SlideShare a Scribd company logo
1 of 13
Download to read offline
Total No. of questions in Indefinite Integration are-
In Chapter Examples..................................................... 53
Solved Example............................................................ 50
Total No. of questions...............................................103
INDEFINITEINTEGRATION
1. INTEGRATION OF A FUNCTION
Integration is a reverse process of differentiation.
The integral or primitive of a function f(x) with
respect to x is that function  (x) whose derivative
with respect to x is the given function f(x). It is
expressed symbolically as -
f x dx x
( ) ( )

z 
Thus
f x dx x
( ) ( )

z   
d
dx
x f x
[ ( )] ( )

The process of finding the integral of a function
is called Integration and the given function is
called Integrand. Now, it is obvious that the
operation of integration is inverse operation of
differentiation. Hence integral of a function is
also named as anti-derivative of that function.
Further we observe that-
d
dx
x x
d
dx
x x
d
dx
x k x
( )
( )
( )
2
2
2
2
2 2
2

 
 
U
V
|
|
|
W
|
|
|
  
 t
tan
cons
x
xdx
2 2
So we always add a constant to the integral of
function, which is called the constant of
Integration. It is generally denoted by c. Due to
presence of this constant such an integral is
called an Indefinite integral.
2. BASIC THEOREMS ON INTEGRATION
If f(x), g(x) are two functions of a variable x and
k is a constant, then-
(i) z
k f(x) dx = k z
f(x) dx.
(ii) z
[f(x)  g(x)] dx = z
f(x)dx ± z
g(x) dx
(iii) d/dx ( z
f(x) dx) = f(x)
(iv) zd
dx
f x
( )
F
H
G I
K
Jdx = f(x)
3. STANDARD INTEGRALS
The following integrals are directly obtained from
the derivatives of standard functions.
i. z
0. dx = c
ii. z
1.dx = x + c
iii. z
k.dx = kx + c (k  R)
iv. z
xn dx =
x
n
n

1
1
+ c (n  –1)
v.
1
x
zdx = loge x + c
vi. z
ex dx = ex + c
vii. z
ax dx =
a
a
x
e
log
+ c = ax loga e + c
viii. z
sin x dx = – cos x + c
ix. z
cos x dx = sin x + c
x. z
tan x dx = log sec x +c = – log cos x + c
xi. z
cot x dx = log sin x + c
xii. z
secx dx =log(secx +tanx) + c
=–log (sec x –tan x) + c
= log tan

4 2

F
H
G I
K
J
x
+c
xiii. z
cosec x dx = – log (cosec x + cot x) + c
= log (cosec x – cot x) + c = log tan
x
2
F
H
GI
K
J+ c
xiv. z
sec x tan x dx = sec x + c
xv. z
cosec x cot x dx = – cosec x + c
xvi. z
sec2 x dx = tan x + c
xvii. z
cosec2 x dx = – cot x + c
xviii. z
sinh x dx = cosh x + c
xix. z
cosh x dx = sinh x + c
xx. z
sech2 x dx = tanh x + c
xxi. z
cosech2 x dx = – coth x + c
xxii. z
sech x tanh x dx = – sech x + c
xxiii. z
cosech x coth x = – cosech x + c
xxiv. z 1
x + a
2 2 dx =
1
a
tan
an–1
x
a
F
H
GI
K
J+ c
xxv.
1
2 2
x a

z dx =
1
2a
log
x a
x a


F
H
G I
K
J+ c
xxvi.
1
2 2
a x

z dx =
1
2a
log
a x
a x


F
H
G I
K
J+ c
xxvii.
1
2 2
a x

z dx = sin–1
x
a
F
H
GI
K
J+ c
= – cos–1
x
a
F
H
GI
K
J+ c
xxviii.
1
2 2
x a

z dx = sinh–1
x
a
F
H
GI
K
J+ c
= log (x + x a
2 2
 ) + c
xxix.
1
2 2
x a

z dx = cosh–1
x
a
F
H
GI
K
J+ c
= log (x + x a
2 2
 ) + c
xxx. a x
2 2

z dx
=
x
2 a x
2 2
 +
a2
2
. sin–1
x
a
+ c
xxxi. x a
2 2

z dx
=
x
2 x a
2 2
 +
a2
2
. sinh–1
x
a
+ c
xxxii. x a
2 2

z dx
=
x
2 x a
2 2
 –
a2
2
. cosh–1
x
a
+ c
xxxiii.
1
2 2
x x a

z dx =
1
a
sec–1
x
a
+ c
xxxiv. zeax sin bx dx
=
e
a b
ax
2 2

(a sin bx – b cos bx) + c
=
e
a b
ax
2 2

sin bx
b
a

F
H
GI
K
J
R
S
T
U
V
W

tan 1
+ c
xxxv. zeax cos bx dx
=
e
a b
ax
2 2

(a cos bx + b sin bx) + c
=
e
a b
ax
2 2

cos bx
b
a

R
S
T
U
V
W

tan 1
+ c
Examples
based on Integration of Function
Ex.1 Evaluate : zx–55 dx
Sol. z
x–55 dx
=
x

54
54
+ c Ans.
Ex.2 Evaluate :
x
x
2
2
1

z
e j dx
Sol.
x x
x
4 2
2 1
 
z dx
= x x
x
3
2
1
 
F
H
G I
K
J
z dx
=
x4
4
+ x2 + log x + c Ans.
Ex.3 Evaluate : x
x

F
H
G I
K
J
z 1
2
dx
Sol. Here I = x
x
 
F
H
G I
K
J
z 1
2 dx
=
x2
2
+ log x – 2x + c Ans.
Ex.4 Evaluate : z
tan2 x. dx
Sol. Here I = z
(sec2 x – 1) dx
= z
sec2 x dx – z
dx
= tan x – x + c Ans.
Ex.5 Evaluate z
cos2 x/2 dx
Sol. Here I =
1
2

z cos x
b g
dx
=
1
2 z
dx +
1
2 z
cos x dx
=
1
2
(x + sin x) + c Ans.
Ex.6 Evaluate : e x
log 6
z dx
Sol. Let I = e x
log 6
z dx
 I = x dx
6
z
=
x7
7
+ c Ans.
Ex.7 Evaluate : sec .cos
2 2
x ec x
e j
z dx
Sol. Here I =
sin cos
cos sin
2 2
2 2
x x
x x

z dx
=
1 1
2 2
cos sin
x x

F
H
G I
K
J
z dx
= sec2
x dx 
z cosec x dx
2
z
= tan x – cot x + c Ans.
Ex.8 Evaluate : a e dx
x x
.
z
Sol. I = a e dx
x x
.
z
= ( )
ae dx
x
z
=
ae
ae
x
b g
log ( )
+ c
=
a e
a
c
x x
log 

1
Ans.
Ex.9 Evaluate : sin . cos
2x x dx
z
Sol. Let I = sin . cos
2x x dx
z
=
1
2 z
(sin 3x + sin x) dx
= –
1
2
cos
cos
3
3
x
x

L
N
M O
Q
P
+ c Ans.
Ex.10 Evaluate z dx
x x
4 4 2
2
 
Sol. Let I = z dx
x x
4 4 2
2
 
= z 1
2 1 1
2
x  
b g dx
=
1
2
tan–1 (2x + 1) + c Ans.
Ex.11 Evaluate : zx2
9
 dx
Sol. I = zx2
9
 dx
=
x
2 x2
9
 +
9
2
sinh–1
x
3
F
H
GI
K
J+ c Ans.
Ex.12 Evaluate : z
e3x. cos 4x dx
Sol. Here I = z
e3x . cos 4x dx
=
e x
3
5
cos (4x – tan–1 4/3) + c Ans.
Ex.13 Evaluate : z
sin–1 (cos x) dx
Sol. Here I = z
sin–1 (cos x) dx
= z
sin–1 sin

