filippova et al., 2013]: maximize a criteria which evaluate a
within/between count ratio + combine multi-resolution results in a
consensual segmentation
segmentation method [Brault et al., 2017]: block boundary estimation in
matrix
... (many others), interestingly, very few provides a hierarchical
clustering
Comparisons in: [Fotuhi Siahpirani et al., 2016, Dali and Blanchette, 2017]
SF & NV2 | Hi-C data analysis 10/28
DI evolution with respect to armatus TADs
SF & NV2 | Hi-C data analysis 11/28
CTCF at TAD boundaries
SF & NV2 | Hi-C data analysis 12/28
Enrichment of genomic features around TAD boundaries
Homo Sapiens [Dixon et al., 2012]
Sus Scrofa (PORCINET project)
SF & NV2 | Hi-C data analysis 13/28
Current methodological development
Constrained HAC as a way to compare/combine TADs between samples
Contrained HAC: Hierarchical clustering with contiguity constrains
SF & NV2 | Hi-C data analysis 14/28
Current methodological development
Constrained HAC as a way to compare/combine TADs between samples
Contrained HAC: Hierarchical clustering with contiguity constrains
Challenges (currently under development with Pierre Neuvial and Marie
Chavent):
methodological issues: what happens when using Ward’s linkage
criterion with a non Euclidean similarity (counts of the Hi-C matrix)?
what happens when adding constrains to HAC? (partially solved)
development of the R package adjclust (Google Summer of Code
selected project)
SF & NV2 | Hi-C data analysis 14/28
Sommaire
1 Normalization
2 TAD identification
3 A/B compartments
4 Differential analysis
SF & NV2 | Hi-C data analysis 15/28
A/B compartments
[Lieberman-Aiden et al., 2009]
[Giorgetti et al., 2013]
Method (in theory):
compute Pearson correlations between bins
(using interaction counts with all the other bins
of the same chromosome)
compute eigenvectors (or perform PCA) on this
correlation matrix
affect A/B compartments to +/- values of PCs
SF & NV2 | Hi-C data analysis 16/28
A/B compartments in practice
after ICED and distance-based normalizations
SF & NV2 | Hi-C data analysis 17/28
A/B compartments in practice
after ICED and distance-based normalizations
Method:
differentiate between A/B using sign of the correlation between PCs
and diagonal counts
choose a relevant PC and method maximizing − log10(p − value)
between diagonal counts in +/- PC (2-group comparison Student test)
SF & NV2 | Hi-C data analysis 17/28
Biological validation
SF & NV2 | Hi-C data analysis 18/28
Sommaire
1 Normalization
2 TAD identification
3 A/B compartments
4 Differential analysis
SF & NV2 | Hi-C data analysis 19/28
Filtering
In differential analysis of sequencing data, filtering is a crucial step:
removing low count features (that are little or no chance to be found
differential) improves the test power (leverage the multiple testing
correction effect) and can save unnecessary computational time
SF & NV2 | Hi-C data analysis 20/28
Filtering
In differential analysis of sequencing data, filtering is a crucial step:
removing low count features (that are little or no chance to be found
differential) improves the test power (leverage the multiple testing
correction effect) and can save unnecessary computational time
can be performed 1/ at the beginning of the analysis or after the
estimation of the parameters of the model used for differential
analysis
SF & NV2 | Hi-C data analysis 20/28
Filtering
In differential analysis of sequencing data, filtering is a crucial step:
removing low count features (that are little or no chance to be found
differential) improves the test power (leverage the multiple testing
correction effect) and can save unnecessary computational time
can be performed 1/ at the beginning of the analysis or after the
estimation of the parameters of the model used for differential
analysis; 2/ can be fixed to an arbitrary value (minimum total count
per sample) or automated from the data
SF & NV2 | Hi-C data analysis 20/28
Filtering
In differential analysis of sequencing data, filtering is a crucial step:
removing low count features (that are little or no chance to be found
differential) improves the test power (leverage the multiple testing
correction effect) and can save unnecessary computational time
can be performed 1/ at the beginning of the analysis or after the
estimation of the parameters of the model used for differential
analysis; 2/ can be fixed to an arbitrary value (minimum total count
per sample) or automated from the data
for Hi-C data:
filtering was performed at the beginning of the analysis (to limit the
computation burden)
was performed by using an arbitrary threshold or a threshold based
on the estimation of the noise background by a quantile of
inter-chromosomal counts (as in R package diffHic)
SF & NV2 | Hi-C data analysis 20/28
Filtering
In differential analysis of sequencing data, filtering is a crucial step:
removing low count features (that are little or no chance to be found
differential) improves the test power (leverage the multiple testing
correction effect) and can save unnecessary computational time
can be performed 1/ at the beginning of the analysis or after the
estimation of the parameters of the model used for differential
analysis; 2/ can be fixed to an arbitrary value (minimum total count
per sample) or automated from the data
500 kb - automatic filter (filters counts<∼ 5) - 96.4% of pairs filtered out
before filtering after filtering
SF & NV2 | Hi-C data analysis 20/28
Exploratory analysis (500kb bins)
chromosome 1
1 0.911
1
0.8886
0.8866
1
0.8566
0.8651
0.8288
1
0.8973
0.9118
0.8912
0.8692
1
0.8935
0.9032
0.8818
0.8799
0.906
1
LW90−160216−GCCAAT
LW90−160223−CTTGTA
LW90−160308−AGTTCC
LW110−160307−CGATGT
LW110−160308−AGTCAA
LW110−160517−ACAGTG
LW
90−160216−G
C
C
AAT
LW
90−160223−C
TTG
TA
LW
90−160308−AG
TTC
C
LW
110−160307−C
G
ATG
T
LW
110−160308−AG
TC
AA
LW
110−160517−AC
AG
TG
−1.0 −0.5 0.0 0.5 1.0
Cosinus (Frobenius norm)
good reproducibility between
experiments
no clear organization with respect to
the condition
SF & NV2 | Hi-C data analysis 21/28
Exploratory analysis (500kb bins)
chromosome 1
1 0.911
1
0.8886
0.8866
1
0.8566
0.8651
0.8288
1
0.8973
0.9118
0.8912
0.8692
1
0.8935
0.9032
0.8818
0.8799
0.906
1
LW90−160216−GCCAAT
LW90−160223−CTTGTA
LW90−160308−AGTTCC
LW110−160307−CGATGT
LW110−160308−AGTCAA
LW110−160517−ACAGTG
LW
90−160216−G
C
C
AAT
LW
90−160223−C
TTG
TA
LW
90−160308−AG
TTC
C
LW
110−160307−C
G
ATG
T
LW
110−160308−AG
TC
AA
LW
110−160517−AC
AG
TG
−1.0 −0.5 0.0 0.5 1.0
Cosinus (Frobenius norm)
good reproducibility between
experiments
no clear organization with respect to
the condition
all data after filtering and between
matrix normalization (LOESS)
2 outliers but PC1 is organized with
respect to the condition
SF & NV2 | Hi-C data analysis 21/28
Methods for differential analysis of Hi-C
Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic
(essentially a wrapper for edgeR):
count data modeled by Binomial Negative distribution
SF & NV2 | Hi-C data analysis 22/28
Methods for differential analysis of Hi-C
Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic
(essentially a wrapper for edgeR):
count data modeled by Binomial Negative distribution
parameters (mean, variance per gene) are estimated from data: a
variance vs mean relationship is modeled
SF & NV2 | Hi-C data analysis 22/28
Methods for differential analysis of Hi-C
Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic
(essentially a wrapper for edgeR):
count data modeled by Binomial Negative distribution
parameters (mean, variance per gene) are estimated from data: a
variance vs mean relationship is modeled
test is performed using an exact test (similar to Fisher) or a
log-likelihood ratio test (GLM model)
SF & NV2 | Hi-C data analysis 22/28
Complementary remarks about DE analysis
Hi-C data contain more zeros than RNA-seq data: some people
propose to use Zero Inflated BN distribution (unpublished as far as I
know)
SF & NV2 | Hi-C data analysis 23/28
Complementary remarks about DE analysis
Hi-C data contain more zeros than RNA-seq data: some people
propose to use Zero Inflated BN distribution (unpublished as far as I
know)
