Table of Basic Integrals 
Basic Forms 
(1) 
Z 
xndx = 
1 
n + 1 
xn+1; n6= 1 
(2) 
Z 
1 
x 
dx = ln jxj 
(3) 
Z 
udv = uv  
Z 
vdu 
(4) 
Z 
1 
ax + b 
dx = 
1 
a 
ln jax + bj 
Integrals of Rational Functions 
(5) 
Z 
1 
(x + a)2 dx =  
1 
x + a 
(6) 
Z 
(x + a)ndx = 
(x + a)n+1 
n + 1 
; n6= 1 
(7) 
Z 
x(x + a)ndx = 
(x + a)n+1((n + 1)x  a) 
(n + 1)(n + 2) 
(8) 
Z 
1 
1 + x2 dx = tan1 x 
(9) 
Z 
1 
a2 + x2 dx = 
1 
a 
tan1 x 
a 
1
(10) 
Z 
x 
a2 + x2 dx = 
1 
2 
ln ja2 + x2j 
(11) 
Z 
x2 
x 
dx = x  a tan1 a2 + x2 a 
(12) 
Z 
x3 
a2 + x2 dx = 
1 
2 
x2  
1 
2 
a2 ln ja2 + x2j 
(13) 
Z 
1 
ax2 + bx + c 
dx = 
2 
p 
4ac  b2 
tan1 2ax + b 
p 
4ac  b2 
(14) 
Z 
1 
(x + a)(x + b) 
dx = 
1 
b  a 
ln 
a + x 
b + x 
; a6= b 
(15) 
Z 
x 
(x + a)2 dx = 
a 
a + x 
+ ln ja + xj 
(16) 
Z 
x 
ax2 + bx + c 
dx = 
1 
2a 
ln jax2+bx+cj 
b 
p 
4ac  b2 
a 
tan1 2ax + b 
p 
4ac  b2 
Integrals with Roots 
(17) 
Z 
p 
x  a dx = 
2 
3 
(x  a)3=2 
(18) 
Z 
1 
p 
x  a 
p 
x  a 
dx = 2 
(19) 
Z 
1 
p 
a  x 
p 
a  x 
dx = 2 
2
(20) 
Z 
x 
p 
x  a dx = 
8 
: 
2a 
3 (x  a)3=2 + 2 
5 (x  a)5=2 ; or 
2 
3x(x  a)3=2  4 
15 (x  a)5=2; or 
2 
15(2a + 3x)(x  a)3=2 
(21) 
Z p 
ax + b dx = 
 
2b 
3a 
+ 
2x 
3 
 
p 
ax + b 
(22) 
Z 
(ax + b)3=2 dx = 
2 
5a 
(ax + b)5=2 
(23) 
Z 
x 
p 
x  a 
dx = 
2 
3 
p 
x  a 
(x  2a) 
(24) 
Z r 
x 
a  x 
p 
x(a  x)  a tan1 
dx =  
p 
x(a  x) 
x  a 
(25) 
Z r 
x 
a + x 
dx = 
p 
x(a + x)  a ln 
p 
x + 
 
p 
x + a 
(26) 
Z 
x 
p 
ax + b dx = 
2 
15a2 (2b2 + abx + 3a2x2) 
p 
ax + b 
(Z27)p 
x(ax + b) dx = 
1 
4a3=2 
h 
(2ax + b) 
p 
ax(ax + b)  b2 ln
p 
x + 
a
p 
a(ax + b) 
i 
(Z28)p 
x3(ax + b) dx = 
 
b 
12a 
 
b2 
8a2x 
+ 
x 
3 
p 
x3(ax + b)+ 
b3 
8a5=2 ln
p 
x + 
a 
p 
a(ax + b)