2

F
H
G I
K
J
x dx
= z
2

F
H
G I
K
J
x dx
=

2
2
2

F
H
G I
K
J

x
+ c Ans.
4. METHODS OF INTEGRATION
When integration can not be reduced into some
standard form then integration is performed using
following methods-
(i) Integration by substitutions
(ii) Integration by parts
(iii) Integration of rational functions
(iv) Integration of irrational functions
(v) Integration of trigonometric functions
4.1 INTEGRATION BY SUBSTITUTION:
Generally we apply this method in the following
two cases.
(i) When Integrand is a function of function-
i.e. f [  (x)]  ' (x) dx
Here we put  (x) = t so that  '(x) dx = dt
and in that case the integrand is reduced
to f(t) dt.
Note:
In this method the integrand is broken into two
factors so that one factor can be expressed in
terms of the function whose differential coefficient
is the second factor.
Ex.14 Evaluate : z
x 1 2
 x dx
Sol. Let 1 + x2 = t
then 2x dx = dt
or x dx = 1/2 dt.
  x 1 2
 x dx = 
1
2 t dt
=
t
c
3 2
3
/
 =
1
3
(1 + x2)3/2 + c Ans.
Ex.15 Evaluate : x2
ex3
dx.
Sol. Let x3 = t then
3x2 dx = dt
 I =
1
3 et dt =
1
3
et + c
=
1
3
ex3
+ c Ans.
Ex.16 Evaluate : x tan x2 sec x2 dx.
Sol. Let x2 = t
2x dx = dt  x dx = 1/2 dt
 I =
1
2 tan t sec t dt
=
1
2
sec t + c =
1
2
sec x2 + c .Ans.
(ii) When integrand is the product of two
factors such that one is the derivative of
the other i.e. I = zf'(x) f(x) dx.
In this case we put f(x) = t and convert it
into a standard integral.
Ex.17 Evaluate : z
log x
x
dx.
Sol. Let log x = t

1
x
dx = dt
 I = z
t.dt =
1
2
t2 + c
=
1
2
(log x)2 + c Ans.
Ex.18 Evaluate : z
tan

1
2
1
x
x
dx.
Sol. Let tan–1 x = t then
1
1 2
 x
dx = dt
 I = z
t dt =
t2
2
+ c
=
1
2
(tan–1 x)2 + c Ans.
Ex.19 Evaluate : z
tan x.sec2 x dx.
Sol. Let tan x = t
sec2 x. dx = dt
 I = z
tan x . sec2 x dx = z
t.dt
=
t2
2
+ c =
tan2
2
x
+ c Ans.
(iii) Integral of a function of the form f (ax+b).
Here we put ax + b = t and convert it
into standard integral. Obviously if
z
f(x) dx =  (x), then
z
f(ax + b) dx =
1
a
 (ax + b)
Ex.20 Evaluate : z 1
3 2
 x
dx
Sol. Here I = z 1
3 2
 x
dx
= –
1
2
log (3 – 2x) + c Ans.
Ex.21 Evaluate : z
cos 3x cos 5x dx
Sol. I = z
cos 3x cos 5x.dx
=
1
2 z
(cos 8x + cos 2x) dx.
=
1
2
1
8
8
1
2
2
sin sin
x x

L
N
M O
Q
P
+ c Ans.
(iv) Standard form of Integrals:
(a) z
f x
f x
'( )
( )
dx = log [f(x)] + c
(b) z
[f(x)]n f'(x) dx =
f x
n
n
( )


1
1
+ c
(provided n  – 1)
(c) zf x
f x
'( )
( )
dx = 2 f x
( ) + c
Ex.22 Evaluate : z
tan3 x. sec2 x dx
Sol. Let tan x = t
sec2 x dx = dt
 z
tan3 x. sec2 x dx = z
t3 dt
=
t4
4
+ c
=
tan4
4
x
+ c Ans.
Ex.23 Evaluate : zsec
tan
2
x
x
dx.
Sol. Let t = tan x
dt = sec2 x dx
 I = zdt
t
= 2 t1/2 + c
= 2 tan x c
 Ans.
Ex.24 Evaluate za b x
x



tan 1
3
2
1
e j dx.
Sol. Let a + b tan–1 x = t
 b
1
1 2

F
H
G I
K
J
x
dx = dt
or
1
1 2

F
H
G I
K
J
x
dx =
dt
b
 za b x
x



tan 1
3
2
1
e j dx =
1
b z
t3 dt
=
1
b
t4
4
+ c

1
4b
(a + b tan–1 x)4 + c Ans.
Ex.25 Evaluate z
e e
e e
x x
x x



 dx.
Sol. Let ex + e–x = t
(ex – e–x).dx = dt
 I = z
dt
t
= log t + c
= log (ex + e–x) + c Ans.
(v) Integral of the form
z dx
a x b x
sin cos

putting a = r cos  and b = r sin  . we get
I = z dx
r x
sin ( )
 
=
1
r z
cosec (x +  ) dx.
=
1
r
log tan (x/2 +  /2) + c
=
1
2 2
a b

log tan (x/2 + 1/2 tan–1 b/a) + c
Ex.26 Evaluate : z 1
sin cos
x x

dx
Sol. Here a = 1 & b = 1
So z 1
sin cos
x x

dx
=
1
1 1

log tan
x
2
1
2
1
1

F
H
G I
K
J

tan + c
=
1
2
log tan
x
2 8

F
H
G I
K
J

+ c Ans.
Ex.27 Evaluate : z 1
3 sin cos
x x

dx
Sol. By putting a = 3 & b = 1
z 
1
3 sin cos
x x
dx
=
1
1 3

log tan
x
2
1
2
1
3
1

F
H
G I
K
J

tan + c
=
1
2
log tan
x
2 12

F
H
G I
K
J

+ c. Ans.
(vi) Standard Substitutions : Following standard
substitutions will be useful-
Integrand form Substitution
(i) a x
2 2
 or x = a sin  or
1
2 2
a x

x = a cos 
(ii) x a
2 2
 or x = a tan  or
1
2 2
x a

x = a cot  or x = a sinh 
(iii) x a
2 2
 or x = a sec  or
1
2 2
x a

x = a cosec orx = a cosh 
(iv)
x
a x

or
a x
x

x = a tan2

or x a x

b gor
1
x a x

b g
(v)
x
a x

or
a x
x

or x a x

b g x = a sin2

or
1
x a x
( )

(vi)
x
x a

or x = a sec2

x a
x

or
x x a

b gor
1
x x a
( )

(vii)
a x
a x


or x = a cos 2
a x
a x


(viii)
x
x




or x =  cos2
 +  sin2

x x
 
 
b g
b g
 

b g
Ex.28 Evaluate : z
1
1


sin
sin
x
x
dx.
Sol. I = z
1
1


sin
sin
x
x
dx.
= zcos / sin /
cos / sin /
x x
x x
2 2
2 2
2
b g b g
b g b g


L
N
M
M
O
Q
P
Pdx
= z
tan2

4 2

F
H
G I
K
J
x
dx
= z
[sec2

4 2

F
H
G I
K
J
x
–1 ] dx
= 2 tan

4 2

F
H
G I
K
J
x
– x + c Ans.
Ex.29 Evaluate : z dx
x a x

b g
Sol. Let x = a sin2
 then
dx = 2a sin  cos  d 
 I = z2
2 2
a
a a
sin . cos
sin . cos
 
 
d
= 2 z
d  = 2  + c
= 2 sin–1 x a
/
e j+ c Ans.
4.2 INTEGRATION BY PARTS :
4.2.1 If u and v are two functions of x, then
z
(u.v) dx = u v dx
z
e j– zdu
dx
F
H
G I
K
J. v dx
z
e jdx.
i.e. Integral of the product of two functions =
first function × integral of second function –
z
[(derivative of first) × ( Integral of second)]
Note :
(i) From the first letter of the words inverse
circular, logarithmic, Algebraic, Trigonometric,
Exponential functions, we get a word ILATE.
Therefore first arrange the functions in the
order according to letters of this word and
then integrate by parts.
(ii) For the integration of Logarithmic or Inverse
trigonometric functions alone, take unity (1)
as the second function.
4.2.2 If the integral is of the form
z
ex [f(x) + f'(x)] dx, then by breaking this
integral into two integrals, integrate one
integral by parts and keep other integral
as it is, By doing so, we get-
z
ex [f(x) + f'(x)]dx = ex f(x) + c
Ex.30 Evaluate : z
x sin x dx.
Sol. Here integrating by parts by taking x as the
first function and sin x as the second function.
I = z
x. sin x dx.
= x (–cos x) – z
1. (–cos x) dx.
= – x cos x + z
cos x. dx
= – x cos x + sin x + c Ans.
Ex.31 Evaluate : z
x2 ex dx.
Sol. Here integrating by parts by taking x2 as the
first function and ex as the second function
I = z
x2 ex dx
= x2 ex – z
2x.ex dx
= x2 ex – 2 [x.ex – z
1.ex dx]
(taking x as first function)
= x2 ex – 2xex + 2ex + c Ans.
Ex.32 Evaluate : z
tan–1 x dx.
Sol. Integrating it by parts by taking tan–1 x as
the first function and 1 as the second
function, we get
I = z
tan–1 x. 1 dx
= tan–1 x. x – z1
1 2
 x
. x dx
= x. tan–1 x –
1
2
log (1 + x2) + c Ans.
Ex.33 Evaluate : z
ex (sin x + cos x) dx
Sol. I = z
ex (sin x + cos x) dx
This is of the form
z
ex [f(x) + f'(x)] dx = ex f(x) + c
Now here f(x) = sin x
 I = ex sin x + c Ans.
Ex.34 Evaluate : z
ex (log x + 1/x) dx.
Sol. I = z
(ex log x + ex. 1/x) dx
= ex log x + c
Here f x x
f x x
( ) log
& '( ) /