provides a p-value for every pair of bins:
analysis based on a very large number of bins for finer resolutions
(500kb after filtering: 998 623 pairs of bins; without filtering:
13 509 221 pairs of bins): problem solved for 500kb bins but still under
study for 40kb bins
SF & NV2 | Hi-C data analysis 23/28
Complementary remarks about DE analysis
Hi-C data contain more zeros than RNA-seq data: some people
propose to use Zero Inflated BN distribution (unpublished as far as I
know)
provides a p-value for every pair of bins:
analysis based on a very large number of bins for finer resolutions
(500kb after filtering: 998 623 pairs of bins; without filtering:
13 509 221 pairs of bins): problem solved for 500kb bins but still under
study for 40kb bins
tests are performed as if bin pairs were independant whereas they are
spatially correlated
SF & NV2 | Hi-C data analysis 23/28
Complementary remarks about DE analysis
Hi-C data contain more zeros than RNA-seq data: some people
propose to use Zero Inflated BN distribution (unpublished as far as I
know)
provides a p-value for every pair of bins:
analysis based on a very large number of bins for finer resolutions
(500kb after filtering: 998 623 pairs of bins; without filtering:
13 509 221 pairs of bins): problem solved for 500kb bins but still under
study for 40kb bins
tests are performed as if bin pairs were independant whereas they are
spatially correlated: estimation of model parameters might be improved
if 1/ smoothed with respect to spatial proximity (similar to what is
sometimes performed methylation data analysis); 2/ performed
independantly for pairs of bins at a given distance (future work).
post-analysis of spatial distribution of p-values, work-in-progress with
Pierre Neuvial (submitted CNRS project)
SF & NV2 | Hi-C data analysis 23/28
because last page had no picture
probably not suited for the youngest
SF & NV2 | Hi-C data analysis 24/28
Preliminary results
913 bin pairs found differential (after multiple testing correction)
most of them are related to 3 chromosomes
parameter setting (filters...) and biological analysis are work-in-progress...
SF & NV2 | Hi-C data analysis 25/28
Differential TADs (state-of-the-art)
Detecting differential domains between the two conditions
Existing approaches:
[Fraser et al., 2015] (3 conditions, no replicate)
HMM on TAD boundaries (with a tolerance threshold) to identify
different TAD boundaries between samples
HAC on TADs, cophenetic distance to obtain local conserved structure
by using a z-score approach
SF & NV2 | Hi-C data analysis 26/28
Differential TADs (state-of-the-art)
Detecting differential domains between the two conditions
Existing approaches:
[Fraser et al., 2015] (3 conditions, no replicate)
HMM on TAD boundaries (with a tolerance threshold) to identify
different TAD boundaries between samples
HAC on TADs, cophenetic distance to obtain local conserved structure
by using a z-score approach
R package diffHic computes up/down-stream counts (with ± 100Kb)
and uses the GLM model implemented in edgeR with an interaction
between stream direction (up/down) and condition.
SF & NV2 | Hi-C data analysis 26/28
Differential TADs (state-of-the-art)
Detecting differential domains between the two conditions
Existing approaches:
[Fraser et al., 2015] (3 conditions, no replicate)
HMM on TAD boundaries (with a tolerance threshold) to identify
different TAD boundaries between samples
HAC on TADs, cophenetic distance to obtain local conserved structure
by using a z-score approach
R package diffHic computes up/down-stream counts (with ± 100Kb)
and uses the GLM model implemented in edgeR with an interaction
between stream direction (up/down) and condition.
However, the first approach does not take biological variability into account
(no replicate) and the second uses only a very aggregated criterion.
SF & NV2 | Hi-C data analysis 26/28
Differential TADs (perspectives)
Ideas for future work
Using constrained HAC, are we able to:
compute a consensus dendrogram using several biological replicates;
differentiate branches significantly (in which sense?) different
between conditions taking into account the within condition variability?
SF & NV2 | Hi-C data analysis 27/28
Differential TADs (perspectives)
Ideas for future work
Using constrained HAC, are we able to:
compute a consensus dendrogram using several biological replicates;
differentiate branches significantly (in which sense?) different
between conditions taking into account the within condition variability?
SF & NV2 | Hi-C data analysis 27/28
Conclusions and perspectives
Honnestly, it’s late and I really do not believe that I will have enough time to
make a conclusion and discuss perspectives so...
Questions?
SF & NV2 | Hi-C data analysis 28/28
References
Belton, J., Patton MacCord, R., Harmen Gibcus, J., Naumova, N., Zhan, Y., and Dekker, J. (2012).
Hi-C: a comprehensive technique to capture the conformation of genomes.
Methods, 58:268–276.
Brault, V., Chiquet, J., and Lévy-Leduc, C. (2017).
Efficient block boundaries estimation in block-wise constant matrices: an application to HiC data.
Electronic Journal of Statistics, 11(1):1570–1599.
Dali, R. and Blanchette, M. (2017).
A critical assessment of topologically associating domain prediction tools.
Nucleic Acid Research, 45(6):2994–3005.
Dixon, J., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J., and Ren, B. (2012).
Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Nature, 485:376–380.
Filippova, D., Patro, R., Duggal, G., and Kingsford, C. (2013).
Identification of alternative topological domains in chromatin.
Algorithms for Molecular Biology, 9:14.
Fotuhi Siahpirani, A., Ay, F., and Roy, S. (2016).
A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of
chromosomal interactions.
Genome Biology, 17:114.
Fraser, J., Ferrai, C., Chiariello, A., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B., Kraemer, D., Aitken, S., Xie, S.,
Morris, K., Itoh, M., Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A., The FANTOM Consortium, Semple, C.,
Dostie, J., Pombo, A., and Nicodemi, M. (2015).
Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation.
Molecular Systems Biology, 11:852.
Giorgetti, L., Servant, N., and Heard, E. (2013).
Changes in the organization of the genome during the mammalian cell cycle.
SF & NV2 | Hi-C data analysis 28/28
Genome Biology, 14:142.
Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B., and Liu, J. (2012).
HiCNorm: removing biases in Hi-C data via Poisson regression.
Bioinformatics, 28(23):3131–3133.
Imakaev, M., Fudenberg, G., McCord, R., Naumova, N., Goloborodko, A., Lajoie, B., Dekker, J., and Mirny, L. (2012).
Iterative correction of Hi-C data reveals hallmarks of chromosome organization.
Nature Methods, 9:999–1003.
Lieberman-Aiden, E., van Berkum, N., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B., Sabo, P., Dorschner,
M., Sandstrom, R., Bernstein, B., Bender, M., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L., Lander, E., and
Dekker, J. (2009).
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science, 326(5950):289–293.
Lun, A. and Smyth, G. (2015).
diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
BMC Bioinformatics, 16:258.
Rao, S., Huntley, M., Durand, N., Stamenova, E., Bochkov, I., Robinson, J., Sanborn, A., Machol, I., Omer, A., Lander, E., and
Lieberman Aiden, E. (2014).
A 3D map of the human genome at kilobase resolution reveals principle of chromatin looping.
Cell, 159(7):1665–1680.
Robinson, M. and Oshlack, A. (2010).
A scaling normalization method for differential expression analysis of RNA-seq data.
Genome Biology, 11:R25.
Schmitt, A., Hu, M., and Ren, B. (2016).
Genome-wide mapping and analysis of chromosome architecture.
Nature Reviews, 17(12):743–755.
Servant, N., Lajoie, B., Nora, E., Giorgetti, L., Chen, C., Heard, E., Dekker, J., and Barillot, E. (2012).
SF & NV2 | Hi-C data analysis 28/28
HiTC: exploration of high-throughput ‘C’ experiments.
Bioinformatics, 28(21):2843–2844.
Yaffe, E. and Tanay, A. (2011).
Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture.
Nature Genetics, 43:1059–1065.
SF & NV2 | Hi-C data analysis 28/28