Integral table

  • 1.
    Table of BasicIntegrals Basic Forms (1) Z xndx = 1 n + 1 xn+1; n6= 1 (2) Z 1 x dx = ln jxj (3) Z udv = uv Z vdu (4) Z 1 ax + b dx = 1 a ln jax + bj Integrals of Rational Functions (5) Z 1 (x + a)2 dx = 1 x + a (6) Z (x + a)ndx = (x + a)n+1 n + 1 ; n6= 1 (7) Z x(x + a)ndx = (x + a)n+1((n + 1)x a) (n + 1)(n + 2) (8) Z 1 1 + x2 dx = tan1 x (9) Z 1 a2 + x2 dx = 1 a tan1 x a 1
  • 2.
    (10) Z x a2 + x2 dx = 1 2 ln ja2 + x2j (11) Z x2 x dx = x a tan1 a2 + x2 a (12) Z x3 a2 + x2 dx = 1 2 x2 1 2 a2 ln ja2 + x2j (13) Z 1 ax2 + bx + c dx = 2 p 4ac b2 tan1 2ax + b p 4ac b2 (14) Z 1 (x + a)(x + b) dx = 1 b a ln a + x b + x ; a6= b (15) Z x (x + a)2 dx = a a + x + ln ja + xj (16) Z x ax2 + bx + c dx = 1 2a ln jax2+bx+cj b p 4ac b2 a tan1 2ax + b p 4ac b2 Integrals with Roots (17) Z p x a dx = 2 3 (x a)3=2 (18) Z 1 p x a p x a dx = 2 (19) Z 1 p a x p a x dx = 2 2
  • 3.
    (20) Z x p x a dx = 8 : 2a 3 (x a)3=2 + 2 5 (x a)5=2 ; or 2 3x(x a)3=2 4 15 (x a)5=2; or 2 15(2a + 3x)(x a)3=2 (21) Z p ax + b dx = 2b 3a + 2x 3 p ax + b (22) Z (ax + b)3=2 dx = 2 5a (ax + b)5=2 (23) Z x p x a dx = 2 3 p x a (x 2a) (24) Z r x a x p x(a x) a tan1 dx = p x(a x) x a (25) Z r x a + x dx = p x(a + x) a ln p x + p x + a (26) Z x p ax + b dx = 2 15a2 (2b2 + abx + 3a2x2) p ax + b (Z27)p x(ax + b) dx = 1 4a3=2 h (2ax + b) p ax(ax + b) b2 ln
  • 6.
  • 9.
    p a(ax +b) i (Z28)p x3(ax + b) dx = b 12a b2 8a2x + x 3 p x3(ax + b)+ b3 8a5=2 ln
  • 12.
    p x + a p a(ax + b)
  • 15.
    (29) Z p x2 a2 dx = 1 2 x p x2 a2 1 2 a2 ln
  • 18.
    x + p x2 a2
  • 21.
  • 22.
    (30) Z p a2 x2 dx = 1 2 x p a2 x2 + 1 2 a2 tan1 x p a2 x2 (31) Z x p x2 a2 dx = 1 3 x2 a23=2 (32) Z 1 p x2 a2 dx = ln
  • 25.
    x + p x2 a2
  • 28.
    (33) Z 1 p a2 x2 dx = sin1 x a (34) Z x p x2 a2 dx = p x2 a2 (35) Z x p a2 x2 p a2 x2 dx = (36) Z x2 p x2 a2 dx = 1 2 x p x2 a2 1 2 a2 ln
  • 31.
    x + p x2 a2
  • 34.
    (Z37)p ax2 +bx + c dx = b + 2ax 4a p ax2 + bx + c+ 4ac b2 8a3=2 ln
  • 37.
  • 40.
    p a(ax2 +bx+c) Z x p ax2 + bx + c dx = 1 48a5=2 2 p ax2 + bx + c p a 3b2 + 2abx + 8a(c + ax2) +3(b3 4abc) ln
  • 43.
    b + 2ax+ 2 p ax2 + bx + c p a
  • 46.
  • 47.
    (39) Z 1 p ax2 + bx + c dx = 1 p a ln
  • 50.
    2ax + b+ 2 p a(ax2 + bx + c)
  • 53.
    (Z40) x p ax2 + bx + c dx = 1 a p ax2 + bx + c b 2a3=2 ln
  • 56.
    2ax + b+ 2 p a(ax2 + bx + c)
  • 59.
    (41) Z dx (a2 + x2)3=2 = x a2 p a2 + x2 Integrals with Logarithms (42) Z ln ax dx = x ln ax x (43) Z x ln x dx = 1 2 x2 ln x x2 4 (44) Z x2 ln x dx = 1 3 x3 ln x x3 9 (45) Z xn ln x dx = xn+1 ln x n + 1 1 (n + 1)2 ; n6= 1 (46) Z ln ax x dx = 1 2 (ln ax)2 (47) Z ln x x2 dx = 1 x ln x x 5