L
N
M O
Q
P
1
Ans.
4.2.3 If the integral is of the form
z
[x f'(x) + f(x)]dx then by breaking this
integral into two integrals integrate one
integral by parts and keep other integral
as it is, by doing so, we get
z
[x f'(x) + f(x) ]dx = x f (x) + c
Ex.35 Evaluate : z
(x sec2 x + tan x) dx
Sol. Here I = z
(x sec2 x + tan x) dx
= z
[x f'(x) + f(x)]dx where f(x) = tanx
= x f(x) + c
= x. tan x + c Ans.
4.3 Integration of Rational functions :
4.3.1 When denominator can be factorized
(using partial fraction) :
Let the integrand is of the form
f x
g x
( )
( )
, where both
f(x) and g(x) are polynomials. If degree of f(x) is
greater than degree of g(x) then first divide f(x) by
g(x) till the degree of the remainder becomes
less than the degree of g(x). Let Q(x) is the
quotient and R(x) , the remainder then
f x
g x
( )
( )
= Q(x) +
R x
g x
( )
( )
Now in R(x)/g(x), factorize g(x) and then write
partial fractions in the following manner-
(i) For every non repeated linear factor in the
denominator, write
1
x a x b
 
b g
b g
=
A
x a

+
B
x b

(ii) For repeated linear factors in the denominator,
write-
1
3
( )
x a x b
 
b g
=
A
x a
( )

+
B
x a
( )
 2
+
C
x a
( )
 3
+
D
x b
( )

(iii) For every non repeated quadratic factor in
the denominator, write
1
2
( )
ax bx c x d
  
b g
=
Ax B
ax bx c
C
x d

 


2
Note :
(i) If integrand is of the form
1
( ) ( )
x a x b
 
then
use the following method for obtaining partial
fractions-
Here
1
( ) ( )
x a x b
 
=
1
a b

b g
a b
x a x b

 
L
N
M
M
O
Q
P
P
b g
b g
=
1
a b

b g
x a x b
x a x b
  
 
L
N
M
M
O
Q
P
P
b gb g
b g
b g
=
1
a b

b g
1 1
x b x a



L
N
M O
Q
P
(ii) If integrand is of the form
x
x a x b
 
b g
b gthen
x
x a x b
 
b g
b g
=
1
b a

b a x
x a x b

 
L
N
M
M
O
Q
P
P
b g
( )( )
=
1
b a

b x a a x b
x a x b
  
 
L
N
M
M
O
Q
P
P
b g ( )
( ) ( )
=
1
b a

b
x b
a
x a



L
N
M O
Q
P
Ex.36 Evaluate : zx
x
2
2
1

dx
Sol. Given integral
I = z1
1
1
2


F
H
G I
K
J
x
dx
= z
dx + z dx
x x
 
1 1
b g
b g
= x +
1
2 z 1
1
1
1
x x



F
H
G I
K
Jdx
= x +
1
2
log
x
x


F
H
G I
K
J
1
1
+ c Ans.
Ex.37 Evaluate : z x
x x
2
2
 
dx.
Sol. Here I = z x
x x
 
2 1
b g
b g
dx
=
1
3 z 2
2
1
1
x x



F
H
G I
K
Jdx
=
1
3
[2 log (x – 2) + log (x + 1)] + c
=
1
3
log [(x – 2)2 (x + 1)] + c Ans.
Ex.38 Evaluate : z 2
3 2
2
x
x x
 
dx
Sol. I = z 2
1 2
x
x x
 
b gb g
dx
= 2 z x
x x
 
1 2
b gb gdx.
=
2
(2 –1) z 2 1
1 2

 
b g
b g
b g
x
x x
dx
= 2 z2 1 2
1 2
x x
x x
  
 
L
N
M
M
O
Q
P
P
b gb g
b g
b g dx
= 2 z 2
2
1
1
x x



L
N
M O
Q
Pdx
= z4
2
x 
dx – z2
1
x 
dx
= 4 log (x + 2) – 2 log (x + 1) + c
= 2 log
x
x


2
1
2
b g
( )
+ c Ans.
4.3.2 When denominator can not be factorised:
In this case integral may be in the form
(i) z dx
ax bx c
2
 
, (ii) z px q
ax bx c

 
b g
2 dx
Method:
(i) Here taking coefficient of x2 common from
denominator, write -
x2 + (b/a) x + c/a = (x + b/2a)2 –
b ac
a
2
2
4
4

Now the integrand so obtained can be
evaluated easily by using standard formulas.
(ii) Here suppose that px + q = A [diff. coefficient
of (ax2 + bx + c) ] + B
= A (2ax + b) + B ...(1)
Now comparing coefficient of x and constant
terms.
we get A = p/2a, B = q – (pb/2a)
 I = P/2a z2
2
ax b
ax bx c

 
dx
+ 






a
2
pb
q
z dx
ax bx c
2
 
Now we can integrate it easily.
Ex.39 Evaluate : z dx
x x
2
1
 
Sol. Here I = z dx
x x
2
1
 
= z dx
x  
1 2 3 4
2
/ /
b g b g
=
2
3
tan–1
x 
F
H
G I
K
J
1 2
3 2
/
/
+ c
=
2
3
tan–1
2 1
3
x 
F
H
G I
K
J+ c Ans.
Ex.40 Evaluate : zx
x x

 
1
1
2 dx
Sol. I = zx
x x

 
1
1
2 dx
=
1
2 z2 1 1
1
2
x
x x
 
 
b g dx
=
1
2 z2 1
1
2
x
x x

 
dx +
1
2 z dx
x x
2
1
 
=
1
2 z2 1
1
2
x dx
x x

 
b g +
1
2 z dx
x  
F
H
G
I
K
J
1 2
3
2
2
2
/
b g
=
1
2
log (x2 + x + 1) +
1
3
tan–1
2 1
3
x 
F
H
G I
K
J+ c
Ans.
4.3.3 Integration of rational functions
containing only even powers of x.
To find integral of such functions, first we
divide numerator and denominator by x2, then
express numerator as d(x ± 1/x) and
denominator as a function of (x ± 1/x).
Following examples illustrate it.
Ex.41 Evaluate : zx
x
2
4
1
1


dx
Sol. Dividing numerator and denominator by x2,
we get
I = z
1 1
1
2
2 2


/
/
x
x x
e j
e jdx
= z
1 1
1
2
2
2


F
H
GI
K
J
R
S
T
U
V
W

L
N
M
M
O
Q
P
P
/ x
x
x
e j
dx
Now taking x –1/x = t
 [1 + 1/x2] dx = dt , we get
I = zdt
t2
2

=
1
2
tan–1
t
2
F
H
G I
K
J
+ c
=
1
2
tan–1
x
x
2
1
2

F
H
G
I
K
J+ c Ans.
Ex.42 Evaluate : z x
x x
2
4 2
1
4 1

 
dx.
Sol. Dividing numerator and denominator by x2,
we get
I = z 1 1
4 1
2
2 2

 
/
/
x
x x
e j dx
= z 1 1
1 2
2
2

 
F
H
G
G
G
I
K
J
J
J
/
/
x
x x
e j
l q
dx
Now taking x + 1/x = t  1
1
2

L
N
M O
Q
P
x
dx = dt
we get
I = zdt
t2
2

=
1
2
tan–1
t
2
F
H
G I
K
J+ c
=
1
2
tan–1
x x

L
N
M O
Q
P
1
2
/
+ c
=
1
2
tan–1
x
x
2
1
2

F
H
G
I
K
J+ c Ans.
4.4 Integration of irrational functions :
If anyone term in Nr or Dr is irrational then it is
made rational by suitable substitution. Also if
integral is of the form-
z dx
ax bx c
2
 
, zax bx c
2
  dx
then we integrate it by expressing
ax2 + bx + c = (x +  )2 + 
Also for integrals of the form
z px q
ax bx c