More Related Content

What's hot

New generation Sequencing
New generation Sequencing New generation Sequencing
New generation Sequencing
Vijay Raj Yanamala
 
Kogo 2013 RNA-seq analysis
Kogo 2013 RNA-seq analysisKogo 2013 RNA-seq analysis
Kogo 2013 RNA-seq analysis
Junsu Ko
 
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
VHIR Vall d’Hebron Institut de Recerca
 
Genome Assembly 2018
Genome Assembly 2018Genome Assembly 2018
Genome Assembly 2018
Aureliano Bombarely
 
CRISPR CAS9.pptx
CRISPR CAS9.pptxCRISPR CAS9.pptx
CRISPR CAS9.pptx
AkshitaAwasthi3
 
Variant analysis and whole exome sequencing
Variant analysis and whole exome sequencingVariant analysis and whole exome sequencing
Variant analysis and whole exome sequencing
Bioinformatics and Computational Biosciences Branch
 
Association mapping
Association mappingAssociation mapping
Association mapping
Senthil Natesan
 
Crispr/Cas9
Crispr/Cas9Crispr/Cas9
Rnaseq basics ngs_application1
Rnaseq basics ngs_application1Rnaseq basics ngs_application1
Rnaseq basics ngs_application1
Yaoyu Wang
 