  • 60.
    (48) Z ln(ax+ b) dx = x + b a ln(ax + b) x; a6= 0 (49) Z ln(x2 + a2) dx = x ln(x2 + a2) + 2a tan1 x a 2x (50) Z ln(x2 a2) dx = x ln(x2 a2) + a ln x + a x a 2x (Z51) ln ax2 + bx + c dx = 1 a p 4ac b2 tan1 2ax + b p 4ac b2 2x+ b 2a + x ln ax2 + bx + c (52) Z x ln(ax + b) dx = bx 2a 1 4 x2 + 1 2 x2 b2 a2 ln(ax + b) (53) Z x ln a2 b2x2 dx = 1 2 x2 + 1 2 x2 a2 b2 ln a2 b2x2 (54) Z (ln x)2 dx = 2x 2x ln x + x(ln x)2 (55) Z (ln x)3 dx = 6x + x(ln x)3 3x(ln x)2 + 6x ln x (56) Z x(ln x)2 dx = x2 4 + 1 2 x2(ln x)2 1 2 x2 ln x (57) Z x2(ln x)2 dx = 2x3 27 + 1 3 x3(ln x)2 2 9 x3 ln x 6
  • 61.
    Integrals with Exponentials (58) Z eax dx = 1 a eax (5Z9) p xeax dx = 1 a p xeax + p i erf 2a3=2 i p ax ; where erf(x) = 2 p Z x 0 et2 dt (60) Z xex dx = (x 1)ex (61) Z xeax dx = x a 1 a2 eax (62) Z x2ex dx = x2 2x + 2 ex (63) Z x2eax dx = x2 a 2x a2 + 2 a3 eax (64) Z x3ex dx = x3 3x2 + 6x 6 ex (65) Z xneax dx = xneax a n a Z xn1eaxdx (66) Z xneax dx = (1)n an+1 [1 + n;ax]; where (a; x) = Z 1 x ta1et dt (67) Z eax2 dx = p i 2 p a erf ix p a 7
  • 62.
    (68) Z eax2 dx = p 2 p a erf x p a (69) Z xeax2 dx = 1 2a eax2 (70) Z x2eax2 dx = 1 4 r a3 erf(x p a) x 2a eax2 Integrals with Trigonometric Functions (71) Z sin ax dx = 1 a cos ax (72) Z sin2 ax dx = x 2 sin 2ax 4a (73) Z sin3 ax dx = 3 cos ax 4a + cos 3ax 12a (74) Z sinn ax dx = 1 a cos ax 2F1 1 2 ; 1 n 2 ; 3 2 ; cos2 ax (75) Z cos ax dx = 1 a sin ax (76) Z cos2 ax dx = x 2 + sin 2ax 4a (77) Z cos3 axdx = 3 sin ax 4a + sin 3ax 12a 8
  • 63.
    (78) Z cospaxdx = 1 a(1 + p) cos1+p ax 2F1 1 + p 2 ; 1 2 ; 3 + p 2 ; cos2 ax (79) Z cos x sin x dx = 1 2 sin2 x + c1 = 1 2 cos2 x + c2 = 1 4 cos 2x + c3 (80) Z cos ax sin bx dx = cos[(a b)x] 2(a b) cos[(a + b)x] 2(a + b) ; a6= b (81) Z sin2 ax cos bx dx = sin[(2a b)x] 4(2a b) + sin bx 2b sin[(2a + b)x] 4(2a + b) (82) Z sin2 x cos x dx = 1 3 sin3 x (83) Z cos2 ax sin bx dx = cos[(2a b)x] 4(2a b) cos bx 2b cos[(2a + b)x] 4(2a + b) (84) Z cos2 ax sin ax dx = 1 3a cos3 ax (Z85) sin2 ax cos2 bxdx = x 4 sin 2ax 8a sin[2(a b)x] 16(a b) + sin 2bx 8b sin[2(a + b)x] 16(a + b) (86) Z sin2 ax cos2 ax dx = x 8 sin 4ax 32a (87) Z tan ax dx = 1 a ln cos ax 9
  • 64.
    (88) Z tan2ax dx = x + 1 a tan ax (89) Z tann ax dx = tann+1 ax a(1 + n) 2F1 n + 1 2 ; 1; n + 3 2 ;tan2 ax (90) Z tan3 axdx = 1 a ln cos ax + 1 2a sec2 ax (91) Z sec x dx = ln j sec x + tan xj = 2 tanh1 tan x 2 (92) Z sec2 ax dx = 1 a tan ax (93) Z sec3 x dx = 1 2 sec x tan x + 1 2 ln j sec x + tan xj (94) Z sec x tan x dx = sec x (95) Z sec2 x tan x dx = 1 2 sec2 x (96) Z secn x tan x dx = 1 n secn x; n6= 0 (97) Z csc x dx = ln