 
2
dx, z
(px + q) ax bx c
2
  dx.
First we express px + q in the form
px + q = A
d
dx
ax bx c
2
 
R
S
T
U
V
W
e j + B and then
proceed as usual with standard form.
Ex.43 Evaluate : z dx
x x
2 3 2
 
Sol. I = z dx
x x
2 3 2
 
=
1
3 z dx
x x
2 3 3 2
/ /
 
=
1
3 z dx
x
x
2
3 3
1
36
1
36
2
   
F
H
G I
K
J
=
1
3
z dx
x
25
36
1
6
2
 
F
H
G I
K
J
=
1
3
sin–1
6 1
5
x 
F
H
G I
K
J+ c Ans.
Ex.44 Evaluate : zx x
2
2
 .dx
Sol. Let I = zx x
2
2
 .dx
= zx  
1 1
2
b g .dx
=
1
2
(x+1) x x
2
2
 –
1
2
cosh–1 (x+1) + c
Ans.
Ex.45 Evaluate : z x
x x

 
2
2 4
2
dx.
Sol. Let I = z
1
2
2 2 6
2 4
2
( )
x
x x
 
 
dx.
=
1
2 z 2 2
2 4
2
x
x x

 
dx + 3 z dx
x  
1 3
2
b g
= x x
2
2 4
  + 3 sinh–1
x 
F
H
G I
K
J
1
3
+ c Ans.
4.5 Integration of Trigonometric functions :
Here we shall study the methods for
evaluation of following types of integrals.
I. (i) z dx
a b x
 sin2
(ii) z dx
a b x
 cos2
(iii) z dx
a x b x x c x
cos sin cos sin
2 2
 
(iv) z dx
a x b x
sin cos

b g
2
Method :
Divide numerator and Denominator by cos2 x in
all such type of integrals and then put tan x = t.
Ex.46 Evaluate : z dx
x
1 3 2
 sin
Sol. I = z sec
sec tan
2
2 2
3
x dx
x x

.
(Dividing Numr and Denr by cos2 x)
= zsec
tan
2
2
1 4
x dx
x

=
1
2
tan–1 (2 tan x) + c Ans.
Ex.47 Evaluate : z dx
x x
2 3
2
sin cos

b g
Sol. I = z dx
x x
2 3
2
sin cos

b g
Dividing numr and Denr by cos2 x.
= zsec
tan
2
2
2 3
x dx
x 
b g
= –
1
2 2 3
tan x 
b g
+ c Ans.
II. (i) z dx
a b x
 cos
(ii) z dx
a b x
 sin
(iii) z dx
a x b x
cos sin

(iv) z dx
a x b x c
sin cos
 
Method :
In such types of integrals we use following formulae
for sin x and cos x in terms of tan (x/2).
sin x =
2
2
1
2
2
tan
tan
x
x
F
H
GI
K
J

F
H
GI
K
J
, cos x =
1
2
1
2
2
2

F
H
GI
K
J

F
H
GI
K
J
tan
tan
x
x
and then take tan(x/2) = t and integrate another
method for evaluation of integral
(iii) put a = r cos  , b = r sin  , then
I =
1
r z dx
x
sin( )
 
=
1
r z
cosec (x +  ) dx.
=
1
r
log tan (x/2 +  /2) + c
=
1
2 2
a b

log tan
x b
a
2
1
2
1

F
H
G I
K
J

tan + c
Ex.48 Evaluate : z dx
x
5 4
 cos
Sol. I = z dx
x
x
5 4
1 2
1 2
2
2



L
N
M
M
O
Q
P
P
tan ( / )
tan ( / )
= zsec ( / )
tan ( / )
2
2
2
9 2
x
x

dx
= 2 z dt
t
32 2

where tan (x/2) = t
=
2
3
tan–1
t
3
+ c
=
2
3
tan–1
1
3 2
tan
x
F
H
G I
K
J+ c Ans.
Ex.49 Evaluate : z dx
x x
sin cos
 3
.
Sol. I = z dx
x x
sin cos
 3
.
=
1
1 3

log tan
x
2 6

F
H
G I
K
J

+ c
=
1
2
log tan
x
2 6

F
H
G I
K
J

+ c Ans.
Ex.50 Evaluate : z dx
x
1 sin
Sol. Here I = z dx
x
1 sin
 I = z dx
x x
sin ( / ) cos ( / )
2 2

=
2
2
log tan
x
4 8

F
H
G I
K
J

+ c
= 2 log tan
x
4 8

F
H
G I
K
J

+ c. Ans.
III. zp x q x
a x b x
sin cos
sin cos


dx
z p x
a x b x
sin
sin cos

dx
z q x
a x b x
cos
sin cos

dx
For their integration, we first express Nr. as
follows-
Nr = A (Dr) + B (derivative of Dr.)
Then integral = Ax + B log (Dr) + C
Ex.51 Evaluate : z sin cos
sin cos
x x
x x


2 3
dx
Sol. Let sin x + cos x = A (2 sinx + 3 cosx)
+ B(2 cos x – 3 sin x)

2 3 1 0
3 2 1 0
A B
A B
  
  
U
V
W
 A = 5/13 , B = –1/13
 I = (5/13) x – (1/13)log(2 sinx + 3cos x) +c
Ans.
5. SOME INTEGRATES OF DIFFERENT
EXPRESSIONS OF ex
(i) zae
b ce
x
x

dx [put ex = t]
(ii) z1
1 ex dx [Multiply and divide
by e–x and put e–x =t]
(iii) z1
1 ex dx [Multiply and divide
by e–x and put e–x =t]
(iv) z 1
e e
x x
  dx [Multiply and divide
by ex]
(v) z
e e
e e
x x
x x



 dx
f x
f x
form
'( )
( )
L
N
M O
Q
P
(vi) z
e
e
x
x


1
1
dx [Multiply anddividebye–x/2]
(vii) ze e
e e
x x
x x


F
H
G
I
K
J

 dx [Integrand = tanh2 x]
(viii) ze
e
x
x
2
2
2
1
1


F
H
G
I
K
Jdx [Integrand = coth2 x]
(ix) z 1
2
e e
x x
 
e j
dx [Integrand = 1/4 sech2 x]
(x) z 1
2
e e
x x
 
e j
dx [Integrand =1/4 cosech2 x]
(xi) z 1
1 1
  
e e
x x
e je j
dx [Multiply and divide by ex
and put ex = t]
(xii) z 1
1 ex
dx [Multiply and divide by e–x/2]
(xiii) z 1
1 ex
dx [Multiply and divide by e–x/2]
(xiv) z 1
e
1
x

dx [Multiply & divide by e–x/2]
(xv) z 1
e
2
1
x

dx [Multiply and divide by
2 e–x/2]
(xvi) z x
e
1 dx [Integrand
= (1 – ex)/ x
e
1 ]
(xvii) z x
e
1 dx [Integrand
= (1 + ex) / x
e
1 ]
(xviii) z 1
ex
 dx [Integrand
= (ex – 1) / 1
ex
 ]
(xix) z a
e
a
e
x
x


dx [Integrand
= (ex + a)/ 2
x
2
a
e 
Examples
based on
Some integrates of different
expressions e
x
Ex.52 Evaluate :
1
1
ex

z dx.
Sol. Here I =
1
1
ex

z dx
=
e
e
x
x



z
1
dx = log (1 – e–x) + c Ans.
Ex.53 Evaluate : ex

z 1 dx .
Sol. Here I = ex

z 1 dx
=
e
e
x
x


z 1
1
dx
=
e
e
x
x

z 1
dx –
1
1
ex

z dx
Let ex – 1 = t2, then ex dx = 2t dt
 I = 2 dt
z–
2
1
2
t 
z dt
= 2t – 2 tan–1 (t) + c
= 2 e e
x x
  
L
N
M O
Q
P

1 1
1
tan + c Ans.