Crop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymesCrop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymes
OECD Environment
 
Association mapping for improvement of agronomic traits in rice
Association mapping  for improvement of agronomic traits in riceAssociation mapping  for improvement of agronomic traits in rice
Association mapping for improvement of agronomic traits in rice
Sopan Zuge
 
Crispr
CrisprCrispr
Knowing Your NGS Upstream: Alignment and Variants
Knowing Your NGS Upstream: Alignment and VariantsKnowing Your NGS Upstream: Alignment and Variants
Knowing Your NGS Upstream: Alignment and Variants
Golden Helix Inc
 
Crispr m.raveendra reddy
Crispr   m.raveendra reddyCrispr   m.raveendra reddy
Crispr m.raveendra reddy
Raveendra Reddy Mallela
 
Visualization of 3D Genome Data
Visualization of 3D Genome DataVisualization of 3D Genome Data
Visualization of 3D Genome Data
Nils Gehlenborg
 
Next Generation Sequencing
Next Generation SequencingNext Generation Sequencing
Next Generation Sequencing
Sajad Rafatiyan
 

What's hot (20)

New generation Sequencing
New generation Sequencing New generation Sequencing
New generation Sequencing
 
Kogo 2013 RNA-seq analysis
Kogo 2013 RNA-seq analysisKogo 2013 RNA-seq analysis
Kogo 2013 RNA-seq analysis
 
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
Introduction to RNA-seq and RNA-seq Data Analysis (UEB-UAT Bioinformatics Cou...
 
Genome Assembly 2018
Genome Assembly 2018Genome Assembly 2018
Genome Assembly 2018
 
CRISPR CAS9.pptx
CRISPR CAS9.pptxCRISPR CAS9.pptx
CRISPR CAS9.pptx
 
RNA-seq Analysis
RNA-seq AnalysisRNA-seq Analysis
RNA-seq Analysis
 
ChIP-seq Theory
ChIP-seq TheoryChIP-seq Theory
ChIP-seq Theory
 
Variant analysis and whole exome sequencing
Variant analysis and whole exome sequencingVariant analysis and whole exome sequencing
Variant analysis and whole exome sequencing
 
Association mapping
Association mappingAssociation mapping
Association mapping
 
Crispr/Cas9
Crispr/Cas9Crispr/Cas9
Crispr/Cas9
 
Sequence alignment belgaum
Sequence alignment belgaumSequence alignment belgaum
Sequence alignment belgaum
 
Rnaseq basics ngs_application1
Rnaseq basics ngs_application1Rnaseq basics ngs_application1
Rnaseq basics ngs_application1
 
Crop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymesCrop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymes
 
Association mapping for improvement of agronomic traits in rice
Association mapping  for improvement of agronomic traits in riceAssociation mapping  for improvement of agronomic traits in rice
Association mapping for improvement of agronomic traits in rice
 
Crispr
CrisprCrispr
Crispr
 
Knowing Your NGS Upstream: Alignment and Variants
Knowing Your NGS Upstream: Alignment and VariantsKnowing Your NGS Upstream: Alignment and Variants
Knowing Your NGS Upstream: Alignment and Variants
 
Crispr/cas9 101
Crispr/cas9 101Crispr/cas9 101
Crispr/cas9 101
 
Crispr m.raveendra reddy
Crispr   m.raveendra reddyCrispr   m.raveendra reddy
Crispr m.raveendra reddy
 
Visualization of 3D Genome Data
Visualization of 3D Genome DataVisualization of 3D Genome Data
Visualization of 3D Genome Data
 
Next Generation Sequencing
Next Generation SequencingNext Generation Sequencing
Next Generation Sequencing
 

Similar to Investigating the 3D structure of the genome with Hi-C data analysis

Metabolomic Data Analysis Workshop and Tutorials (2014)
Metabolomic Data Analysis Workshop and Tutorials (2014)Metabolomic Data Analysis Workshop and Tutorials (2014)
Metabolomic Data Analysis Workshop and Tutorials (2014)
Dmitry Grapov
 
Reproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishReproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfish
tuxette
 
BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...
IJAEMSJORNAL
 
'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis
tuxette
 
Differential analyses of structures in HiC data
Differential analyses of structures in HiC dataDifferential analyses of structures in HiC data
Differential analyses of structures in HiC data
tuxette
 
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
Maxim Kazantsev
 
Parallel KNN for Big Data using Adaptive Indexing
Parallel KNN for Big Data using Adaptive IndexingParallel KNN for Big Data using Adaptive Indexing
Parallel KNN for Big Data using Adaptive Indexing
IRJET Journal
 
METODOLOGIA DEA EN STATA
METODOLOGIA DEA EN STATAMETODOLOGIA DEA EN STATA
METODOLOGIA DEA EN STATA
LuhSm
 
Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27
IJARIIE JOURNAL
 
Fault detection and diagnosis for non-Gaussian stochastic distribution system...
Fault detection and diagnosis for non-Gaussian stochastic distribution system...Fault detection and diagnosis for non-Gaussian stochastic distribution system...
Fault detection and diagnosis for non-Gaussian stochastic distribution system...ISA Interchange
 
Accounting serx
Accounting serxAccounting serx
Accounting serx
zeer1234
 
Accounting serx
Accounting serxAccounting serx
Accounting serx
zeer1234
 
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
Happiest Minds Technologies
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
Sivam Chinna
 
NNPDF3.0: parton distributions for the LHC Run II
NNPDF3.0: parton distributions for the LHC Run IINNPDF3.0: parton distributions for the LHC Run II
NNPDF3.0: parton distributions for the LHC Run IIjuanrojochacon
 