  • 67.
  • 70.
    = ln jcsc x cot xj + C 10
  • 71.
    (98) Z csc2ax dx = 1 a cot ax (99) Z csc3 x dx = 1 2 cot x csc x + 1 2 ln j csc x cot xj (100) Z cscn x cot x dx = 1 n cscn x; n6= 0 (101) Z sec x csc x dx = ln j tan xj Products of Trigonometric Functions and Mono- mials (102) Z x cos x dx = cos x + x sin x (103) Z x cos ax dx = 1 a2 cos ax + x a sin ax (104) Z x2 cos x dx = 2x cos x + x2 2 sin x (105) Z x2 cos ax dx = 2x cos ax a2 + a2x2 2 a3 sin ax (106) Z xn cos xdx = 1 2 (i)n+1 [(n + 1;ix) + (1)n(n + 1; ix)] 11
  • 72.
    (107) Z xncos ax dx = 1 2 (ia)1n [(1)n(n + 1;iax) (n + 1; ixa)] (108) Z x sin x dx = x cos x + sin x (109) Z x sin ax dx = x cos ax a + sin ax a2 (110) Z x2 sin x dx = 2 x2 cos x + 2x sin x (111) Z x2 sin ax dx = 2 a2x2 a3 cos ax + 2x sin ax a2 (112) Z xn sin x dx = 1 2 (i)n [(n + 1;ix) (1)n(n + 1;ix)] (113) Z x cos2 x dx = x2 4 + 1 8 cos 2x + 1 4 x sin 2x (114) Z x sin2 x dx = x2 4 1 8 cos 2x 1 4 x sin 2x (115) Z x tan2 x dx = x2 2 + ln cos x + x tan x (116) Z x sec2 x dx = ln cos x + x tan x 12
  • 73.
    Products of TrigonometricFunctions and Ex- ponentials (117) Z ex sin x dx = 1 2 ex(sin x cos x) (118) Z ebx sin ax dx = 1 a2 + b2 ebx(b sin ax a cos ax) (119) Z ex cos x dx = 1 2 ex(sin x + cos x) (120) Z ebx cos ax dx = 1 a2 + b2 ebx(a sin ax + b cos ax) (121) Z xex sin x dx = 1 2 ex(cos x x cos x + x sin x) (122) Z xex cos x dx = 1 2 ex(x cos x sin x + x sin x) Integrals of Hyperbolic Functions (123) Z cosh ax dx = 1 a sinh ax (124) Z eax cosh bx dx = 8 : eax [a cosh bx b sinh bx] a6= b a2 b2 e2ax x + a = b 4a 2 (125) Z sinh ax dx = 1 a cosh ax 13
  • 74.
    (126) Z eaxsinh bx dx = 8 : eax [b cosh bx + a sinh bx] a6= b a2 b2 e2ax x a = b 4a 2 (127) Z tanh axdx = 1 a ln cosh ax (128) Z eax tanh bx dx = 8 : e(a+2b)x (a + 2b) 2F1 h 1 + a 2b ; 1; 2 + a 2b ;e2bx i 1 a eax 2F1 h 1; a 2b ; 1 + a 2b ;e2bx i a6= b eax 2 tan1[eax] a a = b (129) Z cos ax cosh bx dx = 1 a2 + b2 [a sin ax cosh bx + b cos ax sinh bx] (130) Z cos ax sinh bx dx = 1 a2 + b2 [b cos ax cosh bx + a sin ax sinh bx] (131) Z sin ax cosh bx dx = 1 a2 + b2 [a cos ax cosh bx + b sin ax sinh bx] (132) Z sin ax sinh bx dx = 1 a2 + b2 [b cosh bx sin ax a cos ax sinh bx] (133) Z sinh ax cosh axdx = 1 4a [2ax + sinh 2ax] (134) Z sinh ax cosh bx dx = 1 b2 a2 [b cosh bx sinh ax a cosh ax sinh bx] c 2014. From http://integral-table.com, last revised June 14, 2014. This mate- rial is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose. This work is licensed under the Creative Com- mons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. 14