More Related Content

Similar to 1. integration-theory. Module-5 pdf

Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)Resumen de Integrales (Cálculo Diferencial e Integral UNAB)
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)Mauricio Vargas 帕夏
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualLarson2017
 
CalculusStudyGuide
CalculusStudyGuideCalculusStudyGuide
CalculusStudyGuideMo Elkhatib
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 

Similar to 1. integration-theory. Module-5 pdf (9)

Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)Resumen de Integrales (Cálculo Diferencial e Integral UNAB)
Resumen de Integrales (Cálculo Diferencial e Integral UNAB)
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
CalculusStudyGuide
CalculusStudyGuideCalculusStudyGuide
CalculusStudyGuide
 
Integration
IntegrationIntegration
Integration
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 

More from RajuSingh806014

3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdfRajuSingh806014
 
0. Contant Theory Module-5.pdf
0. Contant Theory Module-5.pdf0. Contant Theory Module-5.pdf
0. Contant Theory Module-5.pdfRajuSingh806014
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdfRajuSingh806014
 
03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdfRajuSingh806014
 
02 definite Intergration Ex. Module-5.pdf
02 definite Intergration  Ex. Module-5.pdf02 definite Intergration  Ex. Module-5.pdf
02 definite Intergration Ex. Module-5.pdfRajuSingh806014
 
01 Indefinite Intergration. Module-5pdf
01 Indefinite Intergration. Module-5pdf01 Indefinite Intergration. Module-5pdf
01 Indefinite Intergration. Module-5pdfRajuSingh806014
 
monotonicity thoery & solved & execise Module-4.pdf
monotonicity thoery & solved & execise Module-4.pdfmonotonicity thoery & solved & execise Module-4.pdf
monotonicity thoery & solved & execise Module-4.pdfRajuSingh806014
 
maxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdfmaxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdfRajuSingh806014
 
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdf
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdfContinuity & Differentibilitytheory & solved & exercise. Module-4 pdf
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdfRajuSingh806014
 
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdfRajuSingh806014
 
01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdfRajuSingh806014
 
06.monotonicity Execise. Module-4pdf
06.monotonicity Execise. Module-4pdf06.monotonicity Execise. Module-4pdf
06.monotonicity Execise. Module-4pdfRajuSingh806014
 
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdfRajuSingh806014
 
01. Functions-Exercise. Module-4 pdf
01. Functions-Exercise. Module-4 pdf01. Functions-Exercise. Module-4 pdf
01. Functions-Exercise. Module-4 pdfRajuSingh806014
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdfRajuSingh806014
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdfRajuSingh806014
 
(4) Parabola theory Module.pdf
(4) Parabola theory Module.pdf(4) Parabola theory Module.pdf
(4) Parabola theory Module.pdfRajuSingh806014
 
(5) Ellipse (Exercise) Module-3.pdf
(5) Ellipse (Exercise) Module-3.pdf(5) Ellipse (Exercise) Module-3.pdf
(5) Ellipse (Exercise) Module-3.pdfRajuSingh806014
 

More from RajuSingh806014 (20)

01 Atomic Structure.pdf
01 Atomic Structure.pdf01 Atomic Structure.pdf
01 Atomic Structure.pdf
 
3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf3. Quadrature Complete Theory Module-5.pdf
3. Quadrature Complete Theory Module-5.pdf
 
0. Contant Theory Module-5.pdf
0. Contant Theory Module-5.pdf0. Contant Theory Module-5.pdf
0. Contant Theory Module-5.pdf
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
 
03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf
 
02 definite Intergration Ex. Module-5.pdf
02 definite Intergration  Ex. Module-5.pdf02 definite Intergration  Ex. Module-5.pdf
02 definite Intergration Ex. Module-5.pdf
 
01 Indefinite Intergration. Module-5pdf
01 Indefinite Intergration. Module-5pdf01 Indefinite Intergration. Module-5pdf
01 Indefinite Intergration. Module-5pdf
 
monotonicity thoery & solved & execise Module-4.pdf
monotonicity thoery & solved & execise Module-4.pdfmonotonicity thoery & solved & execise Module-4.pdf
monotonicity thoery & solved & execise Module-4.pdf
 
maxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdfmaxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdf
 
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdf
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdfContinuity & Differentibilitytheory & solved & exercise. Module-4 pdf
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdf
 
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
 
01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf01. Functions-Theory & Solved Examples Module-4.pdf
01. Functions-Theory & Solved Examples Module-4.pdf
 
06.monotonicity Execise. Module-4pdf
06.monotonicity Execise. Module-4pdf06.monotonicity Execise. Module-4pdf
06.monotonicity Execise. Module-4pdf
 
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf
03.Continuity & Differentibilitytheory & solved & exercise Module-4.pdf
 
01. Functions-Exercise. Module-4 pdf
01. Functions-Exercise. Module-4 pdf01. Functions-Exercise. Module-4 pdf
01. Functions-Exercise. Module-4 pdf
 
content Theory.pdf
content Theory.pdfcontent Theory.pdf
content Theory.pdf
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf
 
(4) Parabola theory Module.pdf
(4) Parabola theory Module.pdf(4) Parabola theory Module.pdf
(4) Parabola theory Module.pdf
 
(5) Ellipse (Exercise) Module-3.pdf
(5) Ellipse (Exercise) Module-3.pdf(5) Ellipse (Exercise) Module-3.pdf
(5) Ellipse (Exercise) Module-3.pdf
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