Ijricit 01-002 enhanced replica detection in short time for large data sets
Ijricit 01-002 enhanced replica detection in  short time for large data setsIjricit 01-002 enhanced replica detection in  short time for large data sets
Ijricit 01-002 enhanced replica detection in short time for large data sets
Ijripublishers Ijri
 
Atomreaktor
AtomreaktorAtomreaktor
Atomreaktor
József Király
 
The Use Of Decision Trees For Adaptive Item
The Use Of Decision Trees For Adaptive ItemThe Use Of Decision Trees For Adaptive Item
The Use Of Decision Trees For Adaptive Itembarthriley
 
IRJET- Survey of Feature Selection based on Ant Colony
IRJET- Survey of Feature Selection based on Ant ColonyIRJET- Survey of Feature Selection based on Ant Colony
IRJET- Survey of Feature Selection based on Ant Colony
IRJET Journal
 

Similar to Investigating the 3D structure of the genome with Hi-C data analysis (20)

Metabolomic Data Analysis Workshop and Tutorials (2014)
Metabolomic Data Analysis Workshop and Tutorials (2014)Metabolomic Data Analysis Workshop and Tutorials (2014)
Metabolomic Data Analysis Workshop and Tutorials (2014)
 
Reproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishReproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfish
 
BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...
 
'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis'ACCOST' for differential HiC analysis
'ACCOST' for differential HiC analysis
 
Differential analyses of structures in HiC data
Differential analyses of structures in HiC dataDifferential analyses of structures in HiC data
Differential analyses of structures in HiC data
 
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

 
Parallel KNN for Big Data using Adaptive Indexing
Parallel KNN for Big Data using Adaptive IndexingParallel KNN for Big Data using Adaptive Indexing
Parallel KNN for Big Data using Adaptive Indexing
 
METODOLOGIA DEA EN STATA
METODOLOGIA DEA EN STATAMETODOLOGIA DEA EN STATA
METODOLOGIA DEA EN STATA
 
Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27
 
Fault detection and diagnosis for non-Gaussian stochastic distribution system...
Fault detection and diagnosis for non-Gaussian stochastic distribution system...Fault detection and diagnosis for non-Gaussian stochastic distribution system...
Fault detection and diagnosis for non-Gaussian stochastic distribution system...
 
Accounting serx
Accounting serxAccounting serx
Accounting serx
 
Accounting serx
Accounting serxAccounting serx
Accounting serx
 
Mayank
MayankMayank
Mayank
 
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
 
NNPDF3.0: parton distributions for the LHC Run II
NNPDF3.0: parton distributions for the LHC Run IINNPDF3.0: parton distributions for the LHC Run II
NNPDF3.0: parton distributions for the LHC Run II
 
Ijricit 01-002 enhanced replica detection in short time for large data sets
Ijricit 01-002 enhanced replica detection in  short time for large data setsIjricit 01-002 enhanced replica detection in  short time for large data sets
Ijricit 01-002 enhanced replica detection in short time for large data sets
 
Atomreaktor
AtomreaktorAtomreaktor
Atomreaktor
 
The Use Of Decision Trees For Adaptive Item
The Use Of Decision Trees For Adaptive ItemThe Use Of Decision Trees For Adaptive Item
The Use Of Decision Trees For Adaptive Item
 
IRJET- Survey of Feature Selection based on Ant Colony
IRJET- Survey of Feature Selection based on Ant ColonyIRJET- Survey of Feature Selection based on Ant Colony
IRJET- Survey of Feature Selection based on Ant Colony
 

More from tuxette

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
tuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
tuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
tuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
tuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
tuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
tuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
tuxette
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
tuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
tuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
tuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
tuxette
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
tuxette
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
tuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
tuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
tuxette
 

More from tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 

Recently uploaded

Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 

Recently uploaded (20)

Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 

Investigating the 3D structure of the genome with Hi-C data analysis

  • 1. Investigating the 3D structure of the genome with Hi-C data analysis Sylvain Foissac & Nathalie Villa-Vialaneix prenom.nom@inra.fr Séminaire MIAT - Toulouse, 2 juin 2017 SF & NV2 | Hi-C data analysis 1/28
  • 2. Sommaire 1 Normalization 2 TAD identification 3 A/B compartments 4 Differential analysis SF & NV2 | Hi-C data analysis 2/28
  • 3. Sommaire 1 Normalization 2 TAD identification 3 A/B compartments 4 Differential analysis SF & NV2 | Hi-C data analysis 3/28
  • 4. Purpose of normalization 1 within matrix normalization: make bins comparable within a matrix (not needed for differential analysis) SF & NV2 | Hi-C data analysis 4/28
  • 5. Purpose of normalization 1 within matrix normalization: make bins comparable within a matrix (not needed for differential analysis) 2 between matrix normalization: make the same bin pair comparable between two matrices (needed for differential analysis) SF & NV2 | Hi-C data analysis 4/28
  • 6. Different within matrix normalizations to correct technical biases (GC content, mappability...) explicit correction [Yaffe and Tanay, 2011, Hu et al., 2012]: every factor causing bais is identified and estimated SF & NV2 | Hi-C data analysis 5/28
  • 7. Different within matrix normalizations to correct technical biases (GC content, mappability...) explicit correction [Yaffe and Tanay, 2011, Hu et al., 2012]: every factor causing bais is identified and estimated non parametric correction ICE correction using matrix balancing [Imakaev et al., 2012] K = b Kb for a K st ∀ i = 1, . . . , p, p j=1 Kij is constant SF & NV2 | Hi-C data analysis 5/28
  • 8. Different within matrix normalizations to correct technical biases picture from [Schmitt et al., 2016] SF & NV2 | Hi-C data analysis 5/28
  • 9. Different within matrix normalizations to take distances into account theoretical distribution taken from [Belton et al., 2012] Kd ij = Kij − Kd(i,j) σ(Dd(i,j)) with Kd average counts at distance d σ(Dd) standard deviation available in HiTC [Servant et al., 2012] SF & NV2 | Hi-C data analysis 6/28
  • 10. Between matrix normalization correct for differences in sequencing depth standard approach: similar to RNA-seq normalization SF & NV2 | Hi-C data analysis 7/28
  • 11. Between matrix normalization correct for differences in sequencing depth standard approach: similar to RNA-seq normalization However... SF & NV2 | Hi-C data analysis 7/28
  • 12. Between matrix normalization correct for differences in sequencing depth standard approach: similar to RNA-seq normalization However... density adjustment by LOESS fit [Robinson and Oshlack, 2010] (implemented in csaw) SF & NV2 | Hi-C data analysis 7/28
  • 13. Sommaire 1 Normalization 2 TAD identification 3 A/B compartments 4 Differential analysis SF & NV2 | Hi-C data analysis 8/28
  • 14. Topologically Associated Domains (TADs) [Rao et al., 2014] SF & NV2 | Hi-C data analysis 9/28
  • 15. TAD method jungle Directionality index [Dixon et al., 2012]: compute divergence between up/downstream interaction counts + HMM to identify TADs SF & NV2 | Hi-C data analysis 10/28
  • 16. TAD method jungle Directionality index [Dixon et al., 2012]: compute divergence between up/downstream interaction counts + HMM to identify TADs armatus [Filippova et al., 2013]: maximize a criteria which evaluate a within/between count ratio + combine multi-resolution results in a consensual segmentation SF & NV2 | Hi-C data analysis 10/28
  • 17. TAD method jungle Directionality index [Dixon et al., 2012]: compute divergence between up/downstream interaction counts + HMM to identify TADs armatus [Filippova et al., 2013]: maximize a criteria which evaluate a within/between count ratio + combine multi-resolution results in a consensual segmentation segmentation method [Brault et al., 2017]: block boundary estimation in matrix SF & NV2 | Hi-C data analysis 10/28
  • 18. TAD method jungle Directionality index [Dixon et al., 2012]: compute divergence between up/downstream interaction counts + HMM to identify TADs armatus [Filippova et al., 2013]: maximize a criteria which evaluate a within/between count ratio + combine multi-resolution results in a consensual segmentation segmentation method [Brault et al., 2017]: block boundary estimation in matrix ... (many others), interestingly, very few provides a hierarchical clustering Comparisons in: [Fotuhi Siahpirani et al., 2016, Dali and Blanchette, 2017] SF & NV2 | Hi-C data analysis 10/28
  • 19. DI evolution with respect to armatus TADs SF & NV2 | Hi-C data analysis 11/28
  • 20. CTCF at TAD boundaries SF & NV2 | Hi-C data analysis 12/28
  • 21. Enrichment of genomic features around TAD boundaries Homo Sapiens [Dixon et al., 2012] Sus Scrofa (PORCINET project) SF & NV2 | Hi-C data analysis 13/28
  • 22. Current methodological development Constrained HAC as a way to compare/combine TADs between samples Contrained HAC: Hierarchical clustering with contiguity constrains SF & NV2 | Hi-C data analysis 14/28
  • 23. Current methodological development Constrained HAC as a way to compare/combine TADs between samples Contrained HAC: Hierarchical clustering with contiguity constrains Challenges (currently under development with Pierre Neuvial and Marie Chavent): methodological issues: what happens when using Ward’s linkage criterion with a non Euclidean similarity (counts of the Hi-C matrix)? what happens when adding constrains to HAC? (partially solved) development of the R package adjclust (Google Summer of Code selected project) SF & NV2 | Hi-C data analysis 14/28
  • 24. Sommaire 1 Normalization 2 TAD identification 3 A/B compartments 4 Differential analysis SF & NV2 | Hi-C data analysis 15/28
  • 25. A/B compartments [Lieberman-Aiden et al., 2009] [Giorgetti et al., 2013] Method (in theory): compute Pearson correlations between bins (using interaction counts with all the other bins of the same chromosome) compute eigenvectors (or perform PCA) on this correlation matrix affect A/B compartments to +/- values of PCs SF & NV2 | Hi-C data analysis 16/28
  • 26. A/B compartments in practice after ICED and distance-based normalizations SF & NV2 | Hi-C data analysis 17/28
  • 27. A/B compartments in practice after ICED and distance-based normalizations Method: differentiate between A/B using sign of the correlation between PCs and diagonal counts choose a relevant PC and method maximizing − log10(p − value) between diagonal counts in +/- PC (2-group comparison Student test) SF & NV2 | Hi-C data analysis 17/28
  • 28. Biological validation SF & NV2 | Hi-C data analysis 18/28
  • 29. Sommaire 1 Normalization 2 TAD identification 3 A/B compartments 4 Differential analysis SF & NV2 | Hi-C data analysis 19/28
