SECTION 9-3
 Divide by a Monomial
ESSENTIAL QUESTION


How do you divide monomials and polynomials by
monomials?



Where you’ll see this:

  Landscaping, retail, interior design, geography, modeling
QUOTIENT RULE FOR
EXPONENTS

             m
           a      m−n
             n
               =a
           a

    Same bases, subtract exponents
EXAMPLE 1
              Simplify.
         2                      4   5
   14y          9vw          80x y
a.           b.           c.    2 2
    7y          15v          20x y
EXAMPLE 1
              Simplify.
         2                      4   5
   14y          9vw          80x y
a.           b.           c.    2 2
    7y          15v          20x y


  2y
EXAMPLE 1
              Simplify.
         2                      4   5
   14y          9vw          80x y
a.           b.           c.    2 2
    7y          15v          20x y


              3w
  2y
               5
EXAMPLE 1
              Simplify.
         2                        4    5
   14y          9vw          80x y
a.           b.           c.    2 2
    7y          15v          20x y


              3w
  2y                          2
                            4x y   3
               5
EXAMPLE 2
             Simplify.
                               4     2
    2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
EXAMPLE 2
             Simplify.
                               4     2
    2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
EXAMPLE 2
             Simplify.
                               4     2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
   2
 2x
 2x
EXAMPLE 2
             Simplify.
                               4     2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
   2
 2x
 2x
EXAMPLE 2
             Simplify.
                               4     2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
   2
 2x   4x
    −
 2x 2x
EXAMPLE 2
             Simplify.
                               4     2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
   2
 2x   4x
    −
 2x 2x

   x −2
EXAMPLE 2
             Simplify.
                                 4       2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
                             4       2
 2x2
      4x                  45t   30t 15t
    −                         −    +
 2x 2x                     3     3   3

   x −2
EXAMPLE 2
             Simplify.
                                  4       2
       2
   2x − 4x                  45t − 30t + 15t
a.                       b.
     2x                            3
                             4        2
 2x2
      4x                  45t   30t 15t
    −                         −    +
 2x 2x                     3     3   3

   x −2                       4       2
                           15t − 10t + 5t
HOMEWORK
HOMEWORK


                 p. 388 #1-48 multiples of 3




“There is no expedient to which a man will not go to avoid the
           labor of thinking.” - Thomas A. Edison

Integrated Math 2 Section 9-3

  • 1.
    SECTION 9-3 Divideby a Monomial
  • 2.
    ESSENTIAL QUESTION How doyou divide monomials and polynomials by monomials? Where you’ll see this: Landscaping, retail, interior design, geography, modeling
  • 3.
    QUOTIENT RULE FOR EXPONENTS m a m−n n =a a Same bases, subtract exponents
  • 4.
    EXAMPLE 1 Simplify. 2 4 5 14y 9vw 80x y a. b. c. 2 2 7y 15v 20x y
  • 5.
    EXAMPLE 1 Simplify. 2 4 5 14y 9vw 80x y a. b. c. 2 2 7y 15v 20x y 2y
  • 6.
    EXAMPLE 1 Simplify. 2 4 5 14y 9vw 80x y a. b. c. 2 2 7y 15v 20x y 3w 2y 5
  • 7.
    EXAMPLE 1 Simplify. 2 4 5 14y 9vw 80x y a. b. c. 2 2 7y 15v 20x y 3w 2y 2 4x y 3 5
  • 8.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3
  • 9.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3
  • 10.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 2 2x 2x
  • 11.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 2 2x 2x
  • 12.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 2 2x 4x − 2x 2x
  • 13.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 2 2x 4x − 2x 2x x −2
  • 14.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 4 2 2x2 4x 45t 30t 15t − − + 2x 2x 3 3 3 x −2
  • 15.
    EXAMPLE 2 Simplify. 4 2 2 2x − 4x 45t − 30t + 15t a. b. 2x 3 4 2 2x2 4x 45t 30t 15t − − + 2x 2x 3 3 3 x −2 4 2 15t − 10t + 5t
  • 16.
  • 17.
    HOMEWORK p. 388 #1-48 multiples of 3 “There is no expedient to which a man will not go to avoid the labor of thinking.” - Thomas A. Edison