1. integration-theory. Module-5 pdf

  • 1. Total No. of questions in Indefinite Integration are- In Chapter Examples..................................................... 53 Solved Example............................................................ 50 Total No. of questions...............................................103 INDEFINITEINTEGRATION
  • 2. 1. INTEGRATION OF A FUNCTION Integration is a reverse process of differentiation. The integral or primitive of a function f(x) with respect to x is that function  (x) whose derivative with respect to x is the given function f(x). It is expressed symbolically as - f x dx x ( ) ( )  z  Thus f x dx x ( ) ( )  z    d dx x f x [ ( )] ( )  The process of finding the integral of a function is called Integration and the given function is called Integrand. Now, it is obvious that the operation of integration is inverse operation of differentiation. Hence integral of a function is also named as anti-derivative of that function. Further we observe that- d dx x x d dx x x d dx x k x ( ) ( ) ( ) 2 2 2 2 2 2 2      U V | | | W | | |     t tan cons x xdx 2 2 So we always add a constant to the integral of function, which is called the constant of Integration. It is generally denoted by c. Due to presence of this constant such an integral is called an Indefinite integral. 2. BASIC THEOREMS ON INTEGRATION If f(x), g(x) are two functions of a variable x and k is a constant, then- (i) z k f(x) dx = k z f(x) dx. (ii) z [f(x)  g(x)] dx = z f(x)dx ± z g(x) dx (iii) d/dx ( z f(x) dx) = f(x) (iv) zd dx f x ( ) F H G I K Jdx = f(x) 3. STANDARD INTEGRALS The following integrals are directly obtained from the derivatives of standard functions. i. z 0. dx = c ii. z 1.dx = x + c iii. z k.dx = kx + c (k  R) iv. z xn dx = x n n  1 1 + c (n  –1) v. 1 x zdx = loge x + c vi. z ex dx = ex + c vii. z ax dx = a a x e log + c = ax loga e + c viii. z sin x dx = – cos x + c ix. z cos x dx = sin x + c x. z tan x dx = log sec x +c = – log cos x + c xi. z cot x dx = log sin x + c xii. z secx dx =log(secx +tanx) + c =–log (sec x –tan x) + c = log tan  4 2  F H G I K J x +c xiii. z cosec x dx = – log (cosec x + cot x) + c = log (cosec x – cot x) + c = log tan x 2 F H GI K J+ c xiv. z sec x tan x dx = sec x + c xv. z cosec x cot x dx = – cosec x + c xvi. z sec2 x dx = tan x + c xvii. z cosec2 x dx = – cot x + c xviii. z sinh x dx = cosh x + c xix. z cosh x dx = sinh x + c xx. z sech2 x dx = tanh x + c xxi. z cosech2 x dx = – coth x + c xxii. z sech x tanh x dx = – sech x + c xxiii. z cosech x coth x = – cosech x + c
  • 3. xxiv. z 1 x + a 2 2 dx = 1 a tan an–1 x a F H GI K J+ c xxv. 1 2 2 x a  z dx = 1 2a log x a x a   F H G I K J+ c xxvi. 1 2 2 a x  z dx = 1 2a log a x a x   F H G I K J+ c xxvii. 1 2 2 a x  z dx = sin–1 x a F H GI K J+ c = – cos–1 x a F H GI K J+ c xxviii. 1 2 2 x a  z dx = sinh–1 x a F H GI K J+ c = log (x + x a 2 2  ) + c xxix. 1 2 2 x a  z dx = cosh–1 x a F H GI K J+ c = log (x + x a 2 2  ) + c xxx. a x 2 2  z dx = x 2 a x 2 2  + a2 2 . sin–1 x a + c xxxi. x a 2 2  z dx = x 2 x a 2 2  + a2 2 . sinh–1 x a + c xxxii. x a 2 2  z dx = x 2 x a 2 2  – a2 2 . cosh–1 x a + c xxxiii. 1 2 2 x x a  z dx = 1 a sec–1 x a + c xxxiv. zeax sin bx dx = e a b ax 2 2  (a sin bx – b cos bx) + c = e a b ax 2 2  sin bx b a  F H GI K J R S T U V W  tan 1 + c xxxv. zeax cos bx dx = e a b ax 2 2  (a cos bx + b sin bx) + c = e a b ax 2 2  cos bx b a  R S T U V W  tan 1 + c Examples based on Integration of Function Ex.1 Evaluate : zx–55 dx Sol. z x–55 dx = x  54 54 + c Ans. Ex.2 Evaluate : x x 2 2 1  z e j dx Sol. x x x 4 2 2 1   z dx = x x x 3 2 1   F H G I K J z dx = x4 4 + x2 + log x + c Ans. Ex.3 Evaluate : x x  F H G I K J z 1 2 dx Sol. Here I = x x   F H G I K J z 1 2 dx = x2 2 + log x – 2x + c Ans. Ex.4 Evaluate : z tan2 x. dx Sol. Here I = z (sec2 x – 1) dx = z sec2 x dx – z dx = tan x – x + c Ans. Ex.5 Evaluate z cos2 x/2 dx Sol. Here I = 1 2  z cos x b g dx
  • 4. = 1 2 z dx + 1 2 z cos x dx = 1 2 (x + sin x) + c Ans. Ex.6 Evaluate : e x log 6 z dx Sol. Let I = e x log 6 z dx  I = x dx 6 z = x7 7 + c Ans. Ex.7 Evaluate : sec .cos 2 2 x ec x e j z dx Sol. Here I = sin cos cos sin 2 2 2 2 x x x x  z dx = 1 1 2 2 cos sin x x  F H G I K J z dx = sec2 x dx  z cosec x dx 2 z = tan x – cot x + c Ans. Ex.8 Evaluate : a e dx x x . z Sol. I = a e dx x x . z = ( ) ae dx x z = ae ae x b g log ( ) + c = a e a c x x log   1 Ans. Ex.9 Evaluate : sin . cos 2x x dx z Sol. Let I = sin . cos 2x x dx z = 1 2 z (sin 3x + sin x) dx = – 1 2 cos cos 3 3 x x  L N M O Q P + c Ans. Ex.10 Evaluate z dx x x 4 4 2 2   Sol. Let I = z dx x x 4 4 2 2   = z 1 2 1 1 2 x   b g dx = 1 2 tan–1 (2x + 1) + c Ans. Ex.11 Evaluate : zx2 9  dx Sol. I = zx2 9  dx = x 2 x2 9  + 9 2 sinh–1 x 3 F H GI K J+ c Ans. Ex.12 Evaluate : z e3x. cos 4x dx Sol. Here I = z e3x . cos 4x dx = e x 3 5 cos (4x – tan–1 4/3) + c Ans. Ex.13 Evaluate : z sin–1 (cos x) dx Sol. Here I = z sin–1 (cos x) dx = z sin–1 sin  2  F H G I K J x dx = z 2  F H G I K J x dx =  2 2 2  F H G I K J  x + c Ans. 4. METHODS OF INTEGRATION When integration can not be reduced into some standard form then integration is performed using following methods- (i) Integration by substitutions (ii) Integration by parts (iii) Integration of rational functions (iv) Integration of irrational functions (v) Integration of trigonometric functions 4.1 INTEGRATION BY SUBSTITUTION: Generally we apply this method in the following two cases. (i) When Integrand is a function of function- i.e. f [  (x)]  ' (x) dx Here we put  (x) = t so that  '(x) dx = dt and in that case the integrand is reduced to f(t) dt. Note: In this method the integrand is broken into two factors so that one factor can be expressed in terms of the function whose differential coefficient is the second factor.
  • 5. Ex.14 Evaluate : z x 1 2  x dx Sol. Let 1 + x2 = t then 2x dx = dt or x dx = 1/2 dt.   x 1 2  x dx =  1 2 t dt = t c 3 2 3 /  = 1 3 (1 + x2)3/2 + c Ans. Ex.15 Evaluate : x2 ex3 dx. Sol. Let x3 = t then 3x2 dx = dt  I = 1 3 et dt = 1 3 et + c = 1 3 ex3 + c Ans. Ex.16 Evaluate : x tan x2 sec x2 dx. Sol. Let x2 = t 2x dx = dt  x dx = 1/2 dt  I = 1 2 tan t sec t dt = 1 2 sec t + c = 1 2 sec x2 + c .Ans. (ii) When integrand is the product of two factors such that one is the derivative of the other i.e. I = zf'(x) f(x) dx. In this case we put f(x) = t and convert it into a standard integral. Ex.17 Evaluate : z log x x dx. Sol. Let log x = t  1 x dx = dt  I = z t.dt = 1 2 t2 + c = 1 2 (log x)2 + c Ans. Ex.18 Evaluate : z tan  1 2 1 x x dx. Sol. Let tan–1 x = t then 1 1 2  x dx = dt  I = z t dt = t2 2 + c = 1 2 (tan–1 x)2 + c Ans. Ex.19 Evaluate : z tan x.sec2 x dx. Sol. Let tan x = t sec2 x. dx = dt  I = z tan x . sec2 x dx = z t.dt = t2 2 + c = tan2 2 x + c Ans. (iii) Integral of a function of the form f (ax+b). Here we put ax + b = t and convert it into standard integral. Obviously if z f(x) dx =  (x), then z f(ax + b) dx = 1 a  (ax + b) Ex.20 Evaluate : z 1 3 2  x dx Sol. Here I = z 1 3 2  x dx = – 1 2 log (3 – 2x) + c Ans. Ex.21 Evaluate : z cos 3x cos 5x dx Sol. I = z cos 3x cos 5x.dx = 1 2 z (cos 8x + cos 2x) dx. = 1 2 1 8 8 1 2 2 sin sin x x  L N M O Q P + c Ans. (iv) Standard form of Integrals: (a) z f x f x '( ) ( ) dx = log [f(x)] + c