  • 30. Filtering In differential analysis of sequencing data, filtering is a crucial step: removing low count features (that are little or no chance to be found differential) improves the test power (leverage the multiple testing correction effect) and can save unnecessary computational time SF & NV2 | Hi-C data analysis 20/28
  • 31. Filtering In differential analysis of sequencing data, filtering is a crucial step: removing low count features (that are little or no chance to be found differential) improves the test power (leverage the multiple testing correction effect) and can save unnecessary computational time can be performed 1/ at the beginning of the analysis or after the estimation of the parameters of the model used for differential analysis SF & NV2 | Hi-C data analysis 20/28
  • 32. Filtering In differential analysis of sequencing data, filtering is a crucial step: removing low count features (that are little or no chance to be found differential) improves the test power (leverage the multiple testing correction effect) and can save unnecessary computational time can be performed 1/ at the beginning of the analysis or after the estimation of the parameters of the model used for differential analysis; 2/ can be fixed to an arbitrary value (minimum total count per sample) or automated from the data SF & NV2 | Hi-C data analysis 20/28
  • 33. Filtering In differential analysis of sequencing data, filtering is a crucial step: removing low count features (that are little or no chance to be found differential) improves the test power (leverage the multiple testing correction effect) and can save unnecessary computational time can be performed 1/ at the beginning of the analysis or after the estimation of the parameters of the model used for differential analysis; 2/ can be fixed to an arbitrary value (minimum total count per sample) or automated from the data for Hi-C data: filtering was performed at the beginning of the analysis (to limit the computation burden) was performed by using an arbitrary threshold or a threshold based on the estimation of the noise background by a quantile of inter-chromosomal counts (as in R package diffHic) SF & NV2 | Hi-C data analysis 20/28
  • 34. Filtering In differential analysis of sequencing data, filtering is a crucial step: removing low count features (that are little or no chance to be found differential) improves the test power (leverage the multiple testing correction effect) and can save unnecessary computational time can be performed 1/ at the beginning of the analysis or after the estimation of the parameters of the model used for differential analysis; 2/ can be fixed to an arbitrary value (minimum total count per sample) or automated from the data 500 kb - automatic filter (filters counts<∼ 5) - 96.4% of pairs filtered out before filtering after filtering SF & NV2 | Hi-C data analysis 20/28
  • 35. Exploratory analysis (500kb bins) chromosome 1 1 0.911 1 0.8886 0.8866 1 0.8566 0.8651 0.8288 1 0.8973 0.9118 0.8912 0.8692 1 0.8935 0.9032 0.8818 0.8799 0.906 1 LW90−160216−GCCAAT LW90−160223−CTTGTA LW90−160308−AGTTCC LW110−160307−CGATGT LW110−160308−AGTCAA LW110−160517−ACAGTG LW 90−160216−G C C AAT LW 90−160223−C TTG TA LW 90−160308−AG TTC C LW 110−160307−C G ATG T LW 110−160308−AG TC AA LW 110−160517−AC AG TG −1.0 −0.5 0.0 0.5 1.0 Cosinus (Frobenius norm) good reproducibility between experiments no clear organization with respect to the condition SF & NV2 | Hi-C data analysis 21/28
  • 36. Exploratory analysis (500kb bins) chromosome 1 1 0.911 1 0.8886 0.8866 1 0.8566 0.8651 0.8288 1 0.8973 0.9118 0.8912 0.8692 1 0.8935 0.9032 0.8818 0.8799 0.906 1 LW90−160216−GCCAAT LW90−160223−CTTGTA LW90−160308−AGTTCC LW110−160307−CGATGT LW110−160308−AGTCAA LW110−160517−ACAGTG LW 90−160216−G C C AAT LW 90−160223−C TTG TA LW 90−160308−AG TTC C LW 110−160307−C G ATG T LW 110−160308−AG TC AA LW 110−160517−AC AG TG −1.0 −0.5 0.0 0.5 1.0 Cosinus (Frobenius norm) good reproducibility between experiments no clear organization with respect to the condition all data after filtering and between matrix normalization (LOESS) 2 outliers but PC1 is organized with respect to the condition SF & NV2 | Hi-C data analysis 21/28
  • 37. Methods for differential analysis of Hi-C Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic (essentially a wrapper for edgeR): count data modeled by Binomial Negative distribution SF & NV2 | Hi-C data analysis 22/28
  • 38. Methods for differential analysis of Hi-C Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic (essentially a wrapper for edgeR): count data modeled by Binomial Negative distribution parameters (mean, variance per gene) are estimated from data: a variance vs mean relationship is modeled SF & NV2 | Hi-C data analysis 22/28
  • 39. Methods for differential analysis of Hi-C Similar to RNA-seq [Lun and Smyth, 2015] and R package diffHic (essentially a wrapper for edgeR): count data modeled by Binomial Negative distribution parameters (mean, variance per gene) are estimated from data: a variance vs mean relationship is modeled test is performed using an exact test (similar to Fisher) or a log-likelihood ratio test (GLM model) SF & NV2 | Hi-C data analysis 22/28
  • 40. Complementary remarks about DE analysis Hi-C data contain more zeros than RNA-seq data: some people propose to use Zero Inflated BN distribution (unpublished as far as I know) SF & NV2 | Hi-C data analysis 23/28
  • 41. Complementary remarks about DE analysis Hi-C data contain more zeros than RNA-seq data: some people propose to use Zero Inflated BN distribution (unpublished as far as I know) provides a p-value for every pair of bins: analysis based on a very large number of bins for finer resolutions (500kb after filtering: 998 623 pairs of bins; without filtering: 13 509 221 pairs of bins): problem solved for 500kb bins but still under study for 40kb bins SF & NV2 | Hi-C data analysis 23/28
  • 42. Complementary remarks about DE analysis Hi-C data contain more zeros than RNA-seq data: some people propose to use Zero Inflated BN distribution (unpublished as far as I know) provides a p-value for every pair of bins: analysis based on a very large number of bins for finer resolutions (500kb after filtering: 998 623 pairs of bins; without filtering: 13 509 221 pairs of bins): problem solved for 500kb bins but still under study for 40kb bins tests are performed as if bin pairs were independant whereas they are spatially correlated SF & NV2 | Hi-C data analysis 23/28