  • 6. (b) z [f(x)]n f'(x) dx = f x n n ( )   1 1 + c (provided n  – 1) (c) zf x f x '( ) ( ) dx = 2 f x ( ) + c Ex.22 Evaluate : z tan3 x. sec2 x dx Sol. Let tan x = t sec2 x dx = dt  z tan3 x. sec2 x dx = z t3 dt = t4 4 + c = tan4 4 x + c Ans. Ex.23 Evaluate : zsec tan 2 x x dx. Sol. Let t = tan x dt = sec2 x dx  I = zdt t = 2 t1/2 + c = 2 tan x c  Ans. Ex.24 Evaluate za b x x    tan 1 3 2 1 e j dx. Sol. Let a + b tan–1 x = t  b 1 1 2  F H G I K J x dx = dt or 1 1 2  F H G I K J x dx = dt b  za b x x    tan 1 3 2 1 e j dx = 1 b z t3 dt = 1 b t4 4 + c  1 4b (a + b tan–1 x)4 + c Ans. Ex.25 Evaluate z e e e e x x x x     dx. Sol. Let ex + e–x = t (ex – e–x).dx = dt  I = z dt t = log t + c = log (ex + e–x) + c Ans. (v) Integral of the form z dx a x b x sin cos  putting a = r cos  and b = r sin  . we get I = z dx r x sin ( )   = 1 r z cosec (x +  ) dx. = 1 r log tan (x/2 +  /2) + c = 1 2 2 a b  log tan (x/2 + 1/2 tan–1 b/a) + c Ex.26 Evaluate : z 1 sin cos x x  dx Sol. Here a = 1 & b = 1 So z 1 sin cos x x  dx = 1 1 1  log tan x 2 1 2 1 1  F H G I K J  tan + c = 1 2 log tan x 2 8  F H G I K J  + c Ans. Ex.27 Evaluate : z 1 3 sin cos x x  dx Sol. By putting a = 3 & b = 1 z  1 3 sin cos x x dx = 1 1 3  log tan x 2 1 2 1 3 1  F H G I K J  tan + c = 1 2 log tan x 2 12  F H G I K J  + c. Ans. (vi) Standard Substitutions : Following standard substitutions will be useful- Integrand form Substitution (i) a x 2 2  or x = a sin  or 1 2 2 a x  x = a cos  (ii) x a 2 2  or x = a tan  or 1 2 2 x a  x = a cot  or x = a sinh  (iii) x a 2 2  or x = a sec  or 1 2 2 x a  x = a cosec orx = a cosh 
  • 7. (iv) x a x  or a x x  x = a tan2  or x a x  b gor 1 x a x  b g (v) x a x  or a x x  or x a x  b g x = a sin2  or 1 x a x ( )  (vi) x x a  or x = a sec2  x a x  or x x a  b gor 1 x x a ( )  (vii) a x a x   or x = a cos 2 a x a x   (viii) x x     or x =  cos2  +  sin2  x x     b g b g    b g Ex.28 Evaluate : z 1 1   sin sin x x dx. Sol. I = z 1 1   sin sin x x dx. = zcos / sin / cos / sin / x x x x 2 2 2 2 2 b g b g b g b g   L N M M O Q P Pdx = z tan2  4 2  F H G I K J x dx = z [sec2  4 2  F H G I K J x –1 ] dx = 2 tan  4 2  F H G I K J x – x + c Ans. Ex.29 Evaluate : z dx x a x  b g Sol. Let x = a sin2  then dx = 2a sin  cos  d   I = z2 2 2 a a a sin . cos sin . cos     d = 2 z d  = 2  + c = 2 sin–1 x a / e j+ c Ans. 4.2 INTEGRATION BY PARTS : 4.2.1 If u and v are two functions of x, then z (u.v) dx = u v dx z e j– zdu dx F H G I K J. v dx z e jdx. i.e. Integral of the product of two functions = first function × integral of second function – z [(derivative of first) × ( Integral of second)] Note : (i) From the first letter of the words inverse circular, logarithmic, Algebraic, Trigonometric, Exponential functions, we get a word ILATE. Therefore first arrange the functions in the order according to letters of this word and then integrate by parts. (ii) For the integration of Logarithmic or Inverse trigonometric functions alone, take unity (1) as the second function. 4.2.2 If the integral is of the form z ex [f(x) + f'(x)] dx, then by breaking this integral into two integrals, integrate one integral by parts and keep other integral as it is, By doing so, we get- z ex [f(x) + f'(x)]dx = ex f(x) + c Ex.30 Evaluate : z x sin x dx. Sol. Here integrating by parts by taking x as the first function and sin x as the second function. I = z x. sin x dx. = x (–cos x) – z 1. (–cos x) dx. = – x cos x + z cos x. dx = – x cos x + sin x + c Ans.
  • 8. Ex.31 Evaluate : z x2 ex dx. Sol. Here integrating by parts by taking x2 as the first function and ex as the second function I = z x2 ex dx = x2 ex – z 2x.ex dx = x2 ex – 2 [x.ex – z 1.ex dx] (taking x as first function) = x2 ex – 2xex + 2ex + c Ans. Ex.32 Evaluate : z tan–1 x dx. Sol. Integrating it by parts by taking tan–1 x as the first function and 1 as the second function, we get I = z tan–1 x. 1 dx = tan–1 x. x – z1 1 2  x . x dx = x. tan–1 x – 1 2 log (1 + x2) + c Ans. Ex.33 Evaluate : z ex (sin x + cos x) dx Sol. I = z ex (sin x + cos x) dx This is of the form z ex [f(x) + f'(x)] dx = ex f(x) + c Now here f(x) = sin x  I = ex sin x + c Ans. Ex.34 Evaluate : z ex (log x + 1/x) dx. Sol. I = z (ex log x + ex. 1/x) dx = ex log x + c Here f x x f x x ( ) log & '( ) /   L N M O Q P 1 Ans. 4.2.3 If the integral is of the form z [x f'(x) + f(x)]dx then by breaking this integral into two integrals integrate one integral by parts and keep other integral as it is, by doing so, we get z [x f'(x) + f(x) ]dx = x f (x) + c Ex.35 Evaluate : z (x sec2 x + tan x) dx Sol. Here I = z (x sec2 x + tan x) dx = z [x f'(x) + f(x)]dx where f(x) = tanx = x f(x) + c = x. tan x + c Ans. 4.3 Integration of Rational functions : 4.3.1 When denominator can be factorized (using partial fraction) : Let the integrand is of the form f x g x ( ) ( ) , where both f(x) and g(x) are polynomials. If degree of f(x) is greater than degree of g(x) then first divide f(x) by g(x) till the degree of the remainder becomes less than the degree of g(x). Let Q(x) is the quotient and R(x) , the remainder then f x g x ( ) ( ) = Q(x) + R x g x ( ) ( ) Now in R(x)/g(x), factorize g(x) and then write partial fractions in the following manner- (i) For every non repeated linear factor in the denominator, write 1 x a x b   b g b g = A x a  + B x b  (ii) For repeated linear factors in the denominator, write- 1 3 ( ) x a x b   b g = A x a ( )  + B x a ( )  2 + C x a ( )  3 + D x b ( )  (iii) For every non repeated quadratic factor in the denominator, write 1 2 ( ) ax bx c x d    b g = Ax B ax bx c C x d      2 Note : (i) If integrand is of the form 1 ( ) ( ) x a x b   then use the following method for obtaining partial fractions- Here 1 ( ) ( ) x a x b   = 1 a b  b g a b x a x b    L N M M O Q P P b g b g = 1 a b  b g x a x b x a x b      L N M M O Q P P b gb g b g b g = 1 a b  b g 1 1 x b x a    L N M O Q P (ii) If integrand is of the form x x a x b   b g b gthen
  • 9. x x a x b   b g b g = 1 b a  b a x x a x b    L N M M O Q P P b g ( )( ) = 1 b a  b x a a x b x a x b      L N M M O Q P P b g ( ) ( ) ( ) = 1 b a  b x b a x a    L N M O Q P Ex.36 Evaluate : zx x 2 2 1  dx Sol. Given integral I = z1 1 1 2   F H G I K J x dx = z dx + z dx x x   1 1 b g b g = x + 1 2 z 1 1 1 1 x x    F H G I K Jdx = x + 1 2 log x x   F H G I K J 1 1 + c Ans. Ex.37 Evaluate : z x x x 2 2   dx. Sol. Here I = z x x x   2 1 b g b g dx = 1 3 z 2 2 1 1 x x    F H G I K Jdx = 1 3 [2 log (x – 2) + log (x + 1)] + c = 1 3 log [(x – 2)2 (x + 1)] + c Ans. Ex.38 Evaluate : z 2 3 2 2 x x x   dx Sol. I = z 2 1 2 x x x   b gb g dx = 2 z x x x   1 2 b gb gdx. = 2 (2 –1) z 2 1 1 2    b g b g b g x x x dx = 2 z2 1 2 1 2 x x x x      L N M M O Q P P b gb g b g b g dx = 2 z 2 2 1 1 x x    L N M O Q Pdx = z4 2 x  dx – z2 1 x  dx = 4 log (x + 2) – 2 log (x + 1) + c = 2 log x x   2 1 2 b g ( ) + c Ans. 4.3.2 When denominator can not be factorised: In this case integral may be in the form (i) z dx ax bx c 2   , (ii) z px q ax bx c    b g 2 dx Method: (i) Here taking coefficient of x2 common from denominator, write - x2 + (b/a) x + c/a = (x + b/2a)2 – b ac a 2 2 4 4  Now the integrand so obtained can be evaluated easily by using standard formulas. (ii) Here suppose that px + q = A [diff. coefficient of (ax2 + bx + c) ] + B = A (2ax + b) + B ...(1) Now comparing coefficient of x and constant terms. we get A = p/2a, B = q – (pb/2a)  I = P/2a z2 2 ax b ax bx c    dx +        a 2 pb q z dx ax bx c 2   Now we can integrate it easily. Ex.39 Evaluate : z dx x x 2 1   Sol. Here I = z dx x x 2 1   = z dx x   1 2 3 4 2 / / b g b g = 2 3 tan–1 x  F H G I K J 1 2 3 2 / / + c = 2 3 tan–1 2 1 3 x  F H G I K J+ c Ans.
  • 10. Ex.40 Evaluate : zx x x    1 1 2 dx Sol. I = zx x x    1 1 2 dx = 1 2 z2 1 1 1 2 x x x     b g dx = 1 2 z2 1 1 2 x x x    dx + 1 2 z dx x x 2 1   = 1 2 z2 1 1 2 x dx x x    b g + 1 2 z dx x   F H G I K J 1 2 3 2 2 2 / b g = 1 2 log (x2 + x + 1) + 1 3 tan–1 2 1 3 x  F H G I K J+ c Ans. 4.3.3 Integration of rational functions containing only even powers of x. To find integral of such functions, first we divide numerator and denominator by x2, then express numerator as d(x ± 1/x) and denominator as a function of (x ± 1/x). Following examples illustrate it. Ex.41 Evaluate : zx x 2 4 1 1   dx Sol. Dividing numerator and denominator by x2, we get I = z 1 1 1 2 2 2   / / x x x e j e jdx = z 1 1 1 2 2 2   F H GI K J R S T U V W  L N M M O Q P P / x x x e j dx Now taking x –1/x = t  [1 + 1/x2] dx = dt , we get I = zdt t2 2  = 1 2 tan–1 t 2 F H G I K J + c = 1 2 tan–1 x x 2 1 2  F H G I K J+ c Ans. Ex.42 Evaluate : z x x x 2 4 2 1 4 1    dx. Sol. Dividing numerator and denominator by x2, we get I = z 1 1 4 1 2 2 2    / / x x x e j dx = z 1 1 1 2 2 2    F H G G G I K J J J / / x x x e j l q dx Now taking x + 1/x = t  1 1 2  L N M O Q P x dx = dt we get I = zdt t2 2  = 1 2 tan–1 t 2 F H G I K J+ c = 1 2 tan–1 x x  L N M O Q P 1 2 / + c = 1 2 tan–1 x x 2 1 2  F H G I K J+ c Ans. 4.4 Integration of irrational functions : If anyone term in Nr or Dr is irrational then it is made rational by suitable substitution. Also if integral is of the form- z dx ax bx c 2   , zax bx c 2   dx then we integrate it by expressing ax2 + bx + c = (x +  )2 +  Also for integrals of the form z px q ax bx c    2 dx, z (px + q) ax bx c 2   dx. First we express px + q in the form px + q = A d dx ax bx c 2   R S T U V W e j + B and then proceed as usual with standard form. Ex.43 Evaluate : z dx x x 2 3 2   Sol. I = z dx x x 2 3 2  
  • 11. = 1 3 z dx x x 2 3 3 2 / /   = 1 3 z dx x x 2 3 3 1 36 1 36 2     F H G I K J = 1 3 z dx x 25 36 1 6 2   F H G I K J = 1 3 sin–1 6 1 5 x  F H G I K J+ c Ans. Ex.44 Evaluate : zx x 2 2  .dx Sol. Let I = zx x 2 2  .dx = zx   1 1 2 b g .dx = 1 2 (x+1) x x 2 2  – 1 2 cosh–1 (x+1) + c Ans. Ex.45 Evaluate : z x x x    2 2 4 2 dx. Sol. Let I = z 1 2 2 2 6 2 4 2 ( ) x x x     dx. = 1 2 z 2 2 2 4 2 x x x    dx + 3 z dx x   1 3 2 b g = x x 2 2 4   + 3 sinh–1 x  F H G I K J 1 3 + c Ans. 4.5 Integration of Trigonometric functions : Here we shall study the methods for evaluation of following types of integrals. I. (i) z dx a b x  sin2 (ii) z dx a b x  cos2 (iii) z dx a x b x x c x cos sin cos sin 2 2   (iv) z dx a x b x sin cos  b g 2 Method : Divide numerator and Denominator by cos2 x in all such type of integrals and then put tan x = t. Ex.46 Evaluate : z dx x 1 3 2  sin Sol. I = z sec sec tan 2 2 2 3 x dx x x  . (Dividing Numr and Denr by cos2 x) = zsec tan 2 2 1 4 x dx x  = 1 2 tan–1 (2 tan x) + c Ans. Ex.47 Evaluate : z dx x x 2 3 2 sin cos  b g Sol. I = z dx x x 2 3 2 sin cos  b g Dividing numr and Denr by cos2 x. = zsec tan 2 2 2 3 x dx x  b g = – 1 2 2 3 tan x  b g + c Ans. II. (i) z dx a b x  cos (ii) z dx a b x  sin (iii) z dx a x b x cos sin  (iv) z dx a x b x c sin cos   Method : In such types of integrals we use following formulae for sin x and cos x in terms of tan (x/2). sin x = 2 2 1 2 2 tan tan x x F H GI K J  F H GI K J , cos x = 1 2 1 2 2 2  F H GI K J  F H GI K J tan tan x x and then take tan(x/2) = t and integrate another method for evaluation of integral
  • 12. (iii) put a = r cos  , b = r sin  , then I = 1 r z dx x sin( )   = 1 r z cosec (x +  ) dx. = 1 r log tan (x/2 +  /2) + c = 1 2 2 a b  log tan x b a 2 1 2 1  F H G I K J  tan + c Ex.48 Evaluate : z dx x 5 4  cos Sol. I = z dx x x 5 4 1 2 1 2 2 2    L N M M O Q P P tan ( / ) tan ( / ) = zsec ( / ) tan ( / ) 2 2 2 9 2 x x  dx = 2 z dt t 32 2  where tan (x/2) = t = 2 3 tan–1 t 3 + c = 2 3 tan–1 1 3 2 tan x F H G I K J+ c Ans. Ex.49 Evaluate : z dx x x sin cos  3 . Sol. I = z dx x x sin cos  3 . = 1 1 3  log tan x 2 6  F H G I K J  + c = 1 2 log tan x 2 6  F H G I K J  + c Ans. Ex.50 Evaluate : z dx x 1 sin Sol. Here I = z dx x 1 sin  I = z dx x x sin ( / ) cos ( / ) 2 2  = 2 2 log tan x 4 8  F H G I K J  + c = 2 log tan x 4 8  F H G I K J  + c. Ans. III. zp x q x a x b x sin cos sin cos   dx z p x a x b x sin sin cos  dx z q x a x b x cos sin cos  dx For their integration, we first express Nr. as follows- Nr = A (Dr) + B (derivative of Dr.) Then integral = Ax + B log (Dr) + C Ex.51 Evaluate : z sin cos sin cos x x x x   2 3 dx Sol. Let sin x + cos x = A (2 sinx + 3 cosx) + B(2 cos x – 3 sin x)  2 3 1 0 3 2 1 0 A B A B       U V W  A = 5/13 , B = –1/13  I = (5/13) x – (1/13)log(2 sinx + 3cos x) +c Ans. 5. SOME INTEGRATES OF DIFFERENT EXPRESSIONS OF ex (i) zae b ce x x  dx [put ex = t] (ii) z1 1 ex dx [Multiply and divide by e–x and put e–x =t] (iii) z1 1 ex dx [Multiply and divide by e–x and put e–x =t] (iv) z 1 e e x x   dx [Multiply and divide by ex] (v) z e e e e x x x x     dx f x f x form '( ) ( ) L N M O Q P (vi) z e e x x   1 1 dx [Multiply anddividebye–x/2] (vii) ze e e e x x x x   F H G I K J   dx [Integrand = tanh2 x] (viii) ze e x x 2 2 2 1 1   F H G I K Jdx [Integrand = coth2 x] (ix) z 1 2 e e x x   e j dx [Integrand = 1/4 sech2 x]
  • 13. (x) z 1 2 e e x x   e j dx [Integrand =1/4 cosech2 x] (xi) z 1 1 1    e e x x e je j dx [Multiply and divide by ex and put ex = t] (xii) z 1 1 ex dx [Multiply and divide by e–x/2] (xiii) z 1 1 ex dx [Multiply and divide by e–x/2] (xiv) z 1 e 1 x  dx [Multiply & divide by e–x/2] (xv) z 1 e 2 1 x  dx [Multiply and divide by 2 e–x/2] (xvi) z x e 1 dx [Integrand = (1 – ex)/ x e 1 ] (xvii) z x e 1 dx [Integrand = (1 + ex) / x e 1 ] (xviii) z 1 ex  dx [Integrand = (ex – 1) / 1 ex  ] (xix) z a e a e x x   dx [Integrand = (ex + a)/ 2 x 2 a e  Examples based on Some integrates of different expressions e x Ex.52 Evaluate : 1 1 ex  z dx. Sol. Here I = 1 1 ex  z dx = e e x x    z 1 dx = log (1 – e–x) + c Ans. Ex.53 Evaluate : ex  z 1 dx . Sol. Here I = ex  z 1 dx = e e x x   z 1 1 dx = e e x x  z 1 dx – 1 1 ex  z dx Let ex – 1 = t2, then ex dx = 2t dt  I = 2 dt z– 2 1 2 t  z dt = 2t – 2 tan–1 (t) + c = 2 e e x x    L N M O Q P  1 1 1 tan + c Ans.