  • 43. Complementary remarks about DE analysis Hi-C data contain more zeros than RNA-seq data: some people propose to use Zero Inflated BN distribution (unpublished as far as I know) provides a p-value for every pair of bins: analysis based on a very large number of bins for finer resolutions (500kb after filtering: 998 623 pairs of bins; without filtering: 13 509 221 pairs of bins): problem solved for 500kb bins but still under study for 40kb bins tests are performed as if bin pairs were independant whereas they are spatially correlated: estimation of model parameters might be improved if 1/ smoothed with respect to spatial proximity (similar to what is sometimes performed methylation data analysis); 2/ performed independantly for pairs of bins at a given distance (future work). post-analysis of spatial distribution of p-values, work-in-progress with Pierre Neuvial (submitted CNRS project) SF & NV2 | Hi-C data analysis 23/28
  • 44. because last page had no picture probably not suited for the youngest SF & NV2 | Hi-C data analysis 24/28
  • 45. Preliminary results 913 bin pairs found differential (after multiple testing correction) most of them are related to 3 chromosomes parameter setting (filters...) and biological analysis are work-in-progress... SF & NV2 | Hi-C data analysis 25/28
  • 46. Differential TADs (state-of-the-art) Detecting differential domains between the two conditions Existing approaches: [Fraser et al., 2015] (3 conditions, no replicate) HMM on TAD boundaries (with a tolerance threshold) to identify different TAD boundaries between samples HAC on TADs, cophenetic distance to obtain local conserved structure by using a z-score approach SF & NV2 | Hi-C data analysis 26/28
  • 47. Differential TADs (state-of-the-art) Detecting differential domains between the two conditions Existing approaches: [Fraser et al., 2015] (3 conditions, no replicate) HMM on TAD boundaries (with a tolerance threshold) to identify different TAD boundaries between samples HAC on TADs, cophenetic distance to obtain local conserved structure by using a z-score approach R package diffHic computes up/down-stream counts (with ± 100Kb) and uses the GLM model implemented in edgeR with an interaction between stream direction (up/down) and condition. SF & NV2 | Hi-C data analysis 26/28
  • 48. Differential TADs (state-of-the-art) Detecting differential domains between the two conditions Existing approaches: [Fraser et al., 2015] (3 conditions, no replicate) HMM on TAD boundaries (with a tolerance threshold) to identify different TAD boundaries between samples HAC on TADs, cophenetic distance to obtain local conserved structure by using a z-score approach R package diffHic computes up/down-stream counts (with ± 100Kb) and uses the GLM model implemented in edgeR with an interaction between stream direction (up/down) and condition. However, the first approach does not take biological variability into account (no replicate) and the second uses only a very aggregated criterion. SF & NV2 | Hi-C data analysis 26/28
  • 49. Differential TADs (perspectives) Ideas for future work Using constrained HAC, are we able to: compute a consensus dendrogram using several biological replicates; differentiate branches significantly (in which sense?) different between conditions taking into account the within condition variability? SF & NV2 | Hi-C data analysis 27/28
  • 50. Differential TADs (perspectives) Ideas for future work Using constrained HAC, are we able to: compute a consensus dendrogram using several biological replicates; differentiate branches significantly (in which sense?) different between conditions taking into account the within condition variability? SF & NV2 | Hi-C data analysis 27/28
  • 51. Conclusions and perspectives Honnestly, it’s late and I really do not believe that I will have enough time to make a conclusion and discuss perspectives so... Questions? SF & NV2 | Hi-C data analysis 28/28
  • 52. References Belton, J., Patton MacCord, R., Harmen Gibcus, J., Naumova, N., Zhan, Y., and Dekker, J. (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58:268–276. Brault, V., Chiquet, J., and Lévy-Leduc, C. (2017). Efficient block boundaries estimation in block-wise constant matrices: an application to HiC data. Electronic Journal of Statistics, 11(1):1570–1599. Dali, R. and Blanchette, M. (2017). A critical assessment of topologically associating domain prediction tools. Nucleic Acid Research, 45(6):2994–3005. Dixon, J., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485:376–380. Filippova, D., Patro, R., Duggal, G., and Kingsford, C. (2013). Identification of alternative topological domains in chromatin. Algorithms for Molecular Biology, 9:14. Fotuhi Siahpirani, A., Ay, F., and Roy, S. (2016). A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions. Genome Biology, 17:114. Fraser, J., Ferrai, C., Chiariello, A., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B., Kraemer, D., Aitken, S., Xie, S., Morris, K., Itoh, M., Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A., The FANTOM Consortium, Semple, C., Dostie, J., Pombo, A., and Nicodemi, M. (2015). Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Molecular Systems Biology, 11:852. Giorgetti, L., Servant, N., and Heard, E. (2013). Changes in the organization of the genome during the mammalian cell cycle. SF & NV2 | Hi-C data analysis 28/28
  • 53. Genome Biology, 14:142. Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B., and Liu, J. (2012). HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28(23):3131–3133. Imakaev, M., Fudenberg, G., McCord, R., Naumova, N., Goloborodko, A., Lajoie, B., Dekker, J., and Mirny, L. (2012). Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods, 9:999–1003. Lieberman-Aiden, E., van Berkum, N., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B., Sabo, P., Dorschner, M., Sandstrom, R., Bernstein, B., Bender, M., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L., Lander, E., and Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950):289–293. Lun, A. and Smyth, G. (2015). diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics, 16:258. Rao, S., Huntley, M., Durand, N., Stamenova, E., Bochkov, I., Robinson, J., Sanborn, A., Machol, I., Omer, A., Lander, E., and Lieberman Aiden, E. (2014). A 3D map of the human genome at kilobase resolution reveals principle of chromatin looping. Cell, 159(7):1665–1680. Robinson, M. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11:R25. Schmitt, A., Hu, M., and Ren, B. (2016). Genome-wide mapping and analysis of chromosome architecture. Nature Reviews, 17(12):743–755. Servant, N., Lajoie, B., Nora, E., Giorgetti, L., Chen, C., Heard, E., Dekker, J., and Barillot, E. (2012). SF & NV2 | Hi-C data analysis 28/28
  • 54. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics, 28(21):2843–2844. Yaffe, E. and Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics, 43:1059–1065. SF & NV2 | Hi-C data analysis 28/28